دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: edited by Yipeng Liu.
سری:
ISBN (شابک) : 9780323859653, 0323859658
ناشر: Elsevier Science & Technology,
سال نشر: [2021].
تعداد صفحات: 1 online resource :
[598]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 18 Mb
در صورت تبدیل فایل کتاب Tensors for data processing: theory, methods, and applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تانسورها برای پردازش داده ها: نظریه، روش ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تانسورها برای پردازش داده (2021) [Liu] [9780128244470]
Tensors for Data Processing (2021) [Liu] [9780128244470]
Front Cover Tensors for Data Processing Copyright Contents List of contributors Preface 1 Tensor decompositions: computations, applications, and challenges 1.1 Introduction 1.1.1 What is a tensor? 1.1.2 Why do we need tensors? 1.2 Tensor operations 1.2.1 Tensor notations 1.2.2 Matrix operators 1.2.3 Tensor transformations 1.2.4 Tensor products 1.2.5 Structural tensors 1.2.6 Summary 1.3 Tensor decompositions 1.3.1 Tucker decomposition 1.3.2 Canonical polyadic decomposition 1.3.3 Block term decomposition 1.3.4 Tensor singular value decomposition 1.3.5 Tensor network 1.3.5.1 Hierarchical Tucker decomposition 1.3.5.2 Tensor train decomposition 1.3.5.3 Tensor ring decomposition 1.3.5.4 Other variants 1.4 Tensor processing techniques 1.5 Challenges References 2 Transform-based tensor singular value decomposition in multidimensional image recovery 2.1 Introduction 2.2 Recent advances of the tensor singular value decomposition 2.2.1 Preliminaries and basic tensor notations 2.2.2 The t-SVD framework 2.2.3 Tensor nuclear norm and tensor recovery 2.2.4 Extensions 2.2.4.1 Nonconvex surrogates 2.2.4.2 Additional prior knowledge 2.2.4.3 Multiple directions and higher-order tensors 2.2.5 Summary 2.3 Transform-based t-SVD 2.3.1 Linear invertible transform-based t-SVD 2.3.2 Beyond invertibility and data adaptivity 2.4 Numerical experiments 2.4.1 Examples within the t-SVD framework 2.4.2 Examples of the transform-based t-SVD 2.5 Conclusions and new guidelines References 3 Partensor 3.1 Introduction 3.1.1 Related work 3.1.2 Notation 3.2 Tensor decomposition 3.2.1 Matrix least-squares problems 3.2.1.1 The unconstrained case 3.2.1.2 The nonnegative case 3.2.1.3 The orthogonal case 3.2.2 Alternating optimization for tensor decomposition 3.3 Tensor decomposition with missing elements 3.3.1 Matrix least-squares with missing elements 3.3.1.1 The unconstrained case 3.3.1.2 The nonnegative case 3.3.2 Tensor decomposition with missing elements: the unconstrained case 3.3.3 Tensor decomposition with missing elements: the nonnegative case 3.3.4 Alternating optimization for tensor decomposition with missing elements 3.4 Distributed memory implementations 3.4.1 Some MPI preliminaries 3.4.1.1 Communication domains and topologies 3.4.1.2 Synchronization among processes 3.4.1.3 Point-to-point communication operations 3.4.1.4 Collective communication operations 3.4.1.5 Derived data types 3.4.2 Variable partitioning and data allocation 3.4.2.1 Communication domains 3.4.3 Tensor decomposition 3.4.3.1 The unconstrained and the nonnegative case 3.4.3.2 The orthogonal case 3.4.3.3 Factor normalization and acceleration 3.4.4 Tensor decomposition with missing elements 3.4.4.1 The unconstrained case 3.4.4.2 The nonnegative case 3.4.5 Some implementation details 3.5 Numerical experiments 3.5.1 Tensor decomposition 3.5.2 Tensor decomposition with missing elements 3.6 Conclusion Acknowledgment References 4 A Riemannian approach to low-rank tensor learning 4.1 Introduction 4.2 A brief introduction to Riemannian optimization 4.2.1 Riemannian manifolds 4.2.1.1 Riemannian gradient 4.2.1.2 Retraction 4.2.2 Riemannian quotient manifolds 4.2.2.1 Riemannian gradient on quotient manifold 4.2.2.2 Retraction on quotient manifold 4.3 Riemannian Tucker manifold geometry 4.3.1 Riemannian metric and quotient manifold structure 4.3.1.1 The symmetry structure in Tucker decomposition 4.3.1.2 A metric motivated by a particular cost function 4.3.1.3 A novel Riemannian metric 4.3.2 Characterization of the induced spaces 4.3.2.1 Characterization of the normal space 4.3.2.2 Decomposition of tangent space into vertical and horizontal spaces 4.3.3 Linear projectors 4.3.3.1 The tangent space projector 4.3.3.2 The horizontal space projector 4.3.4 Retraction 4.3.5 Vector transport 4.3.6 Computational cost 4.4 Algorithms for tensor learning problems 4.4.1 Tensor completion 4.4.2 General tensor learning 4.5 Experiments 4.5.1 Choice of metric 4.5.2 Low-rank tensor completion 4.5.2.1 Small-scale instances 4.5.2.2 Large-scale instances 4.5.2.3 Low sampling instances 4.5.2.4 Ill-conditioned and low sampling instances 4.5.2.5 Noisy instances 4.5.2.6 Skewed dimensional instances 4.5.2.7 Ribeira dataset 4.5.2.8 MovieLens 10M dataset 4.5.3 Low-rank tensor regression 4.5.4 Multilinear multitask learning 4.6 Conclusion References 5 Generalized thresholding for low-rank tensor recovery: approaches based on model and learning 5.1 Introduction 5.2 Tensor singular value thresholding 5.2.1 Proximity operator and generalized thresholding 5.2.2 Tensor singular value decomposition 5.2.3 Generalized matrix singular value thresholding 5.2.4 Generalized tensor singular value thresholding 5.3 Thresholding based low-rank tensor recovery 5.3.1 Thresholding algorithms for low-rank tensor recovery 5.3.2 Generalized thresholding algorithms for low-rank tensor recovery 5.4 Generalized thresholding algorithms with learning 5.4.1 Deep unrolling 5.4.2 Deep plug-and-play 5.5 Numerical examples 5.6 Conclusion References 6 Tensor principal component analysis 6.1 Introduction 6.2 Notations and preliminaries 6.2.1 Notations 6.2.2 Discrete Fourier transform 6.2.3 T-product 6.2.4 Summary 6.3 Tensor PCA for Gaussian-noisy data 6.3.1 Tensor rank and tensor nuclear norm 6.3.2 Analysis of tensor PCA on Gaussian-noisy data 6.3.3 Summary 6.4 Tensor PCA for sparsely corrupted data 6.4.1 Robust tensor PCA 6.4.1.1 Tensor incoherence conditions 6.4.1.2 Exact recovery guarantee of R-TPCA 6.4.1.3 Optimization algorithm 6.4.2 Tensor low-rank representation 6.4.2.1 Tensor linear representation 6.4.2.2 TLRR for data clustering 6.4.2.3 TLRR for exact data recovery 6.4.2.4 Optimization technique 6.4.2.5 Dictionary construction 6.4.3 Applications 6.4.3.1 Application to data recovery 6.4.3.2 Application to data clustering 6.4.4 Summary 6.5 Tensor PCA for outlier-corrupted data 6.5.1 Outlier robust tensor PCA 6.5.1.1 Formulation of OR-TPCA 6.5.1.2 Exact subspace recovery guarantees 6.5.1.3 Optimization 6.5.2 The fast OR-TPCA algorithm 6.5.2.1 Sketch of fast OR-TPCA 6.5.2.2 Guarantees for fast OR-TPCA 6.5.3 Applications 6.5.3.1 Evaluation on synthetic data 6.5.3.2 Evaluation on real applications 6.5.3.3 Outlier detection 6.5.3.4 Unsupervised and semi-supervised learning 6.5.3.5 Experiments on fast OR-TPCA 6.5.4 Summary 6.6 Other tensor PCA methods 6.7 Future work 6.8 Summary References 7 Tensors for deep learning theory 7.1 Introduction 7.2 Bounding a function's expressivity via tensorization 7.2.1 A measure of capacity for modeling input dependencies 7.2.2 Bounding correlations with tensor matricization ranks 7.3 A case study: self-attention networks 7.3.1 The self-attention mechanism 7.3.1.1 The operation of a self-attention layer 7.3.1.2 Partition invariance of the self-attention separation rank 7.3.2 Self-attention architecture expressivity questions 7.3.2.1 The depth-to-width interplay in self-attention 7.3.2.2 The input embedding rank bottleneck in self-attention 7.3.2.3 Mid-architecture rank bottlenecks in self-attention 7.3.3 Results on the operation of self-attention 7.3.3.1 The effect of depth in self-attention networks 7.3.3.2 The effect of bottlenecks in self-attention networks 7.3.4 Bounding the separation rank of self-attention 7.3.4.1 An upper bound on the separation rank 7.3.4.2 A lower bound on the separation rank 7.4 Convolutional and recurrent networks 7.4.1 The operation of convolutional and recurrent networks 7.4.2 Addressed architecture expressivity questions 7.4.2.1 Depth efficiency in convolutional and recurrent networks 7.4.2.2 Further results on convolutional networks 7.5 Conclusion References 8 Tensor network algorithms for image classification 8.1 Introduction 8.2 Background 8.2.1 Tensor basics 8.2.2 Tensor decompositions 8.2.2.1 Rank-1 tensor decomposition 8.2.2.2 Canonical polyadic decomposition 8.2.2.3 Tucker decomposition 8.2.2.4 Tensor train decomposition 8.2.3 Support vector machines 8.2.4 Logistic regression 8.3 Tensorial extensions of support vector machine 8.3.1 Supervised tensor learning 8.3.2 Support tensor machines 8.3.2.1 Methodology 8.3.2.2 Examples 8.3.2.3 Conclusion 8.3.3 Higher-rank support tensor machines 8.3.3.1 Methodology 8.3.3.2 Complexity analysis 8.3.3.3 Examples 8.3.3.4 Conclusion 8.3.4 Support Tucker machines 8.3.4.1 Methodology 8.3.4.2 Examples 8.3.5 Support tensor train machines 8.3.5.1 Methodology 8.3.5.2 Complexity analysis 8.3.5.3 Effect of TT ranks on STTM classification 8.3.5.4 Updating in site-k-mixed-canonical form 8.3.5.5 Examples 8.3.5.6 Conclusion 8.3.6 Kernelized support tensor train machines 8.3.6.1 Methodology 8.3.6.2 Kernel validity of K-STTM 8.3.6.3 Complexity analysis 8.3.6.4 Examples 8.3.6.5 Conclusion 8.4 Tensorial extension of logistic regression 8.4.1 Rank-1 logistic regression 8.4.1.1 Examples 8.4.2 Logistic tensor regression 8.4.2.1 Examples 8.5 Conclusion References 9 High-performance tensor decompositions for compressing and accelerating deep neural networks 9.1 Introduction and motivation 9.2 Deep neural networks 9.2.1 Notations 9.2.2 Linear layer 9.2.3 Fully connected neural networks 9.2.4 Convolutional neural networks 9.2.5 Backpropagation 9.3 Tensor networks and their decompositions 9.3.1 Tensor networks 9.3.2 CP tensor decomposition 9.3.3 Tucker decomposition 9.3.4 Hierarchical Tucker decomposition 9.3.5 Tensor train and tensor ring decomposition 9.3.6 Transform-based tensor decomposition 9.4 Compressing deep neural networks 9.4.1 Compressing fully connected layers 9.4.2 Compressing the convolutional layer via CP decomposition 9.4.3 Compressing the convolutional layer via Tucker decomposition 9.4.4 Compressing the convolutional layer via TT/TR decompositions 9.4.5 Compressing neural networks via transform-based decomposition 9.5 Experiments and future directions 9.5.1 Performance evaluations using the MNIST dataset 9.5.2 Performance evaluations using the CIFAR10 dataset 9.5.3 Future research directions References 10 Coupled tensor decompositions for data fusion 10.1 Introduction 10.2 What is data fusion? 10.2.1 Context and definition 10.2.2 Challenges of data fusion 10.2.3 Types of fusion and data fusion strategies 10.3 Decompositions in data fusion 10.3.1 Matrix decompositions and statistical models 10.3.2 Tensor decompositions 10.3.3 Coupled tensor decompositions 10.4 Applications of tensor-based data fusion 10.4.1 Biomedical applications 10.4.2 Image fusion 10.5 Fusion of EEG and fMRI: a case study 10.6 Data fusion demos 10.6.1 SDF demo – approximate coupling 10.7 Conclusion and prospects Acknowledgments References 11 Tensor methods for low-level vision 11.1 Low-level vision and signal reconstruction 11.1.1 Observation models 11.1.2 Inverse problems 11.2 Methods using raw tensor structure 11.2.1 Penalty-based tensor reconstruction 11.2.1.1 Low-rank matrix completion 11.2.1.2 Low-rank tensor completion 11.2.1.3 Smooth tensor completion 11.2.1.4 Smooth tensor completion: an ADMM algorithm 11.2.1.5 Smooth tensor completion: a PDHG/PDS algorithm 11.2.1.6 Tensor reconstruction via minimization of convex penalties 11.2.2 Tensor decomposition and reconstruction 11.2.2.1 Majorization-minimization algorithm for tensor decomposition with missing entries 11.2.2.2 MM algorithm for other low-level vision tasks 11.2.2.3 Low-rank CP decomposition for tensor completion 11.2.2.4 Low-rank Tucker decomposition for tensor completion 11.2.2.5 Parallel matrix factorization for tensor completion 11.2.2.6 Tucker decomposition with rank increment 11.2.2.7 Smooth CP decomposition for tensor completion 11.2.2.8 FR-SPC with rank increment 11.3 Methods using tensorization 11.3.1 Higher-order tensorization 11.3.1.1 Vector-to-tensor 11.3.1.2 Benefits of the folding operation 11.3.1.3 Tensor representation of images: TS type I 11.3.1.4 Tensor representation of images: TS type II 11.3.2 Delay embedding/Hankelization 11.3.2.1 Delay embedding/Hankelization of time series signals 11.3.2.2 Benefits of delay embedding/Hankelization 11.3.2.3 Multiway delay embedding/Hankelization of tensors 11.4 Examples of low-level vision applications 11.4.1 Image inpainting with raw tensor structure 11.4.2 Image inpainting using tensorization 11.4.3 Denoising, deblurring, and superresolution 11.5 Remarks Acknowledgments References 12 Tensors for neuroimaging 12.1 Introduction 12.2 Neuroimaging modalities 12.3 Multidimensionality of the brain 12.4 Tensor decomposition structures 12.4.1 Product operations for tensors 12.4.2 Canonical polyadic decomposition 12.4.3 Tucker decomposition 12.4.4 Block term decomposition 12.5 Applications of tensors in neuroimaging 12.5.1 Filling in missing data 12.5.2 Denoising, artifact removal, and dimensionality reduction 12.5.3 Segmentation 12.5.4 Registration and longitudinal analysis 12.5.5 Source separation 12.5.6 Activity recognition and source localization 12.5.6.1 Seizure localization 12.5.6.2 Seizure recognition 12.5.7 Connectivity analysis 12.5.7.1 Structural connectivity 12.5.7.2 Functional connectivity 12.5.7.3 Effective connectivity 12.5.8 Regression 12.5.9 Feature extraction and classification 12.5.10 Summary and practical considerations 12.6 Future challenges 12.7 Conclusion References 13 Tensor representation for remote sensing images 13.1 Introduction 13.2 Optical remote sensing: HSI and MSI fusion 13.2.1 Tensor notations and preliminaries 13.2.2 Nonlocal patch tensor sparse representation for HSI-MSI fusion 13.2.2.1 Problem formulation 13.2.2.2 Nonlocal patch extraction 13.2.2.3 Tensor sparse representation for nonlocal patch tensors 13.2.2.4 Experiments and results 13.2.2.5 Conclusion 13.2.3 High-order coupled tensor ring representation for HSI-MSI fusion 13.2.3.1 Multiscale high-order tensorization 13.2.3.2 High-order tensor ring representation for HSI-MSI fusion 13.2.3.3 Spectral manifold regularization 13.2.3.4 Results on synthetic datasets 13.2.3.5 Results on a real dataset 13.2.3.6 Conclusion 13.2.4 Joint tensor factorization for HSI-MSI fusion 13.2.4.1 Problem formulation 13.2.4.2 The joint tensor decomposition method 13.2.4.3 Selection of parameters 13.2.4.4 Experimental results 13.2.4.5 Experimental results of the noise 13.2.4.6 Analysis of computational costs 13.3 Polarimetric synthetic aperture radar: feature extraction 13.3.1 Brief description of PolSAR data 13.3.2 The tensorial embedding framework 13.3.3 Experiment and analysis 13.3.3.1 Experiment preparation 13.3.3.2 Experiment and analysis References 14 Structured tensor train decomposition for speeding up kernel-based learning 14.1 Introduction 14.2 Notations and algebraic background 14.3 Standard tensor decompositions 14.3.1 Tucker decomposition 14.3.2 HOSVD 14.3.3 Tensor networks and TT decomposition 14.3.3.1 Tensor networks and their graph-based illustrations 14.3.3.2 TT decomposition 14.4 Dimensionality reduction based on a train of low-order tensors 14.4.1 TD-train model: equivalence between a high-order TD and a train of low-order TDs 14.5 Tensor train algorithm 14.5.1 Description of the TT-HSVD algorithm 14.5.2 Comparison of the sequential and the hierarchical schemes 14.6 Kernel-based classification of high-order tensors 14.6.1 Formulation of SVMs 14.6.2 Polynomial and Euclidean tensor-based kernel 14.6.3 Kernel on a Grassmann manifold 14.6.4 The fast kernel subspace estimation based on tensor train decomposition (FAKSETT) method 14.7 Experiments 14.7.1 Datasets 14.7.2 Classification performance 14.8 Conclusion References Index Back Cover