ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Technologies for Solar Thermal Energy: Theory, Design and, Optimization

دانلود کتاب فناوری‌های انرژی حرارتی خورشیدی: تئوری، طراحی و بهینه‌سازی

Technologies for Solar Thermal Energy: Theory, Design and, Optimization

مشخصات کتاب

Technologies for Solar Thermal Energy: Theory, Design and, Optimization

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 012823959X, 9780128239599 
ناشر: Academic Press 
سال نشر: 2022 
تعداد صفحات: 386 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 8 مگابایت 

قیمت کتاب (تومان) : 34,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Technologies for Solar Thermal Energy: Theory, Design and, Optimization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فناوری‌های انرژی حرارتی خورشیدی: تئوری، طراحی و بهینه‌سازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front Cover
Technologies for Solar Thermal Energy
Technologies for Solar Thermal Energy: Theory, Design, and Optimization
Copyright
Contents
List of contributors
1 - Fundamentals of thermal energy and solar system integration
	1.1 Introduction
	1.2 Foundation of thermodynamics
		1.2.1 Basics of thermodynamics
			System and control volume
			Properties of a system
				Temperature
				Pressure
		1.2.2 Basic energy conversion
			Fossil fuel energy conversion
			Renewable energy conversion
	1.3 Thermal energy demand and supply
		1.3.1 Sector wise thermal energy demand
	1.4 Conventional thermal energy supply technologies
		1.4.1 Boiler
			Classification of steam boiler
				Fire-tube boiler
				Water-tube boiler
				Modern boiler
					Heat recovery steam generators
					Recovery boilers
			Boiler mountings and accessories
				Superheaters and reheaters
				Economizers
				Air preheater
		1.4.2 Combined heat and power
			Gas turbine CHP plants
			Solar energy conversion and integrated CHP plants
			CHP plants for district heating
			Selection factor for cogeneration systems
			The potential of CHP in industrial sectors
	1.5 Solar thermal integration
		1.5.1 Integration of supply level
		1.5.2 Integration on process level
	References
2 - Solar thermal energy conversion
	2.1 Introduction
	2.2 The geometry of solar radiation
		2.2.1 Latitude
		2.2.2 Declination angle
		2.2.3 Solar noon
		2.2.4 Hour angle
		2.2.5 Elevation/altitude angle
		2.2.6 Zenith angle (θz)
		2.2.7 Sunset hour angle (ωs) and daylight hours
		2.2.8 Solar azimuth angle (γS)
		2.2.9 Tilt angle or inclination angle (β)
		2.2.10 Surface azimuth angle (γ)
		2.2.11 Angle of incidence (θ)
		2.2.12 Geometric factor (Rb)
	2.3 Components and types of solar radiation
		2.3.1 Irradiance
		2.3.2 Irradiation or insolation
	2.4 Calculation of extraterrestrial radiation
	2.5 Calculation of terrestrial radiation
		2.5.1 Measurement of terrestrial radiation
		2.5.2 Terrestrial radiations databases
		2.5.3 Terrestrial irradiation estimation from correlation
	2.6 Calculation of beam and diffuse radiation on horizontal plane
		2.6.1 The monthly average daily clearness index
		2.6.2 The hourly clearness index
		2.6.3 The daily clearness index
			Hourly total irradiation from daily irradiation on horizontal
			Hourly diffuse irradiations from daily diffuse irradiation on horizontal
	2.7 Radiations on a tilted plane
		2.7.1 Calculation of radiations on a tilted plane
		2.7.2 Models for calculation of radiations on a tilted plane
			Liu and Jordan model (iso, γ=0, I) (Liu & Jordan, 1960)
			Liu and Jordan model (iso, γ=0, H) (Liu & Jordan, 1960)
			Hay, Davies, Klucher and Reindl model (HDKR model) (iso+cs+hz, γ=0, I) (Yadav & Chandel, 2013)
	2.8 Solar power conversion
		2.8.1 PV systems
		2.8.2 Solar thermal power production
		2.8.3 Installations of PV modules or thermal collectors
		2.8.4 Fixed type PV installations with an optimum tilt angle
	2.9 Solar tracking technology
		2.9.1 Classification of solar tracking
		2.9.2 Closed loop tracking system
		2.9.3 Open loop tracking system
		2.9.4 Passive solar trackers
		2.9.5 Single axis tracking
		2.9.6 Double axis tracking
	2.10 Worked out problems
	References
3 - Heat exchanger for solar thermal energy
	3.1 Basic concept of heat exchanger
		3.1.1 Concept and definition
		3.1.2 Classification of heat exchangers
			Classification based on transfer processes
			Classification based on physical construction
			Classification based on flow arrangement
			Compact heat exchanger
			Heat exchangers coupled with solar thermal technology
		3.1.3 Common heat exchanger technologies for solar thermal energy
			Salt-steam heat exchanger system
			Integrated photovoltaic thermal solar system with earth water heat exchanger
			Multitank modular heat storage for solar thermal systems
			Earth air heat exchanger
			Single slope solar still integrated with helically coiled heat exchanger
			Vertical straight and helical coiled pipe heat exchanger
			Solar pond heat exchanger
			Shell and tube heat exchangers
			Submerged heat exchanger used for solar absorption
			Fluidized bed heat exchanger
	3.2 Design of heat exchanger
		3.2.1 Mathematical modeling of earth water heat exchanger coupled with IPVTS (Jakhar et al., 2017)
		3.2.2 Mathematical modeling of Earth Air Heat Exchanger system (Afrand et al., 2019)
		3.2.3 Mathematical modeling of vertical straight and helical coiled pipe heat exchanger (Vaivudh et al., 2008)
			Vertical straight pipe equations
			Helical coiled pipe equations
		3.2.4 Mathematical modeling of tube bundle of a shell and tube heat exchanger (Zaversky et al., 2014)
		3.2.5 Hydrodynamics of fluidized bed heat exchanger (Farsi & Dincer, 2019)
		3.2.6 Heat recovery heat exchanger in hybrid particle-based concentrated solar power plant (Farsi & Dincer, 2019)
	3.3 Heat exchanger performance analysis
		3.3.1 Performance analysis of IPVTS system with EWHE
		3.3.2 Performance analysis of BIPVT integrated with earth air heat exchanger
		3.3.3 Performance analysis of vertical straight and helical coiled pipe HE
		3.3.4 Performance analysis of submerged heat exchanger for solar absorption
		3.3.5 Performance analysis of fluidized bed heat exchanger
	3.4 Problems and solutions on HEs
	References
4 - Solar thermal collector
	4.1 Basic concept of solar thermal collectors
	4.2 Categorization of solar thermal collectors
	4.3 Nonconcentrator collectors
		4.3.1 Flat plate collector
			Applications
		4.3.2 Evacuated tube collectors
			Application
	4.4 Concentrator collectors
		4.4.1 Compound parabolic and Fresnel lens collectors
			Application
		4.4.2 Parabolic trough collector
			Parameter calculation
			More equations for the model
			Application
		4.4.3 Parabolic dish reflector
			Application
		4.4.4 Central receiver or heliostat field reflector
			Applications
	References
5 - Solar photovoltaic thermal systems
	5.1 Introduction
	5.2 Photovoltaic thermal technology
	5.3 Solar cell or PV cell
		5.3.1 Crystalline solar cell
		5.3.2 Thin-film solar cell
		5.3.3 Amorphous solar cell
		5.3.4 Organic and polymer solar cell
		5.3.5 Dye-sensitized solar cell
		5.3.6 Hybrid solar cell
		5.3.7 PV cell electrical parameters
			p-n junction
			Short-circuit current (Isc)
			Open-circuit voltage (Voc)
			Fill factor
			Solar cell efficiency
			Detailed balance
			Boundary conditions
		5.3.8 Performance of PV cell
			Effect of temperature
			Solar to electricity system
			Solar to fuel system
			Solar electricity to fuel system
	5.4 Energy conversion in different types of PVT systems
		5.4.1 Energy conversion in PVT/water system
			Evaluation criterion of the PV/T system
		5.4.2 Energy conversion in glazed PVT/water system
		5.4.3 Energy conversion in unglazed PVT/water and PVT-PCM systems
		5.4.4 Energy conversion in PVT/air system
	References
	Further reading
6 - Solar thermal power plant
	6.1 Introduction
	6.2 Basic concept of solar thermal power plant
	6.3 Solar thermal power generation technologies
		6.3.1 Solar tower power plant
		6.3.2 Parabolic through solar power plant
		6.3.3 Parabolic dish solar power plant
		6.3.4 Linear Fresnel reflector solar power plant
		6.3.5 Solar chimney power plant
	6.4 Solar position modeling
		6.4.1 Solar angle
		6.4.2 Solar tracking angle
		6.4.3 Direct normal beam insolation
	6.5 Design of a parabolic through solar thermal power plant
		6.5.1 Parabolic through collector design
			Geometric configuration
			Solar energy absorption modeling
			Solar receiver design
				Transfer of heat from the absorber to the heat transfer fluid
				Conduction heat transfer through absorber wall
				Transfer of heat from the absorber to the glass envelope
					Vacuum in annulus (p<1 Torr)
					Annulus pressure higher than 1 Torr
				Radiation heat transfer from the absorber to the envelope
				Conductive heat transport through the glass envelope
				Heat transfer from HCE support bracket
				Heat loss from the glass envelope to the atmosphere
			Pressure drops from the piping system
			HTF pump
	6.6 Design of a solar tower power plant
		6.6.1 Heliostat field modeling
		6.6.2 Central receiver modeling
	6.7 Heat transfer fluid
		6.7.1 Available heat transfer fluid
		6.7.2 Correlations for thermophysical property of HTFs
	6.8 Site selection and mapping
		6.8.1 Method related to sites selection of solar power plants
		6.8.2 Evaluation criteria
		6.8.3 AHP and ANP ranking approach
		6.8.4 Site selection principle
		6.8.5 Land selection and site elevation
	6.9 Design of thermal collector for power plant
		6.9.1 Flat plate solar collectors
			Convection loss
			Conduction loss
			Radiation loss
		6.9.2 Evacuated tube collectors
	6.10 Solar aided power generation
	6.11 Hybridization of power cycle with solar thermal energy resources
		6.11.1 Hybridizing with Rankine cycle
	6.12 Performance analysis
		6.12.1 Overall efficiency
		6.12.2 Fuel-based efficiency
		6.12.3 Solar-to-electric efficiency
		6.12.4 Solar heat fraction
		6.12.5 Fuel saving fraction
	References
7 - Solar thermal energy storage
	7.1 Introduction
	7.2 Types of solar thermal energy storage system
		7.2.1 Sensible solar thermal energy storage
		7.2.2 Latent solar thermal energy storage
	7.3 Corresponding solar thermal energy storage technologies
		7.3.1 Two-tank direct system
		7.3.2 Two-tank indirect system
		7.3.3 Single tank thermocline system
	7.4 Effectiveness analysis of thermal storage
	7.5 Design of a solar thermal energy storage system
	7.6 Energy storage material thermal properties & selection
	7.7 Example and solution
	References
8 - Solar drying system
	8.1 Fundamental conception of the solar drying system
	8.2 Classification of solar dryers
		8.2.1 Direct solar dryer
		8.2.2 Indirect solar dryer
		8.2.3 Mixed-mode solar dryer
		8.2.4 Hybrid solar dryer
	8.3 Components and selection of a solar dryer
		8.3.1 Components of a solar dryer
		8.3.2 Selection of a solar dryer
	8.4 Solar drying design considerations for a product
		8.4.1 Mathematical considerations of the triple-pass solar collector
			Energy balance equations
				For glass 1
				For the airstream between glass 1 and 2
				For glass 2
				For the airstream between glass 2 and absorber
				For the absorber plate
				For the airstream between absorber and insulator
				For the insulator
			Heat transfer coefficient
				Heat transfer coefficient inside the solar collector
				Heat transfer coefficient from glass 1 to outside air
				Radiative heat transfer coefficient
			Thermal energy analysis
		8.4.2 Mathematical considerations of the drying chamber
			Energy balance equations
				Mass balance for drying air
				Energy balance for drying air
				Amount of air required for drying
				Mass conservation of a product
				Energy conservation of a product
				Amount of energy required for drying
				Relative humidity and drying rate
			Heat transfer coefficient
			Thermal efficiency
				Unit cost of the solar drying
		8.4.3 Software tools in solar drying calculations
	8.5 Characteristics of the solar drying
		8.5.1 Drying curves
		8.5.2 Drying kinetics
	8.6 Role of solar drying systems
		8.6.1 Economic aspects
		8.6.2 Economic evaluation using dynamic method
		8.6.3 Environmental aspects
	8.7 Application of solar dryers
		8.7.1 Application of solar dryer in agriculture
		8.7.2 Application of solar dryer in industry
		8.7.3 Application of solar dryer in marine
	References
9 - Solar water desalination system
	9.1 Basic concept of solar water desalination system
	9.2 Solar water desalination processes
	9.3 Indirect processes
		9.3.1 Solar humidification and dehumidification desalination
		9.3.2 Membrane distillation
		9.3.3 Multistage flash
		9.3.4 Vapor compression
		9.3.5 Solar pond
		9.3.6 Multieffect distillation
	9.4 Direct processes
		9.4.1 Solar stills
		9.4.2 Bucket defluoridator
		9.4.3 Still with a separate section of vapor condensation and condensate collection
		9.4.4 Solar still coupled with flat-plate collector
	9.5 Characteristics of solar water desalination system
		9.5.1 Adsorption desalination system
		9.5.2 Physical and schematic diagram of AD system
		9.5.3 Design parameters and performance evaluation of the pilot-scale system
			Design parameters
		9.5.4 Equations for the required and released heat in the system
		9.5.5 Performance evaluation
	9.6 Design of an autonomous solar water desalination system
		9.6.1 Mathematical modeling
		9.6.2 Photovoltaic system: power and economic
		9.6.3 Reverse osmosis desalination
	9.7 Design method of solar water desalination system
		9.7.1 Distillation method
			Seawater desalination by multieffect humidification
			Process control
			Desalination system supplemented by a thermal storage tank
			Simulation model of the distillation module
	9.8 Performance analysis of solar water desalination system
		9.8.1 Advanced humidification-dehumidification desalination system
		9.8.2 Proposed combined system
	Nomenclature
	References
10 - Economic assessment of solar thermal energy technologies
	10.1 Introduction
	10.2 Basic concept of solar thermal project planning
		10.2.1 Causes for project planning
		10.2.2 General planning
		10.2.3 Life cycle phases
			Formulation
			Feasibility
			Preliminary planning
			Detailed design
			Implementation
			Examining and completion
	10.3 Basic of project assessment
		10.3.1 Economic analysis for project assessment and use of discounted cash flow
		10.3.2 Economic feasibility indicators
	10.4 Costs and cost estimating
		10.4.1 Basic concept of cost
		10.4.2 Fixed cost and variable cost
		10.4.3 Breakeven point
			Profit region
			Loss region
	10.5 Feasibility analysis
		10.5.1 Concept of feasibility analysis
		10.5.2 Technical feasibility (risk assessment and solutions)
			Construction
			Operation/commercial risk
			Equipment
			Economic
			Market availability
			Political
			Environmental
			Risk matrix is used to minimize risk in a project that includes (Yeo & Ren, 2009)
		10.5.3 Operational feasibility (control, efficiency and service)
		10.5.4 Schedule feasibility (timeline estimation and resources optimization)
	10.6 Cost control
		10.6.1 Basic concept of cost control
		10.6.2 Importance of cost control
		10.6.3 Purpose of cost control
		10.6.4 Cost control planning
	10.7 Tools for project economic performance analysis
		10.7.1 Life cycle cost analysis
		10.7.2 Net present value analysis
			Net present value analysis sample problem
			NPV shows the following advantages for solar thermal project assessment
			But NPV has the following limitations for evaluating a solar thermal project
		10.7.3 Internal rate of return analysis
		10.7.4 Discounted payback period
			Discounted payback period has the following limitations
		10.7.5 Levelized cost of energy
		10.7.6 Profitability index
			Decisions for using the profitability index
			Profitability analysis sample problem
		10.7.7 Sensitivity analysis
	References
11 - Environmental impact assessment of solar thermal energy
	11.1 Introduction
	11.2 Environmental impact assessment
		11.2.1 Purposes of EIA
		11.2.2 Procedures and stages of EIA
		11.2.3 Methods for EIA
			Adhoc method
			Checklist method
			Matrix method
			Network method
			Overlay method
	11.3 Life cycle assessment of industrial solar thermal systems
		11.3.1 LCA scopes and inventory
		11.3.2 Life cycle cost and support schemes
		11.3.3 Life cycle impact assessment
	11.4 LCA analysis of the fuel mix power generation
		11.4.1 System description and assumptions
		11.4.2 Designing and investigation
			Energy analysis (first law)
				Biomass segment
				Solar segment
				Steam turbine segment
	11.5 Emission factor and analysis
		11.5.1 Alliance between renewable energy certificate and emission factor
		11.5.2 Achieving carbon emissions subsidence using solar energy
		11.5.3 Carbon emissions subsidence costing
		11.5.4 Essential emission calculation systems for proposing a combined system
	11.6 Global warming potential
		11.6.1 Global temperature
		11.6.2 Net heat sources
			Geothermal heat flow
			Thermal pollution
			Additional net heat sources
		11.6.3 Earth\'s radiation balance
			Net long wave radiation
		11.6.4 Global warming in large-scale thermal energy storage
		11.6.5 Steady-state global warming
	11.7 Energy and environmental impact
		11.7.1 Principles of environmental impact
		11.7.2 Ecological impact
		11.7.3 Environmental impacts of solar thermal electricity
		11.7.4 Energy and environmental impact analysis
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z
Back Cover




نظرات کاربران