دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک ویرایش: 2015 نویسندگان: Siegfried Hess سری: Undergraduate Lecture Notes in Physics ISBN (شابک) : 3319127861, 9783319127873 ناشر: Springer سال نشر: 2015 تعداد صفحات: 449 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
کلمات کلیدی مربوط به کتاب حسگرهای فیزیک: فیزیک، روش های ریاضی و مدل سازی در فیزیک
در صورت تبدیل فایل کتاب Tensors for Physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حسگرهای فیزیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
از یادگیری و آموزش با تمرینات گسترده در پایان هر فصل از جمله راه حل ها پشتیبانی می کند شامل مثال های متعددی برای توصیف کارآمد ناهمسانگردی ها در پدیده های فیزیکی است نحوه استفاده از تانسورها برای محاسبه خواص ناهمسانگردی پدیده های جهت یابی را در توضیحات نظری، علاوه بر تحلیل برداری توضیح می دهد. تحلیل برداری را با استفاده از مولفه های دکارتی ارائه می کند شامل فصلی در مورد فیزیک کریستال های مایع، بهترین کاربرد مدل جبر تانسور این کتاب علم تانسورها را به صورت آموزشی ارائه می کند. انواع و رتبه های مختلف تانسورها و مبنای فیزیکی ارائه شده است. تانسورهای دکارتی برای توصیف پدیده های جهت دار در بسیاری از شاخه های فیزیک و برای توصیف ناهمسانگردی خواص مواد مورد نیاز هستند. بخشهای اول کتاب مقدمهای بر جبر بردار و تانسور و تجزیه و تحلیل، با کاربردهایی در فیزیک، در مقطع کارشناسی ارائه میکند. تانسورهای رتبه دوم، به ویژه تقارن آنها، به تفصیل مورد بحث قرار گرفته است. تمایز و ادغام زمینه ها، از جمله تعمیم قانون استوکس و قضیه گاوس، درمان می شود. فیزیک مربوط به کاربردهای مکانیک، مکانیک کوانتومی، الکترودینامیک و هیدرودینامیک ارائه شده است. بخش دوم کتاب به تنسورهای هر رتبه ای در مقطع کارشناسی ارشد اختصاص دارد. موضوعات ویژه عبارتند از: تانسورهای بدون ردیابی متقارن، تانسورهای همسانگرد، تانسورهای پتانسیل چند قطبی، تانسورهای اسپین، فرمولهای یکپارچهسازی و ردیابی اسپین، جفت شدن تانسورهای تقلیلناپذیر، چرخش تانسورها. قوانین تشکیل دهنده برای خواص نوری، الاستیک و چسبناک محیط های ناهمسانگرد بررسی می شوند. رسانه های ناهمسانگرد شامل کریستال ها، کریستال های مایع و سیالات همسانگرد هستند که توسط میدان های جهت گیری خارجی ناهمسانگرد تبدیل می شوند. دینامیک تانسورها با پدیده های تحقیقات فعلی سر و کار دارد. در بخش آخر، معادلات سه بعدی ماکسول در نسخه چهار بعدی خود، مطابق با نسبیت خاص، مجدداً فرموله شده است. موضوعات روش های ریاضی در فیزیک کاربردهای ریاضی در علوم فیزیک مواد نرم و گرانول، سیالات پیچیده و میکروسیالات شیمی فیزیک Appl. ریاضیات / روشهای محاسباتی مهندسی
Supports learning and teaching with extended exercises at the end of every chapter including solutions Contains numerous examples for efficient description of anisotropies in physical phenomena Describes how to use tensors to calculate anisotropical properties of orientational phenomena in the theoretical description, in addition to vector analysis Presents vector analysis using Cartesian components Contains a chapter on the physics of liquid crystals, the best model application of the tensor algebra This book presents the science of tensors in a didactic way. The various types and ranks of tensors and the physical basis is presented. Cartesian Tensors are needed for the description of directional phenomena in many branches of physics and for the characterization the anisotropy of material properties. The first sections of the book provide an introduction to the vector and tensor algebra and analysis, with applications to physics, at undergraduate level. Second rank tensors, in particular their symmetries, are discussed in detail. Differentiation and integration of fields, including generalizations of the Stokes law and the Gauss theorem, are treated. The physics relevant for the applications in mechanics, quantum mechanics, electrodynamics and hydrodynamics is presented. The second part of the book is devoted to tensors of any rank, at graduate level. Special topics are irreducible, i.e. symmetric traceless tensors, isotropic tensors, multipole potential tensors, spin tensors, integration and spin-trace formulas, coupling of irreducible tensors, rotation of tensors. Constitutive laws for optical, elastic and viscous properties of anisotropic media are dealt with. The anisotropic media include crystals, liquid crystals and isotropic fluids, rendered anisotropic by external orienting fields. The dynamics of tensors deals with phenomena of current research. In the last section, the 3D Maxwell equations are reformulated in their 4D version, in accord with special relativity. Topics Mathematical Methods in Physics Mathematical Applications in the Physical Sciences Soft and Granular Matter, Complex Fluids and Microfluidics Physical Chemistry Appl. Mathematics / Computational Methods of Engineering
Part I A Primer on Vectors and Tensors 1 Introduction 1.1 Preliminary Remarks on Vectors 1.1.1 Vector Space 1.1.2 Norm and Distance 1.1.3 Vectors for Classical Physics 1.1.4 Vectors for Special Relativity 1.2 Preliminary Remarks on Tensors 1.3 Remarks on History and Literature 1.4 Scope of the Book 2 Basics 2.1 Coordinate System and Position Vector 2.1.1 Cartesian Components 2.1.2 Length of the Position Vector, Unit Vector 2.1.3 Scalar Product 2.1.4 Spherical Polar Coordinates 2.2 Vector as Linear Combination of Basis Vectors 2.2.1 Orthogonal Basis 2.2.2 Non-orthogonal Basis 2.3 Linear Transformations of the Coordinate System 2.3.1 Translation 2.3.2 Affine Transformation 2.4 Rotation of the Coordinate System 2.4.1 Orthogonal Transformation 2.4.2 Proper Rotation 2.5 Definitions of Vectors and Tensors in Physics 2.5.1 Vectors 2.5.2 What is a Tensor? 2.5.3 Multiplication by Numbers and Addition of Tensors 2.5.4 Remarks on Notation 2.5.5 Why the Emphasis on Tensors? 2.6 Parity 2.6.1 Parity Operation 2.6.2 Parity of Vectors and Tensors 2.6.3 Consequences for Linear Relations 2.6.4 Application: Linear and Nonlinear Susceptibility Tensors 2.7 Differentiation of Vectors and Tensors with Respect to a Parameter 2.7.1 Time Derivatives 2.7.2 Trajectory and Velocity 2.7.3 Radial and Azimuthal Components of the Velocity 2.8 Time Reversal 3 Symmetry of Second Rank Tensors, Cross Product 3.1 Symmetry 3.1.1 Symmetric and Antisymmetric Parts 3.1.2 Isotropic, Antisymmetric and Symmetric Traceless Parts 3.1.3 Trace of a Tensor 3.1.4 Multiplication and Total Contraction of Tensors, Norm 3.1.5 Fourth Rank Projections Tensors 3.1.6 Preliminary Remarks on ``Antisymmetric Part and Vector'' 3.1.7 Preliminary Remarks on the Symmetric Traceless Part 3.2 Dyadics 3.2.1 Definition of a Dyadic Tensor 3.2.2 Products of Symmetric Traceless Dyadics 3.3 Antisymmetric Part, Vector Product 3.3.1 Dual Relation 3.3.2 Vector Product 3.4 Applications of the Vector Product 3.4.1 Orbital Angular Momentum 3.4.2 Torque 3.4.3 Motion on a Circle 3.4.4 Lorentz Force 3.4.5 Screw Curve 4 Epsilon-Tensor 4.1 Definition, Properties 4.1.1 Link with Determinants 4.1.2 Product of Two Epsilon-Tensors 4.1.3 Antisymmetric Tensor Linked with a Vector 4.2 Multiple Vector Products 4.2.1 Scalar Product of Two Vector Products 4.2.2 Double Vector Products 4.3 Applications 4.3.1 Angular Momentum for the Motion on a Circle 4.3.2 Moment of Inertia Tensor 4.4 Dual Relation and Epsilon-Tensor in 2D 4.4.1 Definitions and Matrix Notation 5 Symmetric Second Rank Tensors 5.1 Isotropic and Symmetric Traceless Parts 5.2 Principal Values 5.2.1 Principal Axes Representation 5.2.2 Isotropic Tensors 5.2.3 Uniaxial Tensors 5.2.4 Biaxial Tensors 5.2.5 Symmetric Dyadic Tensors 5.3 Applications 5.3.1 Moment of Inertia Tensor of Molecules 5.3.2 Radius of Gyration Tensor 5.3.3 Molecular Polarizability Tensor 5.3.4 Dielectric Tensor, Birefringence 5.3.5 Electric and Magnetic Torques 5.4 Geometric Interpretation of Symmetric Tensors 5.4.1 Bilinear Form 5.4.2 Linear Mapping 5.4.3 Volume and Surface of an Ellipsoid 5.5 Scalar Invariants of a Symmetric Tensor 5.5.1 Definitions 5.5.2 Biaxiality of a Symmetric Traceless Tensor 5.6 Hamilton-Cayley Theorem and Consequences 5.6.1 Hamilton-Cayley Theorem 5.6.2 Quadruple Products of Tensors 5.7 Volume Conserving Affine Transformation 5.7.1 Mapping of a Sphere onto an Ellipsoid 5.7.2 Uniaxial Ellipsoid 6 Summary: Decomposition of Second Rank Tensors 7 Fields, Spatial Differential Operators 7.1 Scalar Fields,Gradient 7.1.1 Graphical Representation of Potentials 7.1.2 Differential Change of a Potential, Nabla Operator 7.1.3 Gradient Field, Force 7.1.4 Newton's Equation of Motion, One and More Particles 7.1.5 Special Force Fields 7.2 Vector Fields, Divergence and Curl or Rotation 7.2.1 Examples for Vector Fields 7.2.2 Differential Change of a Vector Fields 7.3 Special Types of Vector Fields 7.3.1 Vorticity Free Vector Fields, Scalar Potential 7.3.2 Poisson Equation, Laplace Operator 7.3.3 Divergence Free Vector Fields, Vector Potential 7.3.4 Vorticity Free and Divergence Free Vector Fields, Laplace Fields 7.3.5 Conventional Classification of Vector Fields 7.3.6 Second Spatial Derivatives of Spherically Symmetric Scalar Fields 7.4 Tensor Fields 7.4.1 Graphical Representations of Symmetric Second Rank Tensor Fields 7.4.2 Spatial Derivatives of Tensor Fields 7.4.3 Local Mass and Momentum Conservation, Pressure Tensor 7.5 Maxwell Equations in Differential Form 7.5.1 Four-Field Formulation 7.5.2 Special Cases 7.5.3 Electromagnetic Waves in Vacuum 7.5.4 Scalar and Vector Potentials 7.5.5 Magnetic Field Tensors 7.6 Rules for Nabla and Laplace Operators 7.6.1 Nabla 7.6.2 Application: Orbital Angular Momentum Operator 7.6.3 Radial and Angular Parts of the Laplace Operator 7.6.4 Application: Kinetic Energy Operator in Wave Mechanics 8 Integration of Fields 8.1 Line Integrals 8.1.1 Definition, Parameter Representation 8.1.2 Closed Line Integrals 8.1.3 Line Integrals for Scalar and Vector Fields 8.1.4 Potential of a Vector Field 8.1.5 Computation of the Potential for a Vector Field 8.2 Surface Integrals, Stokes 8.2.1 Parameter Representation of Surfaces 8.2.2 Examples for Parameter Representations of Surfaces 8.2.3 Surface Integrals as Integrals Over Two Parameters 8.2.4 Examples for Surface Integrals 8.2.5 Flux of a Vector Field 8.2.6 Generalized Stokes Law 8.2.7 Application: Magnetic Field Around an Electric Wire 8.2.8 Application: Faraday Induction 8.3 Volume Integrals, Gauss 8.3.1 Volume Integrals in R3 8.3.2 Application: Mass Density, Center of Mass 8.3.3 Application: Moment of Inertia Tensor 8.3.4 Generalized Gauss Theorem 8.3.5 Application: Gauss Theorem in Electrodynamics, Coulomb Force 8.3.6 Integration by Parts 8.4 Further Applications of Volume Integrals 8.4.1 Continuity Equation, Flow Through a Pipe 8.4.2 Momentum Balance, Force on a Solid Body 8.4.3 The Archimedes Principle 8.4.4 Torque on a Rotating Solid Body 8.5 Further Applications in Electrodynamics 8.5.1 Energy and Energy Density in Electrostatics 8.5.2 Force and Maxwell Stress in Electrostatics 8.5.3 Energy Balance for the Electromagnetic Field 8.5.4 Momentum Balance for the Electromagnetic Field, Maxwell Stress Tensor 8.5.5 Angular Momentum in Electrodynamics Part II Advanced Topics 9 Irreducible Tensors 9.1 Definition and Examples 9.2 Products of Irreducible Tensors 9.3 Contractions, Legendre Polynomials 9.4 Cartesian and Spherical Tensors 9.4.1 Spherical Components of a Vector 9.4.2 Spherical Components of Tensors 9.5 Cubic Harmonics 9.5.1 Cubic Tensors 9.5.2 Cubic Harmonics with Full Cubic Symmetry 10 Multipole Potentials 10.1 Descending Multipoles 10.1.1 Definition of the Multipole Potential Functions 10.1.2 Dipole, Quadrupole and Octupole Potentials 10.1.3 Source Term for the Quadrupole Potential 10.1.4 General Properties of Multipole Potentials 10.2 Ascending Multipoles 10.3 Multipole Expansion and Multipole Moments in Electrostatics 10.3.1 Coulomb Force and Electrostatic Potential 10.3.2 Expansion of the Electrostatic Potential 10.3.3 Electric Field of Multipole Moments 10.3.4 Multipole Moments for Discrete Charge Distributions 10.3.5 Connection with Legendre Polynomials 10.4 Further Applications in Electrodynamics 10.4.1 Induced Dipole Moment of a Metal Sphere 10.4.2 Electric Polarization as Dipole Density 10.4.3 Energy of Multipole Moments in an External Field 10.4.4 Force and Torque on Multipole Moments in an External Field 10.4.5 Multipole--Multipole Interaction 10.5 Applications in Hydrodynamics 10.5.1 Stationary and Creeping Flow Equations 10.5.2 Stokes Force on a Sphere 11 Isotropic Tensors 11.1 General Remarks on Isotropic Tensors 11.2 .-Tensors 11.2.1 Definition and Examples 11.2.2 General Properties of .-Tensors 11.2.3 .-Tensors as Derivatives of Multipole Potentials 11.3 Generalized Cross Product, -Tensors 11.3.1 Cross Product via the -Tensor 11.3.2 Properties of -Tensors 11.3.3 Action of the Differential Operator calL on Irreducible Tensors 11.3.4 Consequences for the Orbital Angular Momentum Operator 11.4 Isotropic Coupling Tensors 11.4.1 Definition of .(ell,2,ell)-Tensors 11.4.2 Tensor Product of Second Rank Tensors 11.5 Coupling of a Vector with Irreducible Tensors 11.6 Coupling of Second Rank Tensors with Irreducible Tensors 11.7 Scalar Product of Three Irreducible Tensors 11.7.1 Scalar Invariants 11.7.2 Interaction Potential for Uniaxial Particles 12 Integral Formulae and Distribution Functions 12.1 Integrals Over Unit Sphere 12.1.1 Integrals of Products of Two Irreducible Tensors 12.1.2 Multiple Products of Irreducible Tensors 12.2 Orientational Distribution Function 12.2.1 Orientational Averages 12.2.2 Expansion with Respect to Irreducible Tensors 12.2.3 Anisotropic Dielectric Tensor 12.2.4 Field-Induced Orientation 12.2.5 Kerr Effect, Cotton-Mouton Effect, Non-linear Susceptibility 12.2.6 Orientational Entropy 12.2.7 Fokker-Planck Equation for the Orientational Distribution 12.3 Averages Over Velocity Distributions 12.3.1 Integrals Over the Maxwell Distribution 12.3.2 Expansion About an Absolute Maxwell Distribution 12.3.3 Kinetic Equations, Flow Term 12.3.4 Expansion About a Local Maxwell Distribution 12.4 Anisotropic Pair Correlation Function and Static Structure Factor 12.4.1 Two-Particle Density, Two-Particle Averages 12.4.2 Potential Contributions to the Energy and to the Pressure Tensor 12.4.3 Static Structure Factor 12.4.4 Expansion of g(r) 12.4.5 Shear-Flow Induced Distortion of the Pair Correlation 12.4.6 Plane Couette Flow Symmetry 12.4.7 Cubic Symmetry 12.4.8 Anisotropic Structure Factor 12.5 Selection Rules for Electromagnetic Radiation 12.5.1 Expansion of the Wave Function 12.5.2 Electric Dipole Transitions 12.5.3 Electric Quadrupole Transitions 13 Spin Operators 13.1 Spin Commutation Relations 13.1.1 Spin Operators and Spin Matrices 13.1.2 Spin 1/2 and Spin 1 Matrices 13.2 Magnetic Sub-states 13.2.1 Magnetic Quantum Numbers and Hamilton Cayley 13.2.2 Projection Operators into Magnetic Sub-states 13.3 Irreducible Spin Tensors 13.3.1 Defintions and Examples 13.3.2 Commutation Relation for Spin Tensors 13.3.3 Scalar Products 13.4 Spin Traces 13.4.1 Traces of Products of Spin Tensors 13.4.2 Triple Products of Spin Tensors 13.4.3 Multiple Products of Spin Tensors 13.5 Density Operator 13.5.1 Spin Averages 13.5.2 Expansion of the Spin Density Operator 13.5.3 Density Operator for Spin 1/2 and Spin 1 13.6 Rotational Angular Momentum of Linear Molecules, Tensor Operators 13.6.1 Basics and Notation 13.6.2 Projection into Rotational Eigenstates, Traces 13.6.3 Diagonal Operators 13.6.4 Diagonal Density Operator,Averages 13.6.5 Anisotropic Dielectric Tensor of a Gas of Rotating Molecules 13.6.6 Non-diagonal Tensor Operators 14 Rotation of Tensors 14.1 Rotation of Vectors 14.1.1 Infinitesimal and Finite Rotation 14.1.2 Hamilton Cayley and Projection Tensors 14.1.3 Rotation Tensor for Vectors 14.1.4 Connection with Spherical Components 14.2 Rotation of Second Rank Tensors 14.2.1 Infinitesimal Rotation 14.2.2 Fourth Rank Projection Tensors 14.2.3 Fourth Rank Rotation Tensor 14.3 Rotation of Tensors of Rank ell 14.4 Solution of Tensor Equations 14.4.1 Inversion of Linear Equations 14.4.2 Effect of a Magnetic Field on the Electrical Conductivity 14.5 Additional Formulas Involving Projectors 15 Liquid Crystals and Other Anisotropic Fluids 15.1 Remarks on Nomenclature and Notations 15.1.1 Nematic and Cholesteric Phases, Blue Phases 15.1.2 Smectic Phases 15.2 Isotropic Nematic Phase Transition 15.2.1 Order Parameter Tensor 15.2.2 Landau-de Gennes Theory 15.2.3 Maier-Saupe Mean Field Theory 15.3 Elastic Behavior of Nematics 15.3.1 Director Elasticity, Frank Coefficients 15.3.2 The Cholesteric Helix 15.3.3 Alignment Tensor Elasticity 15.4 Cubatics and Tetradics 15.4.1 Cubic Order Parameter 15.4.2 Landau Theory for the Isotropic-Cubatic Phase Transition 15.4.3 Order Parameter Tensor for Regular Tetrahedra 15.5 Energetic Coupling of Order Parameter Tensors 15.5.1 Two Second Rank Tensors 15.5.2 Second-Rank Tensor and Vector 15.5.3 Second- and Third-Rank Tensors 16 Constitutive Relations 16.1 General Principles 16.1.1 Curie Principle 16.1.2 Energy Principle 16.1.3 Irreversible Thermodynamics, Onsager Symmetry Principle 16.2 Elasticity 16.2.1 Elastic Deformation of a Solid, Stress Tensor 16.2.2 Voigt Coefficients 16.2.3 Isotropic Systems 16.2.4 Cubic System 16.2.5 Microscopic Expressions for Elasticity Coefficients 16.3 Viscosity and Non-equilibrium Alignment Phenomena 16.3.1 General Remarks, Simple Fluids 16.3.2 Influence of Magnetic and Electric Fields 16.3.3 Plane Couette and Plane Poiseuille Flow 16.3.4 Senftleben-Beenakker Effect of the Viscosity 16.3.5 Angular Momentum Conservation, Antisymmetric Pressure and Angular Velocity 16.3.6 Flow Birefringence 16.3.7 Heat-Flow Birefringence 16.3.8 Visco-Elasticity 16.3.9 Nonlinear Viscosity 16.3.10 Vorticity Free Flow 16.4 Viscosity and Alignment in Nematics 16.4.1 Well Aligned Nematic Liquid Crystals and Ferro Fluids 16.4.2 Perfectly Oriented Ellipsoidal Particles 16.4.3 Free Flow of Nematics, Flow Alignment and Tumbling 16.4.4 Fokker-Planck Equation Applied to Flow Alignment 16.4.5 Unified Theory for Isotropic and Nematic Phases 16.4.6 Limiting Cases: Isotropic Phase, Weak Flow in the Nematic Phase 16.4.7 Scaled Variables, Model Parameters 16.4.8 Spatially Inhomogeneous Alignment 17 Tensor Dynamics 17.1 Time-Correlation Functions and Spectral Functions 17.1.1 Definitions 17.1.2 Depolarized Rayleigh Scattering 17.1.3 Collisional and Diffusional Line Broadening 17.2 Nonlinear Relaxation, Component Notation 17.2.1 Second-Rank Basis Tensors 17.2.2 Third-Order Scalar Invariant and Biaxiality Parameter 17.2.3 Component Equations 17.2.4 Stability of Stationary Solutions 17.3 Alignment Tensor Subjected to a Shear Flow 17.3.1 Dynamic Equations for the Components 17.3.2 Types of Dynamic States 17.3.3 Flow Properties 17.4 Nonlinear Maxwell Model 17.4.1 Formulation of the Model 17.4.2 Special Cases 18 From 3D to 4D: Lorentz Transformation, Maxwell Equations 18.1 Lorentz Transformation 18.1.1 Invariance Condition 18.1.2 4-Vectors 18.1.3 Lorentz Transformation Matrix 18.1.4 A Special Lorentz Transformation 18.1.5 General Lorentz Transformations 18.2 Lorentz-Vectors and Lorentz-Tensors 18.2.1 Lorentz-Tensors 18.2.2 Proper Time, 4-Velocity and 4-Acceleration 18.2.3 Differential Operators, Plane Waves 18.2.4 Some Historical Remarks 18.3 The 4D-Epsilon Tensor 18.3.1 Levi-Civita Tensor 18.3.2 Products of Two Epsilon Tensors 18.3.3 Dual Tensor, Determinant 18.4 Maxwell Equations in 4D-Formulation 18.4.1 Electric Flux Density and Continuity Equation 18.4.2 Electric 4-Potential and Lorentz Scaling 18.4.3 Field Tensor Derived from the 4-Potential 18.4.4 The Homogeneous Maxwell Equations 18.4.5 The Inhomogeneous Maxwell Equations 18.4.6 Inhomogeneous Wave Equation 18.4.7 Transformation Behavior of the Electromagnetic Fields 18.4.8 Lagrange Density and Variational Principle 18.5 Force Density and Stress Tensor 18.5.1 4D Force Density 18.5.2 Maxwell Stress Tensor Appendix Exercises: Answers and Solutions References Index