دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: He C., Zhao N., Sha J. (ed.) سری: ISBN (شابک) : 9783527346004 ناشر: WILEY-VCH سال نشر: 2022 تعداد صفحات: 294 [295] زبان: english فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 17 Mb
در صورت تبدیل فایل کتاب Templated Fabrication of Graphene-Based Materials for Energy Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ساخت قالبی از مواد مبتنی بر گرافن برای کاربردهای انرژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Templated Fabrication of Graphene-Based Materials for Energy Application Copyright Contents Preface List of Abbreviations 1. Graphene-Based Materials: Structure and Properties 1.1 Introduction to Carbon Materials 1.2 History of Graphene 1.3 Structure of Graphene 1.4 Properties of Graphene 1.5 Structure Defects of Graphene 1.5.1 Carbon Adatoms Defects 1.5.2 Graphene Extrinsic Defects 1.6 Different Dimensional Graphene 1.6.1 3D Graphene Architectures (3DG) 1.7 Graphene Composites 1.7.1 Graphene/Conductive Polymer Composites 1.7.2 Graphene/Inorganic Composites 1.8 Applications of Graphene References 2. Graphene Synthesis: An Overview of Current Status 2.1 Top-Down Approaches 2.1.1 Mechanical Cleavage 2.1.2 Exfoliation 2.1.2.1 Liquid Exfoliation 2.1.2.2 Solid Exfoliation 2.1.2.3 Oxidation–Exfoliation–Reduction 2.1.2.4 Intercalation Exfoliation 2.2 Bottom-up Approaches 2.2.1 Epitaxy Growth 2.2.1.1 Direct Thermal Annealing 2.2.1.2 Molecular-Beam Epitaxy (MBE) 2.2.2 Chemical Vapor Deposition on Metal Substrate 2.2.3 CVD on Nanoporous Metal Template 2.2.4 Powder Metallurgy Template Method 2.2.5 Soluble-Salt-Template Methods 2.2.6 Other Methods 2.2.6.1 CNTs Unzipping 2.2.6.2 Molecular Self-Assembly 2.2.6.3 Laser Ablation 2.2.6.4 Pyrolysis of Solid Carbon Sources References 3. Nanoporous Metal Template Methods 3.1 Introduction 3.2 Dealloying Method for the Preparation of Nanoporous Metal Foil 3.3 Nanoporous Ni as the Substrate for the Growth of 3D Nanoporous 3.3.1 3D Nanoporous Graphene 3.3.2 Heteroatoms-Doped 3D Nanoporous Graphene 3.3.2.1 N-Doped 3D Nanoporous Graphene 3.3.2.2 N, S Co-Doped 3D Nanoporous Graphene 3.3.2.3 N, S, P Tri-Doped 3D Nanoporous Graphene 3.3.2.4 N and Ni Single Atoms Co-Doped 3D Nanoporous Graphene 3.3.2.5 Li Metal Anode Application of 3D Nanoporous Graphene 3.3.3 3D Nanoporous rGO 3.3.4 3D Nanoporous Graphene-Based Composite Materials 3.4 Nanoporous Cu as the Substrate for the Growth of 3D Nanoporous 3.4.1 Continuously Hierarchical Nanoporous Graphene 3.4.2 Heteroatoms-Doped 3D Nanoporous Graphene 3.4.3 3D Nanoporous Graphene-Based Composites References 4. Soluble-Salt-Template Methods 4.1 Salt-Template Methods 4.1.1 The Effects of Different Kinds of Salts 4.1.2 The Acquisition Method of Salt Templates 4.1.3 The Other Important Influencing Parameters 4.2 Salt-Template-Directed Graphene-Based Materials 4.2.1 2D Graphene-Based Materials 4.2.2 3D Porous Graphene-Based Materials 4.3 Outlook References 5. Powder Metallurgy Templates Methods 5.1 Powder Metallurgy 5.2 Powder Metallurgy Templates Methods 5.2.1 Basic Synthesis Procedures of PMT Method 5.2.2 The Selection of Metal Templates 5.2.3 The Selection of Carbon Sources 5.2.4 The Influence of Metal Templates/Carbon Sources Ratio 5.2.5 The Influence of Heating Temperature and Heating Method 5.2.6 The Influence of Cold-Pressing Pressure 5.3 Mechanism of Powder Metallurgy Templates Method 5.4 3D GM and Its Composites Prepared by PMT Method 5.5 Additive Manufacturing 5.6 Outlook for PMT and Additive Manufacturing Method References 6. Graphene-Based Materials for Lithium/Sodium-Ion Batteries 6.1 Introduction 6.2 Graphene-Based Insertion Composites 6.2.1 TiO2/Graphene Composites 6.3 Graphene-Based Alloying-Type Composites 6.3.1 Metal/Graphene Alloy-Type Composites 6.3.2 Nonmetal/Graphene Alloy-Type Composites 6.4 Graphene-Based Conversion-Type Composites 6.4.1 Transition Metal Oxides/Graphene Composites 6.4.2 Transition Metal Sulfides/Graphene Composites 6.4.2.1 Conventional Metal Sulfides/Graphene Composites 6.4.2.2 2D Metal Disulfides/Graphene Composites 6.5 Summary and Outlook References 7. Graphene-Based Materials for Lithium-Metal Batteries 7.1 Graphene-Based Nanoscale Layers 7.2 Graphene-Based Hosts for Li Storage 7.2.1 Graphene-Based Hosts with High SSA 7.2.2 Free-Standing 3D Graphene-Based Hosts 7.3 Heteroatom-Doped Graphene for Uniform Lithium Nucleation 7.4 Graphene Combined with Other “lithiophilic” Materials 7.5 Outlook References 8. Graphene-Based Materials for Li–S Batteries 8.1 Development History of Li–S Batteries 8.2 Working Mechanism of Li–S Battery 8.3 Challenges of Li–S Batteries 8.4 Overview of the Graphene as Host for S 8.4.1 High-Quality Graphene 8.4.2 Heteroatom-Doped Graphene 8.4.3 Functionalized Graphene 8.4.4 Structure-Designed Graphene 8.4.5 Graphene-Based Composites 8.4.6 Metal Compound Anchored on Graphene 8.4.7 Metal Compounds Anchored on Carbon Composite Material 8.4.8 Graphene Used in Separator 8.4.8.1 Carbon Material as a Coating Layer 8.4.8.2 Carbon Material/Inorganic Metal Compound Composite as a Coating Layer References 9. Graphene-Based Materials for Supercapacitors 9.1 Supercapacitor 9.1.1 Fundamentals 9.1.2 Mechanism 9.1.3 Comparison Between Supercapacitor and Li-Ion Battery 9.1.4 Influencing Factors of Carbon-Based Supercapacitor 9.2 Graphene-Based Supercapacitor 9.2.1 Advantages of Graphene Used in Supercapacitors 9.2.2 Improving the Performance of Graphene-Based Supercapacitors 9.2.2.1 Design of Graphene Electrode 9.2.2.2 Heteroatom-Doping of Graphene 9.2.2.3 Constructing 3D Graphene by Template Method 9.2.2.4 Introducing Composition on Graphene 9.2.3 Advanced Graphene-Based Supercapacitors 9.2.3.1 Electrolyte Design 9.2.3.2 Asymmetric Supercapacitors 9.2.3.3 Metal-Ion Capacitor 9.2.3.4 Flexible Supercapacitor 9.2.3.5 Microsupercapacitor 9.3 Future Prospects References 10. Graphene-Based Materials for Electrocatalysis 10.1 Introduction 10.2 Preparation of Graphene-Based Materials for Electrocatalysis 10.2.1 Heteroatom Doping Graphene-Based Materials 10.2.1.1 Single Doping Graphene 10.2.1.2 Multidoping Graphene 10.2.2 Edge and Defect Sites 10.2.3 Graphene as Supports 10.2.4 Template Method Synthesis of Graphene-Based Electrocatalysts 10.3 Application of Graphene-Based Electrocatalysts 10.3.1 Graphene-Based Electrocatalysts for Water Splitting 10.3.2 Graphene-Based Electrocatalysts for ORR 10.3.3 Graphene-Based Electrocatalysts for CO2RR 10.3.4 Graphene-Based Electrocatalysts for NRR 10.4 Outlook References Index