ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Terpenoids: Chemistry, Biochemistry, Medicinal Effects, Ethno-pharmacology

دانلود کتاب ترپنوئیدها: شیمی، بیوشیمی، اثرات دارویی، قومی فارماکولوژی

Terpenoids: Chemistry, Biochemistry, Medicinal Effects, Ethno-pharmacology

مشخصات کتاب

Terpenoids: Chemistry, Biochemistry, Medicinal Effects, Ethno-pharmacology

ویرایش: [1 ed.] 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0367440318, 9780367440312 
ناشر: CRC Press 
سال نشر: 2022 
تعداد صفحات: 620
[629] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 36 Mb 

قیمت کتاب (تومان) : 50,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Terpenoids: Chemistry, Biochemistry, Medicinal Effects, Ethno-pharmacology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ترپنوئیدها: شیمی، بیوشیمی، اثرات دارویی، قومی فارماکولوژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب ترپنوئیدها: شیمی، بیوشیمی، اثرات دارویی، قومی فارماکولوژی


توضیحاتی درمورد کتاب به خارجی

This unique volume covers specific aspects of the biological chemistry of terpenoids. It provides extensive information related to classification, general methods of extraction and isolation of terpenoids, synthesis and pharmacological activities of monoterpenoids, synthesis and medicinal uses of diterpenoids, biogenesis of terpenoids, synthesis and medicinal uses of sesqui terpenoids and sesterpenoids. Some terpenes are also classified as diterpene alkaloids. Most of the terpenoids with diverse molecular structures are biologically active and are used for the treatment of various diseases such as cancer, malaria, inflammation, tuberculosis and infection, and this is discussed.

Features:

  • Activities and biological relationships of terpenes
  • An accurate assessment of where and what terpenes can lead to
  • Discusses how microbes, in particular the actinomycetales, have well over 400 different gene clusters that produce terpenes
  • Arranged by biological activities and usage
  • Provides information on eukaryotic enzymes that have been shown to be a source of “ethnobotanical” terpenes


فهرست مطالب

Cover
Half Title
Terpenoids: Chemistry, Biochemistry, Medicinal Effects, Ethno-pharmacology
Copyright
Contents
Preface
Acknowledgement
Authors
1. Classification, General Methods of Extraction and Isolation of Terpenoids
	1.1 Introduction
		1.1.1 Properties of Terpenoids
			1.1.1.1 Physical Properties
			1.1.1.2 Chemical Properties
			1.1.1.3 Phytochemical Properties
			1.1.1.4 Pharmacological Properties
		1.1.2 Isoprene Rule
		1.1.3 Violations of Isoprene Rule
		1.1.4 Special Isoprene Rule
		1.1.5 Exception to Special Isoprene Rule
	1.2 Classification of Terpenoids
	1.3 Nomenclature of Terpenoids
	1.4 General Methods of Extraction of Terpenoids
		1.4.1 Maceration
			1.4.1.1 Types of Maceration
			1.4.1.2 Steps Involved in Maceration
		1.4.2 Digestion
		1.4.3 Infusion
		1.4.4 Decoction
		1.4.5 Percolation
			1.4.5.1 Types of Percolation
			1.4.5.2 Steps Involved in Percolation
		1.4.6 Soxhlet Extraction
		1.4.7 Automated Soxhlet Extraction
		1.4.8 Supercritical Fluid Extraction (SFE)
		1.4.9 Pressurized Liquid Extraction (PLE)
		1.4.10 Pressurized Hot Water Extraction (PHWE)
		1.4.11 Microwave-Assisted Extraction (MAE)
		1.4.12 Ultrasound Extraction (Sonication)
	1.5 Solvents Used for Extraction
		1.5.1 Properties of Solvents Used in Extractions
		1.5.2 Factors to Be Considered for Selecting Solvents during Extraction
	1.6 Isolation of Terpenoids
		1.6.1 Isolation of Essential Oils from Plant Parts
		1.6.2 Separation of Terpenoids from Essential Oils
			1.6.2.1 Chemical Methods
			1.6.2.2 Physical Methods
	1.7 General Methods of Structure Elucidation of Terpenoids
	1.8 Conclusion
	Acknowledgment
	Abbreviations
	References
2. Synthesis and Pharmacological Activities of Monoterpenoids
	2.1 Introduction
		2.1.1 Factors Affecting Production of Monoterpenoids
	2.2 Synthesis of Monoterpenoids
		2.2.1 Synthesis of Acyclic Monoterpenoids
			2.2.1.1 Synthesis of Myrcene
			2.2.1.2 Synthesis of Citral
			2.2.1.3 Synthesis of Geraniol
			2.2.1.4 Synthesis of Citronellol
			2.2.1.5 Synthesis of Citronellal
			2.2.1.6 Synthesis of Linalool
			2.2.1.7 Synthesis of Ocimenes
		2.2.2 Synthesis of Monocyclic Monoterpenoids
			2.2.2.1 Synthesis of Menthol
			2.2.2.2 Synthesis of (-)-Isopulegol
			2.2.2.3 Synthesis of p-Cymene
			2.2.2.4 Synthesis of Thymol
			2.2.2.5 Synthesis of Carvacrol
			2.2.2.6 Synthesis of Eucalyptol
			2.2.2.7 Synthesis of Piperitone
			2.2.2.8 Synthesis of Carvone
			2.2.2.9 Synthesis of α-Terpineol
			2.2.2.10 Synthesis of Pulegone and Isopulegone
			2.2.2.11 Synthesis of Limonene
			2.2.2.12 Synthesis of Perillyl Alcohol
			2.2.2.13 Synthesis of Phellandrene
			2.2.2.14 Synthesis of Carveol
			2.2.2.15 Synthesis of Catalpol
			2.2.2.16 Synthesis of Thymoquinone
			2.2.2.17 Synthesis of Eugenol
			2.2.2.18 Synthesis of Sobrerol
			2.2.2.19 Synthesis of Aucubin
		2.2.3 Synthesis of Bicyclic Monoterpenoids
			2.2.3.1 Synthesis of Ascaridole
			2.2.3.2 Synthesis of Pinene
			2.2.3.3 Synthesis of Camphor
			2.2.3.4 Synthesis of Borneol
			2.2.3.5 Synthesis of Sabinene Hydrate
			2.2.3.6 Synthesis of Fenchone
			2.2.3.7 Synthesis of Verbenol
	2.3 Pharmacological Activities of Monoterpenoids
		2.3.1 Antimicrobial Activity
		2.3.2 Antidepressant Activity
		2.3.3 Antiviral Activity
		2.3.4 Analgesic and Anti-Inflammatory Activity
		2.3.5 Antioxidant Activity
		2.3.6 Anticancer Activity
		2.3.7 Anti-Proliferative Activity
		2.3.8 Anticonvulsant Activity
		2.3.9 Sedative and Hypnotics
		2.3.10 Treatment of Neurodegenerative Disorders
		2.3.11 Cardiovascular Effects
		2.3.12 Herbicidal Activity
		2.3.13 Antidiabetic Agents
		2.3.14 Miscellaneous
	2.4 Conclusion
	Abbreviation
	References
3. Synthesis, and Medicinal Uses of Diterpenoids
	3.1 Introduction
	3.2 Synthesis of Diterpenoids
	3.3 Medicinal Uses of Diterpenoids
		3.3.1 Treatment of Cardiovascular Diseases
		3.3.2 Treatment of Cancer
		3.3.3 Treatment of Inflammation
		3.3.4 Management of Alzheimer's Disease
		3.3.5 Treatment of Diabetes and Hyperlipidemia
		3.3.6 Treatment of Microbial Infection
		3.3.7 Treatment of Tuberculosis
		3.3.8 Treatment of Pain and Smooth Muscle Spasms
		3.3.9 Treatment of Leishmaniasis
	3.4 Conclusion
	References
4. Name Reactions in Terpenoid Chemistry
	4.1 Introduction
		4.1.1 Click Reactions
		4.1.2 Molecular Rearrangements
		4.1.3 Wagner–Meerwein Rearrangement
		4.1.4 Wittig Reaction
		4.1.5 Mannich Reaction
		4.1.6 Oppenauer Oxidation
		4.1.7 Grignard's Reaction
		4.1.8 Reformatsky Reaction
		4.1.9 Pauson–Khand Reaction
		4.1.10 Diels–Alder Reaction
		4.1.11 Baeyer–Villiger Oxidation
		4.1.12 Claisen–Schmidt Condensation
		4.1.13 Claisen Rearrangement
		4.1.14 Dieckmann Condensation
		4.1.15 Beckmann Rearrangement
		4.1.16 Pinacol–Pinacolone Rearrangement
		4.1.17 Birch Reduction
		4.1.18 Wurtz Reaction
		4.1.19 Wolff–Kishner Reduction
		4.1.20 Wolff Rearrangement
		4.1.21 Meerwein–Ponndorf–Verley (MPV) Reduction
		4.1.22 Curtius Rearrangement
		4.1.23 Luche Reduction
		4.1.24 Favorskii Rearrangement
		4.1.25 Knoevenagel Reaction
		4.1.26 Perkin Reaction
		4.1.27 Lossen Rearrangement
		4.1.28 Cope Rearrangement
		4.1.29 Arndt–Eistert Reaction
		4.1.30 Miscellaneous
	4.2 Conclusion
	References
5. Biogenesis of Terpenoids
	5.1 Introduction
	5.2 Biogenesis Pathway
		5.2.1 Biosynthesis of Carvone
		5.2.2 Biosynthesis of Limonene
		5.2.3 Biosynthesis of Geraniol
		5.2.4 Biosynthesis of Iridoids
		5.2.5 Biogenesis of Pimarane
		5.2.6 Biogenesis of Lycopene
		5.2.7 Biosynthesis of Terpene Indole Alkaloids
		5.2.8 Biosynthesis of Monoterpenoid by Engineered Microbes
		5.2.9 Strategies for Improving Biosynthesis of Terpenoids
			5.2.9.1 Protein Engineering Strategies for Biosynthesis of Terpenoids
			5.2.9.2 Biosynthesis of Terpenoids via Genome Engineering
			5.2.9.3 Biosynthesis of Monoterpenes via Recombinant Technology
		5.2.10 Regulation of Biosynthesis of Terpenoids
	5.3 Conclusion
	Abbreviation
	References
6. Anticancer Natural Terpenoids
	6.1 Introduction
	6.2 Monoterpenes as Anticancer Agents
	6.3 Sesquiterpenes as Anticancer Agents
	6.4 Diterpenes as Anticancer Agents
	6.5 Triterpenes as Anticancer Agents
	6.6 Tetraterpenes as Anticancer Agents
	6.7 Conclusion
	Abbreviation
	References
7. Terpene Glycosides
	7.1 Introduction
	7.2 Synthesis of Glycosides
	7.3 Monoterpenoid Glycosides
	7.4 Sesquiterpenoid Glycosides
	7.5 Diterpenoid Glycosides
	7.6 Sesterpene Glycosides
	7.7 Triterpenoid Glycosides
	7.8 Tetraterpenoid Glycosides
	7.9 Miscellaneous
	7.10 Hydrolysis of Terpene Glycosides
	7.11 Applications of Terpene Glycosides
	7.12 Conclusion
	Abbreviations
	References
8. Terpenes as Starting Compounds for Other Types of Molecules Including Alkaloids
	8.1 Introduction
	8.2 Monoterpenes as Starting Compounds
		8.2.1 Polymerization of Terpenes
	8.3 Sesquiterpenoids as Starting Compounds
	8.4 Miscellaneous
	8.5 Terpenoid Alkaloids
		8.5.1 Monoterpenoid Alkaloids
		8.5.2 Diterpenoids Alkaloids
		8.5.3 Triterpenoid Alkaloids
		8.5.4 Biological Activities Terpenoid Alkaloids
	8.6 Conclusion
	Abbreviation
	References
9. Synthesis and Medicinal Uses of Triterpenoids
	9.1 Introduction
	9.2 Synthesis of Triterpenoids
		9.2.1 Biosynthesis of Tetracyclic Triterpenoid
			9.2.1.1 Synthesis of Shionone
			9.2.1.2 Synthesis of Lanosterol
			9.2.1.3 Synthesis of Mogrosides
			9.2.1.4 Synthesis of Dammarane-Type Triterpenoids
			9.2.1.5 Biosynthesis of Cycloartane
		9.2.2 Biosynthesis of Pentacyclic Triterpenoid
			9.2.2.1 Biosynthesis of Hopanoids
			9.2.2.2 Biosynthesis of Oleanane and Ursane Triterpenoids
			9.2.2.3 Biosynthesis of Taraxerol
			9.2.2.4 Biosynthesis of Lupeol
			9.2.2.5 Biosynthesis of Betulinic Acid
			9.2.2.6 Biosynthesis of Friedelin
			9.2.2.7 Biosynthesis of Celastrol
			9.2.2.8 Biosynthesis of Oleanolic Acid
			9.2.2.9 Biosynthesis of Glycyrrhizin
	9.3 Medicinal Uses of Triterpenoids
		9.3.1 Triterpenoids as Anticancer Agents
			9.3.1.1 Lupeol as Anticancer Agent
			9.3.1.2 Limonoids as Anticancer Agent
			9.3.1.3 Tirucallane as Anticancer Agent
			9.3.1.4 Cycloartane Triterpene as Anticancer Agent
			9.3.1.5 Protostane Triterpene as Anticancer Agent
			9.3.1.6 Ursolic Acid as Anticancer Agent
			9.3.1.7 Betulinic Acid as Anticancer Agent
			9.3.1.8 Ganoderic Acid D as Anticancer Agent
			9.3.1.9 Dehydrotrametenolic Acid as Anticancer Agent
			9.3.1.10 Impatienside A and Bivittoside D as Anticancer Agents
			9.3.1.11 Ananosic Acid B as Anticancer Agents
			9.3.1.12 Daedaleasides as Anticancer Agents
			9.3.1.13 Inonotsuoxides as Anticancer Agent
			9.3.1.14 CDDO-Me as Anticancer Agent
			9.3.1.15 ß-Escin as Anticancer Agent
			9.3.1.16 Cimicifoetisides as Anticancer Agents
			9.3.1.17 Nimbolide as Anticancer Agent
			9.3.1.18 3-O-Acetyl-11-Keto-ß-Boswellic Acid as Anticancer Agent
			9.3.1.19 Asiatic Acid as Anticancer Agent
			9.3.1.20 Celastrol as Anticancer Agent
			9.3.1.21 Glycyrrhizin as Anticancer Agent
		9.3.2 Triterpenoids as Anti-Diabetic Agents
			9.3.2.1 Lupeol as Anti-Diabetic Agent
			9.3.2.2 Oleanolic Acid as Anti-Diabetic Agent
			9.3.2.3 Viburodorol A as Anti-Diabetic Agent
			9.3.2.4 Ursolic Acid A as Anti-Diabetic Agent
		9.3.3 Triterpenoids as Antimicrobial Agents
			9.3.3.1 ß-Amyrin as Antimicrobial Agents
			9.3.3.2 Betulinic Acid as Antimicrobial Agents
		9.3.4 Triterpenoids as Anti-Inflammatory Agents
			9.3.4.1 Avicins as Anti-Inflammatory Agents
			9.3.4.2 Ginsenosides as Anti-Inflammatory Agents
			9.3.4.3 Escin as Anti-Inflammatory Agent
			9.3.4.4 Glycyrrhizin as Anti-Inflammatory Agent
			9.3.4.5 Lupeol as Anti-Inflammatory Agent
			9.3.4.6 Oleanolic Acid as Anti-Inflammatory Agent
			9.3.4.7 Ursolic Acid as Anti-Inflammatory Agent
			9.3.4.8 Platycodin D as Anti-Inflammatory Agent
			9.3.4.9 Saikosaponins as Anti-Inflammatory Agents
		9.3.5 Triterpenoids as Antioxidant
			9.3.5.1 Fulgic Acids as Anti-Oxidants
			9.3.5.2 Multiflorane Triterpenoid as Anti-Oxidants
			9.3.5.3 Madecassic Acid as Anti-Oxidants
		9.3.6 Triterpenoids as Hepatoprotective
			9.3.6.1 Triterpenoids Saponis as Hepatoprotective
			9.3.6.2 Ceanothic Acid and Zizybrenalic Acid as Hepatoprotective
		9.3.7 Triterpenoids as Cardioprotective Agent
			9.3.7.1 Lupeol as Cardioprotective Agent
			9.3.7.2 Betulinic Acid as Cardioprotective Agent
		9.3.8 Triterpenoids as Antiviral Agents
		9.3.9 Miscellaneous
	9.4 Conclusion
	Abbreviations
	References
10. Synthesis and Medicinal Uses of Sesquiterpenoids and Sesterpenoids
	10.1 Introduction
		10.1.1 Classification of Sesquiterpenoids
		10.1.2 Biosynthesis of Sesquiterpene
		10.1.3 Chemistry and Medicinal Uses of Sesquiterpenoids
			10.1.3.1 Acyclic Sesquiterpenoid
			10.1.3.2 Monocyclic Sesquiterpenoid
			10.1.3.3 Bicyclic Sesquiterpenoid
			10.1.3.4 Tricyclic Sesquiterpenoid
			10.1.3.5 Miscellaneous
		10.1.4 Chemistry and Medicinal Uses of Sesquiterpenoid Lactones
			10.1.4.1 Artemisinin
			10.1.4.2 Eudesmanolide
			10.1.4.3 Germacranolides
			10.1.4.4 Guaianolides
			10.1.4.5 Tenulin
		10.1.5 Chemistry and Medicinal Uses of Sesquiterpenols
		10.1.6 Chemistry and Medicinal Uses of Sesterpenes
	10.2 Conclusion
	Abbreviation
	References
11. Terpenes as Useful Drugs
	11.1 Introduction
		11.1.1 Terpenes as Antimalarial Drugs
		11.1.2 Terpenes as Anthelmintic Drugs
		11.1.3 Terpenes as Anti-inflammatory Drugs
		11.1.4 Terpenes as Anti-HIV Drugs
		11.1.5 Terpenes as Anti-Alzheimer Drugs
		11.1.6 Terpene as Antimicrobial Drugs
		11.1.7 Terpenes as Anticancer Drugs
		11.1.8 Terpenes as Antioxidants
		11.1.9 Immunomodulatory Activity
		11.1.10 Terpenes as Hepatoprotective
		11.1.11 Terpenes as Anti-Diabetic Drugs
	11.2 Miscellaneous
	11.3 Conclusion
	Abbreviation
	Acknowledgment
	References
12. Terpenoids: A Brief Survey of Naturally Occurring Terpenes Molecules
	12.1 Introduction
	12.2 Sources
	12.3 Classification
	12.4 Terpenoids as Chemotherapeutics
	12.5 Classification Terpenoids
	12.6 Mechanism of Action of Selected Terpenoids against Cancer Progression
	12.7 Monoterpenoids
	12.8 Menthol
	12.9 Auraptene
	12.10 D-Limonene
	12.11 Perillic Acid
	12.12 Ascaridole
	12.13 Carvacrol
	12.14 Sesquiterpenoids and Sesquiterpene Lactones
	12.15 Artesunate and Artemisinin
	12.16 ß-Elemene
	12.17 Diterpenoids
	12.18 Crocetin
	12.19 Triterpenoids
	12.20 Betulinic Acid
	12.21 Lupeol
	12.22 Conclusion
	References
13. A Brief Account on Plant and Marine-Derived Terpenoids
	13.1 Microbial Synthesis of Terpenoids
	13.2 Epoxidation
	13.3 Baeyer–Villiger Oxidation
	13.4 Kinetic Resolution
	Conclusion
	References
14. A Synthetic Overview of Terpenes and Nor Diterpenes
	14.1 Introduction
	14.2 Vitamin A (Retinol Acetate)
		14.2.1 Retrosynthetic Route of Dehydrolinalool
		14.2.2 First Step: Synthesis of C-15 Wittig Salt from Dehydrolinalool
		14.2.3 Second Step: Synthesis of C5 Acetate
		14.2.4 Third Step: Synthesis of Vitamin A acetate
		14.2.5 Fourth Step: Synthesis of ß-carotene
	14.3 Synthetic Route of Cafestol
	14.4 Retrosynthesis of (-)-Cafestol
		14.4.1 Step 1: Synthesis of diazoketoester
		14.4.2 Step 2: Synthesis of (-) Cafestol
	14.5 Baccatin III as a Taxol Precursor
	14.6 Baccatin Synthesis
		14.6.1 Step 1: Synthesis of sulfonylhydrazone
		14.6.2 Step 2: Synthesis of cyclohexenaldehyde
		14.6.3 Step 3: Synthesis of diastereomers
		14.6.4 Step 4: Synthesis of 7-O-triethylsilylbaccatin-III
	14.7 Triterpenes
		14.7.1 Lupeol
	14.8 Synthesis of (+) Lupeol
		14.8.1 Retro synthesis of 6-methoxy-a-tetralone from
			14.8.1.1 Step 1: Synthesis of substituted benzoate
			14.8.1.2 Step 2: Synthesis of allylketobenzoate
			14.8.1.3 Step 3: Synthesis of ketal ester
	14.9 Diterpenoids
	14.10 Classification
	14.11 Gibberellanes
	14.12 Alkaloids of C20-Diterpenoid
	14.13 C20-Atisines Class
		14.13.1 C20-Denudatine Class
		14.13.2 C20-Hetidine Class
		14.13.3 C20-Vakognavine Class
		14.13.4 C20-Napelline Class
		14.13.5 C20-Anopterine Class
		14.13.6 C20-Rearranged Classes
		14.13.7 Bis-Diterpenoid Alkaloids
	14.14 Conclusion
	References
15. Sesquiterpenes: A Chemical Synthesis and Biological Activity
	15.1 Introduction
	15.2 Acyclic Sesquiterpenoids
		15.2.1 Farnesanes
	15.3 Monocyclic Farnesane Sesquiterpenes
		15.3.1 Cyclofarnesanes and Bisabolanes
	15.4 Monocyclic Farnesane Sesquiterpenes
		15.4.1 Cyclofarnesanes and Bisabolanes
		15.4.2 Germacranes and Elemanes
		15.4.3 Humulanes
	15.5 Polycyclic Farnesane Sesquiterpenes
		15.5.1 Caryophyllanes
		15.5.2 Eudesmanes and Furanoeudesmanes
		15.5.3 Eremophilanes, Furanoeremophilanes, Valeranes
		15.5.4 Cadinanes
		15.5.5 Drimanes
		15.5.6 Guaianes and Cycloguaianes
	15.6 Himachalanes, Longipinanes, Longifolanes
		15.6.1 Picrotoxanes
		15.6.2 Isodaucanes and Daucanes
		15.6.3 Protoilludanes, Illudanes, Illudalanes
		15.6.4 Marasmanes, Isolactaranes, Lactaranes, Sterpuranes
		15.6.5 Acoranes
		15.6.6 Chamigranes
		15.6.7 Cedranes and Isocedranes
		15.6.8 Zizaanes and Prezizaanes
		15.6.9 Campherenanes and Santalanes
		15.6.10 Thujopsanes
		15.6.11 Hirsutanes
	15.7 Other Polycyclic Sesquiterpenes
		15.7.1 Pinguisanes
		15.7.2 Presilphiperfolianes, Silphiperfolianes, Silphinanes, Isocomanes
	15.8 Important Synthesis of Sesquiterpenes
		15.8.1 Farnesene
		15.8.2 Farnesol
		15.8.3 Nerolidol
		15.8.4 E-Selinene
		15.8.5 Isocomene
		15.8.6 Cedrene
		15.8.7 Periplanone B
		15.8.8 Laurene
	15.9 Conclusion
	References
16. Sesquiterpenes Lactone: Biogenesis and Chemical Synthesis
	16.1 Introduction
	16.2 Classification
	16.3 Structure
	16.4 Chemical Characteristics
	16.5 Biosynthesis of Sesquiterpene Lactones
		16.5.1 Biosynthesis of the Isoprenoid Precursors in Plants
		16.5.2 Mevalonate (MVA) Pathway
		16.5.3 2-C-Methyl-D-erythritol 4-phosphate (MEP) Pathway
		16.5.4 Cross-Talk between MVA and MEP Pathways
	16.6 Farnesyl Diphosphate Synthase
		16.6.1 Branch Point of Sesquiterpene Lactone Biosynthesis
		16.6.2 Sesquiterpene Lactone Pathway
		16.6.3 Hypothetical Pathway
	16.7 Enzymes of Sesquiterpene Lactone Biosynthesis
		16.7.1 Biosynthesis of the Sesquiterpene Framework
		16.7.2 Biosynthesis of the Lactone Ring
		16.7.3 Function of the α-Methylene-γ-Lactone Group
		16.7.4 Sesquiterpene Lactone Synthesis
		16.7.5 Synthetic Strategy of Parthenolide
	16.8 Parthenolide Semi-synthesis
		16.8.1 General Strategies for the Synthesis of Guaianolides
	16.9 Synthesis of Guaianolides
		16.9.1 Semi-synthesis of Guaianolides
	16.10 Costunolide and Its Derivatives
	16.11 Parthenolide and Analogues
	16.12 Artemisinin and Its Derivatives
	16.13 Santonin and Its Analogues
	16.14 Structure–Activity Relationship
	16.15 Biological Activities
	16.16 Role of Sesquiterpene Lactones
	16.17 Pathways Affected by Sesquiterpene Lactones
	16.18 IIR Signalling SLTS-Modified in Inflammation
	16.19 Mechanism of Different STLs
		16.19.1 Santonin
		16.19.2 Artemisinin
		16.19.3 Parthenolide
		16.19.4 Costunolide
		16.19.5 Dehydroleucodine
		16.19.6 Helenalin
		16.19.7 Thapsigargin
		16.19.8 Arglabin
		16.19.9 Cynaropicrin
	Conclusion
	References
17. An Overview of Lactarane: A New Class of Bio-Active Molecules
	17.1 Introduction
	17.2 Biosynthesis of Lactarane and Marasmane Sesquiterpenes
	17.3 Isolation of Lactarane and Marasmane Sesquiterpenes
	17.4 Pharmacological Applications of Lactarane and Marasmane Sesquiterpenes
	17.5 Synthetic Approaches toward Lactarane and Marasmane Sesquiterpenes
	17.6 Ring Enlargements
	17.7 Cyclizations
	Conclusion
	References
18. Terpenes: A Potential Chiral Pool for the Synthesis of Medicinally Privileged Bioactive Molecules
	18.1 Introduction
	18.2 Diastereomers
	18.3 Enantiomers (Chirality)
	18.4 Chiral Terpenoids Synthesis
		18.4.1 Myrcene
		18.4.2 Citral
		18.4.3 Stereochemistry of Citral
	18.5 Geraniol
		18.5.1 Linalool
		18.5.2 Lavandulol
		18.5.3 Citronellal
		18.5.4 Citronellol
		18.5.5 α-Terpineol
	18.6 Synthesis of α-Terpineol Starts with p-Toluic Acid
		18.6.1 Carvone
		18.6.2 Carvone Oxidation and Reduction
		18.6.3 Limonene
		18.6.4 Menthol
		18.6.5 Menthone
	18.7 Synthesis of Menthone and Menthol
		18.7.1 Pinene
		18.7.2 Total synthesis of a-Pinene
	18.8 The Bornane (Camphene)-Norbornane (Isocamphane) Group
	18.9 Camphor
	18.10 Synthesis of Camphor (Haller, 1896).
	18.11 Farnesene
	18.12 Farnesol
	18.13 Nerolidol
	18.14 Metabolism Reactions of Chiral Terpenoids
	18.15 Camphene
	18.16 Camphor
	18.17 Carvacrol
	18.18 Carvone
	18.19 1,4-Cineole
	18.20 1,8-Cineole
	18.21 Citral
	18.22 Citronellal
	18.23 Fenchone
	18.24 Geraniol
	18.25 Limonene
	18.26 Linalool
	18.27 Linalyl Acetate
	18.28 Menthol
	18.29 Myrcene
	18.30 Pinene
	18.31 Pulegone
	18.32 a-Terpineol
	18.33 α- and ß-Thujone
	18.34 Thymol
	18.35 Caryophyllene
	18.36 Farnesol
	18.37 Longifolene
	18.38 Patchouli Alcohol
	18.39 Chiral Synthesis of Selected Terpenoids
		18.39.1 Synthesis of (+) Apiosporamide
	18.40 Synthesis of (+)- Neosymbioimine
	Conclusion
	References
19. Terpenes: A Unique Source of Oil and Fragrance in Industry
	19.1 Introduction
	19.2 Classification of Volatile Oil
	19.3 Volatile Oil Extraction
	19.4 Sources of Natural Essential Oil
		19.4.1 Hydrodistillation
			19.4.1.1 Mechanism of Distillation
		19.4.2 Essential Oil Extraction by Expression
		19.4.3 Essential Oil Extraction with Cold Fat (Enfleurage)
		19.4.4 Enfleurage and Defleurage
		19.4.5 Hot Maceration Process
		19.4.6 Modern (Non-Traditional) Methods of Extraction of Essential Oils
			19.4.6.1 Headspace Trapping Techniques
			19.4.6.2 Static Headspace Technique
			19.4.6.3 Vacuum Headspace Technique
			19.4.6.4 Dynamic Headspace Technique
		19.4.7 Solid Phase Micro-Extraction (SPME)
		19.4.8 Supercritical Fluid Extraction (SFE)
		19.4.9 Simultaneous Distillation Extraction (SDE)
		19.4.10 Microwave Distillation
		19.4.11 Controlled Instantaneous Decomposition (CID)
		19.4.12 Thermo-Micro Distillation
		19.4.13 Molecular Spinning Band Distillation
	19.5 Worldwide Current Trends in Essential Oils Market
	19.6 Industrial Applications
		19.6.1 Food and Food Preservation
		19.6.2 Nano-Formulation Incorporating Essential Oil
		19.6.3 Role of Essential Oils as Natural Cosmetic Preservatives
		19.6.4 Antimicrobial Effects of Essential Oils
		19.6.5 Current Trends on the Application of EOs in the Food Industry
		19.6.6 Role of Essential Oils in Perfumes
	19.7 Analysis of Essential Oils
	19.8 Legislation of EO'S in Food
	Conclusion
	References
Index




نظرات کاربران