دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Blaise Ravelo (editor). Zhifei Xu (editor)
سری:
ISBN (شابک) : 1839530499, 9781839530494
ناشر: Institution of Engineering and Technology
سال نشر: 2020
تعداد صفحات: 400
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 26 Mb
در صورت تبدیل فایل کتاب Tensorial Analysis of Networks (TAN) Modelling for PCB Signal Integrity and EMC Analysis (Materials, Circuits and Devices) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلسازی تحلیل کششی شبکهها (TAN) برای یکپارچگی سیگنال PCB و آنالیز EMC (مواد، مدارها و دستگاهها) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک روش مدلسازی سریع، دقیق و انعطافپذیر برای PCBها را شرح میدهد. این مدل از مفهوم تحلیل تنشی شبکه ها (TAN) بر اساس روش های کرون و کرون-برانین استفاده می کند که برای استفاده از EMC توسط O. Maurice اقتباس شده است. رویکرد TAN برای تجزیه و تحلیل PCB SI و سازگاری الکترومغناطیسی (EMC) اعمال میشود.
هر فصل یک روش متشکل از فرمولبندی مسئله، توصیف مدار کلاسیک، عناصر اولیه TAN، توضیح توپولوژی گراف TAN، متریک مسئله ارائه میکند. ریاضیات و حل مسئله مطرح شده بر اساس الگوریتمهای روتین پایتون و متلب. این رویکرد روشمند برای موضوعات زیر به کار گرفته شده است: دانش پایه برای تمرین TAN برای بررسی PCB SI/PI/EMC. تجزیه و تحلیل اجزای اولیه PCB با TAN. محاسبه تحلیلی ماتریس های ردیابی PCB Z/Y/T/S با رویکرد TAN. مدل سازی سریع پارامتر S کرون-برانین ساختار هدایت موج مستطیلی (RWG) از طریق کاهش امپدانس مش. مدلسازی TAN حوزه زمانی سیستم PCB با روش کرون. تجزیه و تحلیل مستقیم دامنه زمانی با روش TAN برای مدل سازی PCB. جفت شدن بین میدان EM و PCB چند لایه با MKME. تولید گازهای گلخانه ای انجام شده (CE) EMC TAN مدل سازی. PCB انجام حساسیت (CS) EMC TAN مدل سازی. تابش PCB (RS) مدلسازی EMC TAN. مدل TAN از جفت پروب حلقه بر روی کابل کوتاه کواکسیال محافظ. رفتار غیرخطی مدل EMC یک PCB مخلوط مبتنی بر ADC تحت تداخل فرکانس رادیویی (RFI) انجام می شود. پیشبینی میدان دور با ترکیب شبیهسازیها با اندازهگیریهای میدان نزدیک برای ارزیابی EMI PCB. و عنصر اطلاعات برای مدلسازی عددی روی PCB.
این کتاب با رویکرد بسیار سیستماتیک خود برای پرداختن به روشهای مدلسازی TAN، اطلاعات کلیدی و راهحلهای جدیدی را در اختیار طراحان و سازندگان سیگنالهای آنالوگ، RF، دیجیتال و مختلط قرار میدهد. مدارها و سیستم های الکترونیکی.
This book describes a fast, accurate and flexible modelling methodology for PCBs. The model uses the concept of tensorial analysis of networks (TAN) based on Kron's and Kron-Branin's methods adapted for the EMC use by O. Maurice. The TAN approach is applied to the PCB SI and electromagnetic compatibility (EMC) analysis.
Each chapter presents a methodology consisting of the problem formulation, classical circuit description, TAN primitive elements, TAN graph topology elaboration, problem metric mathematization and the posed-problem resolution based on Python and Matlab routine algorithms. This methodical approach has been applied to the following topics: basic knowledge to practice TAN for PCB SI/PI/EMC investigation; PCB primitive components analysis with TAN; analytical calculation of PCB trace Z/Y/T/S matrices with TAN approach; fast S-parameter Kron-Branin's modelling of rectangular wave guide (RWG) structure via mesh impedance reduction; time domain TAN modelling of PCB system with Kron's method; direct time-domain analysis with TAN method for PCB modelling; coupling between EM field and multilayer PCB with MKME; conducted emissions (CE) EMC TAN modelling; PCB conducted susceptibility (CS) EMC TAN modelling; PCB radiated susceptibility (RS) EMC TAN modelling; TAN model of loop probe coupling onto shielded coaxial short-cable; nonlinear behaviour conduced EMC model of an ADC based mixed PCB under radio frequency interference (RFI); far-field prediction combining simulations with near-field measurements for EMI assessment of PCBs; and element of information for numerical modelling on PCB.
With its highly systematic approach to addressing TAN modelling methods, this book provides key information and novel solutions to the designers and manufacturers of analogue, RF, digital and mixed signal electronic circuits and systems.
Cover Contents About the editors Foreword References 1 General introduction Abstract 1.1 Preliminary introduction 1.2 Chapter 2: Basic knowledge to practice TAN for PCB SI/PI/EMC investigation 1.3 Chapter 3: PCB primitive components analysis with TAN 1.4 Chapter 4: Analytical calculation of PCB trace 1.5 Chapter 5: Fast 1.6 Chapter 6: Time domain TAN modelling of PCB lumped system with Kron's method 1.7 Chapter 7: Direct time-domain analysis with TAN method for distributed PCB modelling 1.8 Chapter 8: Coupling between EM field and multilayer PCB with MKME 1.9 Chapter 9: Conducted emissions (CEs) EMCTAN modelling 1.10 Chapter 10: PCB-conducted susceptibility (CS) EMCTAN modelling 1.11 Chapter 11: PCB-radiated susceptibility (RS) EMCTAN modelling 1.12 Chapter 12: TAN model of loop probe coupling onto shielded coaxial short cable 1.13 Chapter 13: Nonlinear behaviour conducted EMC model of an ADC-based mixed PCB under radiofrequency interference (RFI) 1.14 Chapter 14: Far-field prediction combining simulations with near-field measurements for EMI assessment of PCBs 1.15 Chapter 15: Element of information for numerical modelling on PCB 1.16 Chapter 16: General conclusion 2 Basic knowledge to practice TAN for PCB SI/PI/EMC investigation Abstract 2.1 TAN principles 2.2 Electronic world and electronic scaling 2.2.1 Propagation 2.2.2 Lines and microstrips modelling 2.2.3 Some particular applications 2.2.4 Lossy propagation model 2.2.5 Asymptotic behaviour without propagation 2.2.6 Field coupling modelling 2.2.6.1 Capacitive coupling 2.2.6.2 Common ground couplings 2.2.6.3 Mutual inductance coupling 2.2.6.4 Crosstalk coupling 2.2.7 Components modelling 2.2.7.1 Model for nonlinear behaviour in general 2.2.7.2 ICEM model 2.2.7.3 IBIS model Annexe 2. A Annexe 2. B References 3 PCB primitive components analysis with TAN Abstract 3.1 TAN operators for electrical application 3.1.1 Covariant parameters: voltage tensors 3.1.2 Contravariant parameters: current tensors 3.1.3 Twice covariant parameters: impedance tensors 3.1.4 Electrical problem metric elaboration 3.1.5 Branch space to mesh space conversion 3.2 TAN modelling methodology 3.3 PCB elements modelling 3.3.1 Interconnects 3.3.1.1 Telegrapher's model 3.3.1.2 PCB trace modelling 3.3.1.3 Kron–Branin model 3.3.2 Vias 3.3.3 Power-ground plane 3.3.4 SMA connectors References 4 Analytical calculation of PCB trace Z/Y/T/S matrices with TAN approach Abstract 4.1 Introduction 4.2 General description of P-port system 4.2.1 Diagram representation 4.2.2 Analytical variables constituting PCB electrical interconnections 4.2.2.1 Z-matrix definition 4.2.2.2 Y-matrix definition 4.2.2.3 T-matrix definition 4.2.2.4 S-matrix definition 4.2.3 TAN modelling methodology 4.2.3.1 Algorithmic methodological representation 4.2.3.2 Topological parameters 4.2.3.3 Branch space variables 4.2.3.4 Mesh space variables 4.2.3.5 Branch and mesh current identity 4.2.3.6 Calculation of S-matrix 4.3 Application study of the TAN method to Y-tree shape PCB trace modelling 4.3.1 Y-tree PCB problem description 4.3.2 TAN modelling of RLC Y-tree 4.3.2.1 TAN graph topology 4.3.2.2 Topological index parameters 4.3.2.3 Branch space analysis 4.3.2.4 Mesh space analysis 4.3.2.5 Z-matrix calculation 4.3.2.6 Y-matrix calculation 4.3.2.7 S-matrix extraction 4.3.3 Validation result with SPICE simulations 4.3.3.1 POC description 4.3.3.2 Discussion on computed results 4.3.3.3 Partial conclusion 4.4 Application study to Ψ-shape microstrip interconnect 4.4.1 Analytical investigation on the TAN modelling of Ψ-tree PCB 4.4.1.1 Problem formulation of Ψ-tree PCB trace 4.4.1.2 Topological index parameters 4.4.1.3 TAN graph topology 4.4.1.4 Branch space analysis 4.4.1.5 Connectivity 4.4.1.6 Mesh space analysis 4.4.2 Validation results with SPICE simulations 4.4.2.1 POC description 4.4.2.2 Discussion on computed results 4.4.2.3 Partial conclusion 4.5 Conclusion References 5 Fast S-parameter Kron–Branin's modelling of rectangular wave guide (RWG) structure via mesh impedance reduction Abstract 5.1 Introduction to Chapter 5 5.2 Problem formulation 5.2.1 Structural description 5.2.2 Representation of S-matrix black box 5.3 KB theorization of RWG matrix 5.3.1 Recall on RWG and TL theory 5.3.1.1 RWG characterization 5.3.1.2 TL equivalent circuit of the RWG structure 5.3.1.3 TL equivalent circuit of RWG with the first propagative mode 5.3.1.4 TL equivalent circuit of RWG under the evanescent mode 5.3.2 KB modelling of RWG 5.3.2.1 TL equivalent circuit 5.3.2.2 KB graph topology equivalent to the RWG 5.3.2.3 S-matrix analytical expression of the RWG 5.4 Validation results with parametric analyses 5.4.1 Description of RWG POC 5.4.1.1 RWG POC description 5.4.1.2 Equivalent TL parameters 5.4.1.3 Routine algorithm of the RWG KB modelling 5.4.2 Discussion on RWG simulation results 5.4.2.1 S-parameter parametric analyses versus position z 5.4.2.2 Comparisons between S-parameter KB-computed and ADS-simulated results 5.5 Conclusion References 6 Time-domain TAN modelling of PCB-lumped system with Kron's method Abstract 6.1 Introduction 6.2 Basic definitions and general methodology of the innovative direct TD TAN modelling of PCBs 6.2.1 Representation of TAN topology in the TD 6.2.1.1 Excitation signal description 6.2.1.2 Block diagram representation 6.2.2 Key parameters of TD implementation of TAN approach 6.2.3 TAN TD primitive elements 6.2.3.1 TD TAN general transfer equation 6.2.3.2 Dictionary of TD TAN modelling 6.2.3.3 Inductive element time-difference tensorial expression 6.2.3.4 Capacitive element time-difference tensorial expression 6.2.4 Methodology of PCB trace modelling with TAN TD approach 6.3 Application to two port LC circuits 6.3.1 TD TAN application with TT LC circuit 6.3.1.1 Description of the TT-topology circuit 6.3.1.2 Equivalent of the TT-topology circuit 6.3.1.3 Branch space analysis 6.3.1.4 Mesh space analysis 6.3.1.5 Expression of VTF 6.3.1.6 Discrete expression of the output 6.3.1.7 Computed results 6.3.1.8 Partial conclusion 6.3.2 TD TAN application with Y-tree LC circuit 6.3.2.1 Recall on the mesh impedance of based Y-tree network 6.3.2.2 TAN modelling of RLC-basedY-tree network 6.3.2.3 VTFs of Y-tree 6.3.2.4 Time-domain metric 6.3.2.5 Computed results 6.3.2.6 Partial conclusion 6.4 Conclusion References 7 Direct time-domain analysis with TAN method for distributed PCB modelling Abstract 7.1 Introduction 7.1.1 Branin's TD expression 7.1.2 Via's TD expression 7.2 Application example of TD TAN modelling 7.2.1 Graph topology of the 3D multilayer hybrid PCB 7.2.2 Integration of the innovative direct TD method 7.2.2.1 Characteristic matrix in mesh space 7.2.2.2 TD KB modelling principle 7.2.3 Validation results 7.2.3.1 Prototype design and fabrication 7.2.3.2 TD experimental results 7.3 Conclusion Reference 8 Coupling between EM field and multilayer PCB with MKME Abstract 8.1 Introduction to R-EMC analytical modelling 8.2 Bibliography of MKME formalism on EMC of PCB 8.3 Recall on MKME mesh space to moment space definition 8.4 Recall on field coupling with MKME formalism 8.4.1 Electric coupling 8.4.2 Magnetic coupling 8.5 MKME model for 3D multilayer PCB illuminated by EM plane wave 8.5.1 Formulation of the problem 8.5.2 MKME model establishment 8.5.2.1 Graph topology establishment 8.5.2.2 Graph to tensorial object 8.5.3 Validation results 8.5.3.1 Description of the POC 8.5.3.2 Case 1: frequency-independent field with different angles 8.5.3.3 Case 2: illuminated field square waveform 8.5.3.4 Comments on the calculated and simulated results 8.5.3.5 Experimental results 8.6 Conclusion References 9 Conducted emissions (CEs) EMCTAN modelling Abstract 9.1 The ICEM model and the EMC problem 9.2 Noise source 9.2.1 Current noise source 9.2.2 Thermal noise source 9.3 IC package 9.3.1 First or second order access network (AN) 9.3.2 N order AN 9.3.3 Couplings between AN 9.3.3.1 Mutual inductance couplings 9.3.3.2 Capacitive couplings 9.4 Synthesis of the package impedance operator construction methodology 9.5 Computing the package model 9.5.1 Measuring resistances 9.5.2 Measuring inductances 9.5.2.1 Low frequency limit determination 9.5.2.2 High frequency limit determination 9.5.2.3 measurement measurement 9.5.3 Measuring mutual inductances 9.5.4 Measuring capacitance 9.5.5 Measuring mutual capacitance 9.6 Acquiring the IA and complete component model for conducted emissions 9.7 Coupling between blocks in the chip 9.8 Conducted emissions of power electronics 9.8.1 Power chopper 9.8.1.1 Direct commutation modelling 9.8.1.2 Commutation through ccc 9.8.2 The generic power chopper 9.9 Other nonlinear noise sources 9.10 From the component to the PCB connectors 9.10.1 PP diagram 9.10.2 Interaction matrix and architecture decision 9.10.3 Box influence 9.10.4 Connecting the component to the microstrip network 9.10.5 Multilayers PCB 9.10.5.1 Common impedance and transfer impedance coupling 9.10.5.2 Couplings through PCB borders 9.10.6 Locating the solution on the PP diagram and conclusion on the EMC risk 9.11 Some indications on hyperfrequency modelling Annexe 9. A Annexe 9. B Annexe 9. C References 10 PCB-conducted susceptibility (CS) EMCTAN modelling Abstract 10.1 Disturbing mechanisms 10.2 Field-to-line coupling 10.2.1 Magnetic field coupling 10.2.2 Electric field coupling 10.2.3 Conclusion on the field-to-line coupling fundamental processes 10.3 Coupling to shielded cables 10.4 An example of a conducted source coming from an external field to harnesses coupling 10.5 In-band component disturbance risk 10.5.1 Digital circuits 10.5.2 Analogue circuits—operational amplifiers 10.6 Transmission to the component through the PCB 10.7 The failure risk 10.8 Out-band component disturbance risk 10.9 Radioreceptor circuits 10.9.1 In-band radioreceptor disturbances 10.9.2 Out-band radioreceptor disturbances 10.9.3 Sources of disturbances of radio receptor on the PCB 10.9.3.1 Couplings through layers 10.9.3.2 Couplings through the equipment cavity Annexe 10. A References 11 PCB-radiated susceptibility (RS) EMCTAN modelling Abstract 11.1 Far-field coupling 11.2 MKME for 3D multilayer PCB illuminated by I-microstrip line 11.2.1 Description of system 11.2.2 MKME topological analysis 11.2.3 Validation results 11.2.3.1 POC description 11.2.3.2 Discussion on the computed coupling voltages 11.3 Sensitivity analysis with MKME 11.3.1 Sensitivity analysis with theoretical expression for Branin's model 11.3.1.1 Theoretical analysis 11.3.1.2 Numerical analysis 11.3.2 Conclusion References 12 TAN model of loop probe coupling onto shielded coaxial short cable Abstract 12.1 Introduction 12.2 Formulation of problem constituted by shielded cable under loop probe radiated field aggression 12.2.1 Geometrical definition of the problem 12.2.2 Electrical description of the problem 12.2.2.1 Circuit model 12.2.2.2 Impedance description of constituting network elements 12.2.3 Formulation of shielding effectiveness (SE) 12.3 Theoretical investigation of SE modelling with TAN approach 12.3.1 Methodology of the S-parameter modelling of coaxial modelling under probe EM radiation 12.3.2 Elaboration of equivalent graph 12.3.2.1 TAN graph index parameters 12.3.2.2 Branch space analysis 12.3.2.3 TAN connectivity dedicated to full parameter modelling 12.3.2.4 Mesh space analysis 12.3.3 Equivalent equation of multi-port black box 12.3.3.1 matrix extraction 12.3.3.2 Extraction of matrix impedance 12.4 Validation results 12.4.1 Description of the POC structure 12.4.1.1 Description of POC HFSS design 12.4.1.2 Description of POCADS design 12.4.2 Comparisons of computed and simulated S-parameters 12.4.2.1 S-parameter-based validation results 12.4.2.2 SE analyses 12.4.2.3 Study of influence of x0 12.4.2.4 Study of influence of z0 12.4.3 Discussion on the advantages and drawbacks of the TAN model 12.5 Conclusion References 13 Nonlinear behaviour conduced EMC model of an ADC-based mixed PCB under radio-frequency interference (RFI) Abstract 13.1 Introduction 13.2 Description of the NL model of a mixed circuit under study 13.2.1 EMC problem formulation 13.2.2 Analytical definition of RFI 13.2.3 Output voltage analytical expression 13.3 Methodology of the EMC NL modelling of a mixed circuit 13.3.1 Nonlinear model flow design and an input–output equivalent transfer circuit 13.3.2 Description of monitoring code implemented in MATLAB 13.3.2.1 Embedded software implemented into the μC 13.3.2.2 Implementation of automatic program 13.4 Validation results with parametric analyses 13.4.1 Experimental set-up configuration 13.4.2 Empirical characteristics of RFI 13.4.3 Discussion on simulation and test results 13.5 Conclusion Acknowledgement References 14 Far-field prediction combining simulations with near-field measurements for EMI assessment of PCBs Abstract 14.1 Introduction 14.2 Near-field scanning fundamentals 14.2.1 Near-and far-field definition 14.2.2 Radiation pattern 14.2.3 Near-field scanner system 14.2.4 Basic probes for near-field scanning 14.2.5 Near-field scanner NFS3000 14.3 Theoretical basics of near-to-far-field transformation 14.3.1 Introduction 14.3.2 Maxwell's equations 14.3.3 Material equations 14.3.4 Electromagnetic boundary conditions 14.3.5 Formulations for radiation 14.3.6 Surface equivalence theorem 14.3.7 Surface equivalence theorem for the NFS environment 14.4 Near-field-to-far-field transformation using the Huygens' box principle 14.4.1 Huygens' box measurement 14.4.2 Validation example and setup 14.4.3 Near-field results 14.4.4 Near-field-to-far-field transformation 14.4.4.1 Without phase relation 14.4.4.2 With phase relation 14.5 Extended use of the near-field scan 14.6 Conclusion References 15 Element of information for numerical modelling on PCB: focus on boundary element method Abstract 15.1 Boundary element method 15.1.1 Integral representation formulas 15.1.2 Integral equation 15.1.3 Variational formulation and finite element approximation 15.1.4 Solution 15.2 Numerical and practical issues 15.2.1 Performance issue and fast solvers 15.2.2 Low-frequency instability 15.2.3 Meshing 15.3 Formulation and stability issues 15.3.1 LAYER formulation 15.3.2 Validation with an analytic solution 15.4 A posteriori error estimate and adaptive BEM 15.4.1 A posteriori error estimate 15.4.2 Adaptive mesh refinement 15.4.3 Stopping criterion Acknowledgements References 16 General conclusion Abstract 16.1 Final words on the developed EMC, SI and PI analyses of PCBs based on the TAN formalism 16.2 Summary on the fundamental elements to practice Kron's method 16.3 Summary on PCB interconnect modelling in the frequency domain with TAN approach 16.4 Summary on the PCB modelling in the time domain 16.5 Summary on the radiated EMC modelling of PCB with TAN approach 16.6 Summary on the conducted EMC modelling of PCBs with TAN approach 16.7 Summary on the TAN modelling of PCB metallic shielding cuboid 16.8 Summary on TAN modelling of coaxial cable under EM NF radiation from electronic loop probe 16.9 Summary on the analysis of NL EMC effect for mixed PCBs 16.10 Summary on the overview of PCB numerical modelling 16.11 Concluding remark References Index Back Cover