ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Templated Fabrication of Graphene-Based Materials for Energy Applications

دانلود کتاب ساخت قالبی از مواد مبتنی بر گرافن برای کاربردهای انرژی

Templated Fabrication of Graphene-Based Materials for Energy Applications

مشخصات کتاب

Templated Fabrication of Graphene-Based Materials for Energy Applications

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9783527346004 
ناشر: WILEY-VCH 
سال نشر: 2022 
تعداد صفحات: 294
[295] 
زبان: english 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 Mb 

قیمت کتاب (تومان) : 39,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Templated Fabrication of Graphene-Based Materials for Energy Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ساخت قالبی از مواد مبتنی بر گرافن برای کاربردهای انرژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Templated Fabrication of Graphene-Based Materials for Energy Application
Copyright
Contents
Preface
List of Abbreviations
1. Graphene-Based Materials: Structure and Properties
	1.1 Introduction to Carbon Materials
	1.2 History of Graphene
	1.3 Structure of Graphene
	1.4 Properties of Graphene
	1.5 Structure Defects of Graphene
		1.5.1 Carbon Adatoms Defects
		1.5.2 Graphene Extrinsic Defects
	1.6 Different Dimensional Graphene
		1.6.1 3D Graphene Architectures (3DG)
	1.7 Graphene Composites
		1.7.1 Graphene/Conductive Polymer Composites
		1.7.2 Graphene/Inorganic Composites
	1.8 Applications of Graphene
	References
2. Graphene Synthesis: An Overview of Current Status
	2.1 Top-Down Approaches
		2.1.1 Mechanical Cleavage
		2.1.2 Exfoliation
		2.1.2.1 Liquid Exfoliation
		2.1.2.2 Solid Exfoliation
		2.1.2.3 Oxidation–Exfoliation–Reduction
		2.1.2.4 Intercalation Exfoliation
	2.2 Bottom-up Approaches
		2.2.1 Epitaxy Growth
			2.2.1.1 Direct Thermal Annealing
			2.2.1.2 Molecular-Beam Epitaxy (MBE)
		2.2.2 Chemical Vapor Deposition on Metal Substrate
		2.2.3 CVD on Nanoporous Metal Template
		2.2.4 Powder Metallurgy Template Method
		2.2.5 Soluble-Salt-Template Methods
		2.2.6 Other Methods
		2.2.6.1 CNTs Unzipping
		2.2.6.2 Molecular Self-Assembly
		2.2.6.3 Laser Ablation
		2.2.6.4 Pyrolysis of Solid Carbon Sources
	References
3. Nanoporous Metal Template Methods
	3.1 Introduction
	3.2 Dealloying Method for the Preparation of Nanoporous Metal Foil
	3.3 Nanoporous Ni as the Substrate for the Growth of 3D Nanoporous
		3.3.1 3D Nanoporous Graphene
		3.3.2 Heteroatoms-Doped 3D Nanoporous Graphene
			3.3.2.1 N-Doped 3D Nanoporous Graphene
			3.3.2.2 N, S Co-Doped 3D Nanoporous Graphene
			3.3.2.3 N, S, P Tri-Doped 3D Nanoporous Graphene
			3.3.2.4 N and Ni Single Atoms Co-Doped 3D Nanoporous Graphene
			3.3.2.5 Li Metal Anode Application of 3D Nanoporous Graphene
		3.3.3 3D Nanoporous rGO
		3.3.4 3D Nanoporous Graphene-Based Composite Materials
	3.4 Nanoporous Cu as the Substrate for the Growth of 3D Nanoporous
		3.4.1 Continuously Hierarchical Nanoporous Graphene
		3.4.2 Heteroatoms-Doped 3D Nanoporous Graphene
		3.4.3 3D Nanoporous Graphene-Based Composites
	References
4. Soluble-Salt-Template Methods
	4.1 Salt-Template Methods
		4.1.1 The Effects of Different Kinds of Salts
		4.1.2 The Acquisition Method of Salt Templates
		4.1.3 The Other Important Influencing Parameters
	4.2 Salt-Template-Directed Graphene-Based Materials
		4.2.1 2D Graphene-Based Materials
		4.2.2 3D Porous Graphene-Based Materials
	4.3 Outlook
	References
5. Powder Metallurgy Templates Methods
	5.1 Powder Metallurgy
	5.2 Powder Metallurgy Templates Methods
		5.2.1 Basic Synthesis Procedures of PMT Method
		5.2.2 The Selection of Metal Templates
		5.2.3 The Selection of Carbon Sources
		5.2.4 The Influence of Metal Templates/Carbon Sources Ratio
		5.2.5 The Influence of Heating Temperature and Heating Method
		5.2.6 The Influence of Cold-Pressing Pressure
	5.3 Mechanism of Powder Metallurgy Templates Method
	5.4 3D GM and Its Composites Prepared by PMT Method
	5.5 Additive Manufacturing
	5.6 Outlook for PMT and Additive Manufacturing Method
	References
6. Graphene-Based Materials for Lithium/Sodium-Ion Batteries
	6.1 Introduction
	6.2 Graphene-Based Insertion Composites
		6.2.1 TiO2/Graphene Composites
	6.3 Graphene-Based Alloying-Type Composites
		6.3.1 Metal/Graphene Alloy-Type Composites
		6.3.2 Nonmetal/Graphene Alloy-Type Composites
	6.4 Graphene-Based Conversion-Type Composites
		6.4.1 Transition Metal Oxides/Graphene Composites
		6.4.2 Transition Metal Sulfides/Graphene Composites
			6.4.2.1 Conventional Metal Sulfides/Graphene Composites
			6.4.2.2 2D Metal Disulfides/Graphene Composites
	6.5 Summary and Outlook
	References
7. Graphene-Based Materials for Lithium-Metal Batteries
	7.1 Graphene-Based Nanoscale Layers
	7.2 Graphene-Based Hosts for Li Storage
		7.2.1 Graphene-Based Hosts with High SSA
		7.2.2 Free-Standing 3D Graphene-Based Hosts
	7.3 Heteroatom-Doped Graphene for Uniform Lithium Nucleation
	7.4 Graphene Combined with Other “lithiophilic” Materials
	7.5 Outlook
	References
8. Graphene-Based Materials for Li–S Batteries
	8.1 Development History of Li–S Batteries
	8.2 Working Mechanism of Li–S Battery
	8.3 Challenges of Li–S Batteries
	8.4 Overview of the Graphene as Host for S
		8.4.1 High-Quality Graphene
		8.4.2 Heteroatom-Doped Graphene
		8.4.3 Functionalized Graphene
		8.4.4 Structure-Designed Graphene
		8.4.5 Graphene-Based Composites
		8.4.6 Metal Compound Anchored on Graphene
		8.4.7 Metal Compounds Anchored on Carbon Composite Material
		8.4.8 Graphene Used in Separator
			8.4.8.1 Carbon Material as a Coating Layer
			8.4.8.2 Carbon Material/Inorganic Metal Compound Composite as a Coating Layer
	References
9. Graphene-Based Materials for Supercapacitors
	9.1 Supercapacitor
		9.1.1 Fundamentals
		9.1.2 Mechanism
		9.1.3 Comparison Between Supercapacitor and Li-Ion Battery
		9.1.4 Influencing Factors of Carbon-Based Supercapacitor
	9.2 Graphene-Based Supercapacitor
		9.2.1 Advantages of Graphene Used in Supercapacitors
		9.2.2 Improving the Performance of Graphene-Based Supercapacitors
			9.2.2.1 Design of Graphene Electrode
			9.2.2.2 Heteroatom-Doping of Graphene
			9.2.2.3 Constructing 3D Graphene by Template Method
			9.2.2.4 Introducing Composition on Graphene
		9.2.3 Advanced Graphene-Based Supercapacitors
			9.2.3.1 Electrolyte Design
			9.2.3.2 Asymmetric Supercapacitors
			9.2.3.3 Metal-Ion Capacitor
			9.2.3.4 Flexible Supercapacitor
			9.2.3.5 Microsupercapacitor
	9.3 Future Prospects
	References
10. Graphene-Based Materials for Electrocatalysis
	10.1 Introduction
	10.2 Preparation of Graphene-Based Materials for Electrocatalysis
		10.2.1 Heteroatom Doping Graphene-Based Materials
			10.2.1.1 Single Doping Graphene
			10.2.1.2 Multidoping Graphene
		10.2.2 Edge and Defect Sites
		10.2.3 Graphene as Supports
		10.2.4 Template Method Synthesis of Graphene-Based Electrocatalysts
	10.3 Application of Graphene-Based Electrocatalysts
		10.3.1 Graphene-Based Electrocatalysts for Water Splitting
		10.3.2 Graphene-Based Electrocatalysts for ORR
		10.3.3 Graphene-Based Electrocatalysts for CO2RR
		10.3.4 Graphene-Based Electrocatalysts for NRR
	10.4 Outlook
	References
Index




نظرات کاربران