دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Md Hasanuzzaman (editor)
سری:
ISBN (شابک) : 012823959X, 9780128239599
ناشر: Academic Press
سال نشر: 2022
تعداد صفحات: 386
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Technologies for Solar Thermal Energy: Theory, Design and, Optimization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فناوریهای انرژی حرارتی خورشیدی: تئوری، طراحی و بهینهسازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Technologies for Solar Thermal Energy Technologies for Solar Thermal Energy: Theory, Design, and Optimization Copyright Contents List of contributors 1 - Fundamentals of thermal energy and solar system integration 1.1 Introduction 1.2 Foundation of thermodynamics 1.2.1 Basics of thermodynamics System and control volume Properties of a system Temperature Pressure 1.2.2 Basic energy conversion Fossil fuel energy conversion Renewable energy conversion 1.3 Thermal energy demand and supply 1.3.1 Sector wise thermal energy demand 1.4 Conventional thermal energy supply technologies 1.4.1 Boiler Classification of steam boiler Fire-tube boiler Water-tube boiler Modern boiler Heat recovery steam generators Recovery boilers Boiler mountings and accessories Superheaters and reheaters Economizers Air preheater 1.4.2 Combined heat and power Gas turbine CHP plants Solar energy conversion and integrated CHP plants CHP plants for district heating Selection factor for cogeneration systems The potential of CHP in industrial sectors 1.5 Solar thermal integration 1.5.1 Integration of supply level 1.5.2 Integration on process level References 2 - Solar thermal energy conversion 2.1 Introduction 2.2 The geometry of solar radiation 2.2.1 Latitude 2.2.2 Declination angle 2.2.3 Solar noon 2.2.4 Hour angle 2.2.5 Elevation/altitude angle 2.2.6 Zenith angle (θz) 2.2.7 Sunset hour angle (ωs) and daylight hours 2.2.8 Solar azimuth angle (γS) 2.2.9 Tilt angle or inclination angle (β) 2.2.10 Surface azimuth angle (γ) 2.2.11 Angle of incidence (θ) 2.2.12 Geometric factor (Rb) 2.3 Components and types of solar radiation 2.3.1 Irradiance 2.3.2 Irradiation or insolation 2.4 Calculation of extraterrestrial radiation 2.5 Calculation of terrestrial radiation 2.5.1 Measurement of terrestrial radiation 2.5.2 Terrestrial radiations databases 2.5.3 Terrestrial irradiation estimation from correlation 2.6 Calculation of beam and diffuse radiation on horizontal plane 2.6.1 The monthly average daily clearness index 2.6.2 The hourly clearness index 2.6.3 The daily clearness index Hourly total irradiation from daily irradiation on horizontal Hourly diffuse irradiations from daily diffuse irradiation on horizontal 2.7 Radiations on a tilted plane 2.7.1 Calculation of radiations on a tilted plane 2.7.2 Models for calculation of radiations on a tilted plane Liu and Jordan model (iso, γ=0, I) (Liu & Jordan, 1960) Liu and Jordan model (iso, γ=0, H) (Liu & Jordan, 1960) Hay, Davies, Klucher and Reindl model (HDKR model) (iso+cs+hz, γ=0, I) (Yadav & Chandel, 2013) 2.8 Solar power conversion 2.8.1 PV systems 2.8.2 Solar thermal power production 2.8.3 Installations of PV modules or thermal collectors 2.8.4 Fixed type PV installations with an optimum tilt angle 2.9 Solar tracking technology 2.9.1 Classification of solar tracking 2.9.2 Closed loop tracking system 2.9.3 Open loop tracking system 2.9.4 Passive solar trackers 2.9.5 Single axis tracking 2.9.6 Double axis tracking 2.10 Worked out problems References 3 - Heat exchanger for solar thermal energy 3.1 Basic concept of heat exchanger 3.1.1 Concept and definition 3.1.2 Classification of heat exchangers Classification based on transfer processes Classification based on physical construction Classification based on flow arrangement Compact heat exchanger Heat exchangers coupled with solar thermal technology 3.1.3 Common heat exchanger technologies for solar thermal energy Salt-steam heat exchanger system Integrated photovoltaic thermal solar system with earth water heat exchanger Multitank modular heat storage for solar thermal systems Earth air heat exchanger Single slope solar still integrated with helically coiled heat exchanger Vertical straight and helical coiled pipe heat exchanger Solar pond heat exchanger Shell and tube heat exchangers Submerged heat exchanger used for solar absorption Fluidized bed heat exchanger 3.2 Design of heat exchanger 3.2.1 Mathematical modeling of earth water heat exchanger coupled with IPVTS (Jakhar et al., 2017) 3.2.2 Mathematical modeling of Earth Air Heat Exchanger system (Afrand et al., 2019) 3.2.3 Mathematical modeling of vertical straight and helical coiled pipe heat exchanger (Vaivudh et al., 2008) Vertical straight pipe equations Helical coiled pipe equations 3.2.4 Mathematical modeling of tube bundle of a shell and tube heat exchanger (Zaversky et al., 2014) 3.2.5 Hydrodynamics of fluidized bed heat exchanger (Farsi & Dincer, 2019) 3.2.6 Heat recovery heat exchanger in hybrid particle-based concentrated solar power plant (Farsi & Dincer, 2019) 3.3 Heat exchanger performance analysis 3.3.1 Performance analysis of IPVTS system with EWHE 3.3.2 Performance analysis of BIPVT integrated with earth air heat exchanger 3.3.3 Performance analysis of vertical straight and helical coiled pipe HE 3.3.4 Performance analysis of submerged heat exchanger for solar absorption 3.3.5 Performance analysis of fluidized bed heat exchanger 3.4 Problems and solutions on HEs References 4 - Solar thermal collector 4.1 Basic concept of solar thermal collectors 4.2 Categorization of solar thermal collectors 4.3 Nonconcentrator collectors 4.3.1 Flat plate collector Applications 4.3.2 Evacuated tube collectors Application 4.4 Concentrator collectors 4.4.1 Compound parabolic and Fresnel lens collectors Application 4.4.2 Parabolic trough collector Parameter calculation More equations for the model Application 4.4.3 Parabolic dish reflector Application 4.4.4 Central receiver or heliostat field reflector Applications References 5 - Solar photovoltaic thermal systems 5.1 Introduction 5.2 Photovoltaic thermal technology 5.3 Solar cell or PV cell 5.3.1 Crystalline solar cell 5.3.2 Thin-film solar cell 5.3.3 Amorphous solar cell 5.3.4 Organic and polymer solar cell 5.3.5 Dye-sensitized solar cell 5.3.6 Hybrid solar cell 5.3.7 PV cell electrical parameters p-n junction Short-circuit current (Isc) Open-circuit voltage (Voc) Fill factor Solar cell efficiency Detailed balance Boundary conditions 5.3.8 Performance of PV cell Effect of temperature Solar to electricity system Solar to fuel system Solar electricity to fuel system 5.4 Energy conversion in different types of PVT systems 5.4.1 Energy conversion in PVT/water system Evaluation criterion of the PV/T system 5.4.2 Energy conversion in glazed PVT/water system 5.4.3 Energy conversion in unglazed PVT/water and PVT-PCM systems 5.4.4 Energy conversion in PVT/air system References Further reading 6 - Solar thermal power plant 6.1 Introduction 6.2 Basic concept of solar thermal power plant 6.3 Solar thermal power generation technologies 6.3.1 Solar tower power plant 6.3.2 Parabolic through solar power plant 6.3.3 Parabolic dish solar power plant 6.3.4 Linear Fresnel reflector solar power plant 6.3.5 Solar chimney power plant 6.4 Solar position modeling 6.4.1 Solar angle 6.4.2 Solar tracking angle 6.4.3 Direct normal beam insolation 6.5 Design of a parabolic through solar thermal power plant 6.5.1 Parabolic through collector design Geometric configuration Solar energy absorption modeling Solar receiver design Transfer of heat from the absorber to the heat transfer fluid Conduction heat transfer through absorber wall Transfer of heat from the absorber to the glass envelope Vacuum in annulus (p<1 Torr) Annulus pressure higher than 1 Torr Radiation heat transfer from the absorber to the envelope Conductive heat transport through the glass envelope Heat transfer from HCE support bracket Heat loss from the glass envelope to the atmosphere Pressure drops from the piping system HTF pump 6.6 Design of a solar tower power plant 6.6.1 Heliostat field modeling 6.6.2 Central receiver modeling 6.7 Heat transfer fluid 6.7.1 Available heat transfer fluid 6.7.2 Correlations for thermophysical property of HTFs 6.8 Site selection and mapping 6.8.1 Method related to sites selection of solar power plants 6.8.2 Evaluation criteria 6.8.3 AHP and ANP ranking approach 6.8.4 Site selection principle 6.8.5 Land selection and site elevation 6.9 Design of thermal collector for power plant 6.9.1 Flat plate solar collectors Convection loss Conduction loss Radiation loss 6.9.2 Evacuated tube collectors 6.10 Solar aided power generation 6.11 Hybridization of power cycle with solar thermal energy resources 6.11.1 Hybridizing with Rankine cycle 6.12 Performance analysis 6.12.1 Overall efficiency 6.12.2 Fuel-based efficiency 6.12.3 Solar-to-electric efficiency 6.12.4 Solar heat fraction 6.12.5 Fuel saving fraction References 7 - Solar thermal energy storage 7.1 Introduction 7.2 Types of solar thermal energy storage system 7.2.1 Sensible solar thermal energy storage 7.2.2 Latent solar thermal energy storage 7.3 Corresponding solar thermal energy storage technologies 7.3.1 Two-tank direct system 7.3.2 Two-tank indirect system 7.3.3 Single tank thermocline system 7.4 Effectiveness analysis of thermal storage 7.5 Design of a solar thermal energy storage system 7.6 Energy storage material thermal properties & selection 7.7 Example and solution References 8 - Solar drying system 8.1 Fundamental conception of the solar drying system 8.2 Classification of solar dryers 8.2.1 Direct solar dryer 8.2.2 Indirect solar dryer 8.2.3 Mixed-mode solar dryer 8.2.4 Hybrid solar dryer 8.3 Components and selection of a solar dryer 8.3.1 Components of a solar dryer 8.3.2 Selection of a solar dryer 8.4 Solar drying design considerations for a product 8.4.1 Mathematical considerations of the triple-pass solar collector Energy balance equations For glass 1 For the airstream between glass 1 and 2 For glass 2 For the airstream between glass 2 and absorber For the absorber plate For the airstream between absorber and insulator For the insulator Heat transfer coefficient Heat transfer coefficient inside the solar collector Heat transfer coefficient from glass 1 to outside air Radiative heat transfer coefficient Thermal energy analysis 8.4.2 Mathematical considerations of the drying chamber Energy balance equations Mass balance for drying air Energy balance for drying air Amount of air required for drying Mass conservation of a product Energy conservation of a product Amount of energy required for drying Relative humidity and drying rate Heat transfer coefficient Thermal efficiency Unit cost of the solar drying 8.4.3 Software tools in solar drying calculations 8.5 Characteristics of the solar drying 8.5.1 Drying curves 8.5.2 Drying kinetics 8.6 Role of solar drying systems 8.6.1 Economic aspects 8.6.2 Economic evaluation using dynamic method 8.6.3 Environmental aspects 8.7 Application of solar dryers 8.7.1 Application of solar dryer in agriculture 8.7.2 Application of solar dryer in industry 8.7.3 Application of solar dryer in marine References 9 - Solar water desalination system 9.1 Basic concept of solar water desalination system 9.2 Solar water desalination processes 9.3 Indirect processes 9.3.1 Solar humidification and dehumidification desalination 9.3.2 Membrane distillation 9.3.3 Multistage flash 9.3.4 Vapor compression 9.3.5 Solar pond 9.3.6 Multieffect distillation 9.4 Direct processes 9.4.1 Solar stills 9.4.2 Bucket defluoridator 9.4.3 Still with a separate section of vapor condensation and condensate collection 9.4.4 Solar still coupled with flat-plate collector 9.5 Characteristics of solar water desalination system 9.5.1 Adsorption desalination system 9.5.2 Physical and schematic diagram of AD system 9.5.3 Design parameters and performance evaluation of the pilot-scale system Design parameters 9.5.4 Equations for the required and released heat in the system 9.5.5 Performance evaluation 9.6 Design of an autonomous solar water desalination system 9.6.1 Mathematical modeling 9.6.2 Photovoltaic system: power and economic 9.6.3 Reverse osmosis desalination 9.7 Design method of solar water desalination system 9.7.1 Distillation method Seawater desalination by multieffect humidification Process control Desalination system supplemented by a thermal storage tank Simulation model of the distillation module 9.8 Performance analysis of solar water desalination system 9.8.1 Advanced humidification-dehumidification desalination system 9.8.2 Proposed combined system Nomenclature References 10 - Economic assessment of solar thermal energy technologies 10.1 Introduction 10.2 Basic concept of solar thermal project planning 10.2.1 Causes for project planning 10.2.2 General planning 10.2.3 Life cycle phases Formulation Feasibility Preliminary planning Detailed design Implementation Examining and completion 10.3 Basic of project assessment 10.3.1 Economic analysis for project assessment and use of discounted cash flow 10.3.2 Economic feasibility indicators 10.4 Costs and cost estimating 10.4.1 Basic concept of cost 10.4.2 Fixed cost and variable cost 10.4.3 Breakeven point Profit region Loss region 10.5 Feasibility analysis 10.5.1 Concept of feasibility analysis 10.5.2 Technical feasibility (risk assessment and solutions) Construction Operation/commercial risk Equipment Economic Market availability Political Environmental Risk matrix is used to minimize risk in a project that includes (Yeo & Ren, 2009) 10.5.3 Operational feasibility (control, efficiency and service) 10.5.4 Schedule feasibility (timeline estimation and resources optimization) 10.6 Cost control 10.6.1 Basic concept of cost control 10.6.2 Importance of cost control 10.6.3 Purpose of cost control 10.6.4 Cost control planning 10.7 Tools for project economic performance analysis 10.7.1 Life cycle cost analysis 10.7.2 Net present value analysis Net present value analysis sample problem NPV shows the following advantages for solar thermal project assessment But NPV has the following limitations for evaluating a solar thermal project 10.7.3 Internal rate of return analysis 10.7.4 Discounted payback period Discounted payback period has the following limitations 10.7.5 Levelized cost of energy 10.7.6 Profitability index Decisions for using the profitability index Profitability analysis sample problem 10.7.7 Sensitivity analysis References 11 - Environmental impact assessment of solar thermal energy 11.1 Introduction 11.2 Environmental impact assessment 11.2.1 Purposes of EIA 11.2.2 Procedures and stages of EIA 11.2.3 Methods for EIA Adhoc method Checklist method Matrix method Network method Overlay method 11.3 Life cycle assessment of industrial solar thermal systems 11.3.1 LCA scopes and inventory 11.3.2 Life cycle cost and support schemes 11.3.3 Life cycle impact assessment 11.4 LCA analysis of the fuel mix power generation 11.4.1 System description and assumptions 11.4.2 Designing and investigation Energy analysis (first law) Biomass segment Solar segment Steam turbine segment 11.5 Emission factor and analysis 11.5.1 Alliance between renewable energy certificate and emission factor 11.5.2 Achieving carbon emissions subsidence using solar energy 11.5.3 Carbon emissions subsidence costing 11.5.4 Essential emission calculation systems for proposing a combined system 11.6 Global warming potential 11.6.1 Global temperature 11.6.2 Net heat sources Geothermal heat flow Thermal pollution Additional net heat sources 11.6.3 Earth\'s radiation balance Net long wave radiation 11.6.4 Global warming in large-scale thermal energy storage 11.6.5 Steady-state global warming 11.7 Energy and environmental impact 11.7.1 Principles of environmental impact 11.7.2 Ecological impact 11.7.3 Environmental impacts of solar thermal electricity 11.7.4 Energy and environmental impact analysis References Index A B C D E F G H I L M N O P R S T U V W Z Back Cover