دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Zezhou Sun
سری: Space Science and Technologies
ISBN (شابک) : 9789811547935, 9789811547942
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 630
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 مگابایت
در صورت تبدیل فایل کتاب Technologies for Deep Space Exploration به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فناوریهای اکتشافات عمیق در فضا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به خوانندگان بینش های ضروری در مورد طراحی سیستم برای کاوشگرهای فضای عمیق ارائه می دهد و جنبه های کلیدی مانند طراحی سیستم، طراحی مدار، مخابرات، GNC، کنترل حرارتی، نیروی محرکه، ترمز هوا و محموله علمی را شرح می دهد. هر فصل شامل اصول اولیه، تجزیه و تحلیل نیازمندیها، رویهها، معادلات و نمودارها، و همچنین مثالهای عملی است که به خوانندگان کمک میکند تا تحقیقات مربوط به هر فناوری و نگرانیهای اصلی را هنگام توسعه کاوشگرهای فضایی عمیق درک کنند. یک منبع مرجع عالی برای محققان و مهندسان علاقه مند به اکتشافات اعماق فضا، همچنین می تواند به عنوان یک کتاب درسی برای دانشجویان دانشگاه و موسسات مرتبط با هوافضا باشد.
This book offers readers essential insights into system design for deep space probes and describes key aspects such as system design, orbit design, telecommunication, GNC, thermal control, propulsion, aerobraking and scientific payload. Each chapter includes the basic principles, requirements analysis, procedures, equations and diagrams, as well as practical examples that will help readers to understand the research on each technology and the major concerns when it comes to developing deep space probes. An excellent reference resource for researchers and engineers interested in deep space exploration, it can also serve as a textbook for university students and those at institutes involved in aerospace.
Series Editor’s Preface Preface Acknowledgements Contents About the Author 1 Introduction 1.1 The Significance of Deep Space Exploration 1.2 Overview of Deep Space Exploration Development 1.2.1 Overview of International Deep Space Exploration Development 1.2.2 Overview of Deep Space Exploration Development in China 1.2.3 Development Trends of Deep Space Exploration 1.3 Future Development Requirements for Deep Space Exploration Technologies 1.4 Prospects References and Related Reading 2 Characteristics of Deep Space Environment and Corresponding Impact 2.1 Introduction 2.2 Geospace Environment 2.2.1 Main Geospace Environment Characteristics for Deep Space Probes 2.2.2 Impact of Geospace Environment on Deep Space Probes 2.3 Lunar Space Environment 2.3.1 General 2.3.2 Lunar Radiation Environment and Impacts 2.3.3 Lunar Atmosphere and the Impact 2.3.4 Lunar Soil/Lunar Dust and Impacts 2.4 Space Environment of Mars 2.4.1 Overview 2.4.2 Mars Radiation Environment and Its Impact 2.4.3 Impact of Mars Atmospheric Environment 2.4.4 Impact of Mars Dust Environment 2.4.5 Landforms on the Surface of Mars 2.5 Space Environment of Jupiter 2.5.1 Overview 2.5.2 Jupiter’s Strong Magnetic Field Environment 2.5.3 Strong Radiation Environment of Jupiter 2.5.4 Jupiter Plasma Environment 2.5.5 Jupiter Atmosphere 2.6 Space Environment of Venus 2.6.1 Overview 2.6.2 Magnetic Field of Venus 2.6.3 Venus Atmosphere 2.6.4 Venus Surface Topography 2.7 Other Interplanetary Space Environments 2.7.1 Interplanetary Environment 2.7.2 Asteroid Environment 2.7.3 Comet Environment 2.8 Outlook References and Related Reading 3 System Design Technology 3.1 Introduction 3.2 Overview of the System Design of Deep Space Probes 3.2.1 Characteristics of Deep Space Probe Missions 3.2.2 System Mission Analysis 3.2.3 Overall System Design Process 3.3 System Design of Orbiting Exploration Missions 3.3.1 Mission Analysis 3.3.2 Decomposition of Technical Specifications 3.3.3 Flight Procedure Design 3.3.4 Analysis of Key Technologies 3.3.5 Design Validation 3.4 System Design of Landing Exploration Missions 3.4.1 Mission Analysis 3.4.2 Decomposition of Technical Specifications 3.4.3 Flight Procedure Design 3.4.4 Analysis of Key Technologies 3.4.5 Design Validation 3.5 System Design of Rover Exploration Missions 3.5.1 Mission Analysis 3.5.2 Decomposition of Technical Specifications 3.5.3 Work Procedure Design 3.5.4 Analysis of Key Technologies 3.5.5 Design Validation 3.6 System Design of Sample Return Exploration Mission 3.6.1 Mission Analysis 3.6.2 Definition of Specifications 3.6.3 Flight Procedure Design 3.6.4 Analysis of Key Technologies 3.6.5 Design Validation 3.7 Prospects References and Related Reading 4 Technology of Orbit Design 4.1 Introduction 4.2 Classical Types of Orbits 4.2.1 Lunar Exploration Orbit 4.2.2 Planetary Exploration Orbit 4.2.3 Asteroid Exploration Orbit 4.2.4 Libration Point Exploration Orbit 4.3 Brief Introduction to Orbit Design Procedures 4.4 Design of Transfer Trajectories 4.4.1 Direct Transfer 4.4.2 Deep Space Maneuver 4.4.3 Gravity Assist 4.4.4 Low Thrust Transfer 4.5 Design of Mission Orbits 4.5.1 Planet Orbiting Missions 4.5.2 Missions to Lagrange Libration Points 4.5.3 Rendezvous and Docking 4.6 Design of Orbital Maneuver Strategy 4.7 Future Prospects References and Related Reading 5 Payload Technology 5.1 Introduction 5.2 Major Scientific Issues in Deep Space Exploration Research 5.2.1 Scientific Issues of Deep Space Exploration from a Systematic Perspective 5.2.2 Scientific Objectives and Payload Configuration for Lunar and Mars Exploration in China 5.3 Topography Acquisition Technology 5.3.1 Introduction 5.3.2 Stereo Image Acquisition Technology 5.3.3 Color CMOS Devices 5.3.4 Camera System Design 5.3.5 Automatic Exposure Technology 5.3.6 Calibration and Ground Verification Test 5.4 Elemental Component Identification Technology 5.4.1 Introduction 5.4.2 Principles of Elemental Composition Identification 5.4.3 Selection Strategy of Excitation Source 5.4.4 Sensor Selection and Design Techniques 5.4.5 System Design 5.4.6 Calibration and Ground Verification Test 5.5 Lunar-Based Astronomical Observation Technology 5.5.1 Introduction 5.5.2 Selection of Spectral Segments and Observation Sky Regions 5.5.3 Telescope Design 5.5.4 Stray Light Suppression 5.5.5 Calibration and Ground Verification Test 5.6 Prospects References and Related Reading 6 Guidance, Navigation and Control Technology 6.1 Introduction 6.2 Orbital Control Technology 6.2.1 Features of Deep Space Orbital Control 6.2.2 Large-Impulse Orbital Control Strategy 6.2.3 Precision Orbit Control 6.2.4 Design of Orbit Control System 6.3 Entry and Landing GNC Technology 6.3.1 Characteristics of Entry and Landing GNC Technology 6.3.2 Atmospheric Entry Control 6.3.3 Powered Descending Control 6.3.4 Obstacle Identification and Avoidance 6.3.5 Design of Entry and Landing GNC System 6.4 GNC Technology in Celestial Body Surface Roving 6.4.1 Features of Rover GNC 6.4.2 Environmental Perception 6.4.3 Position/Attitude Determination and Estimation 6.4.4 Path Planning 6.4.5 Motion Control 6.4.6 Design of GNC System for Celestial Body Surface Roving 6.5 Outlook References and Related Reading 7 Atmospheric Braking Technology 7.1 Introduction 7.2 Aerodynamics and Aerodynamic Analysis 7.2.1 Basic Concepts of Aerodynamics 7.2.2 A Study on Aerodynamic Problems in Atmospheric Entry 7.2.3 Atmospheric Entry Aerodynamic Analysis and Prediction 7.3 Aerodynamic Thermal Protection Design 7.3.1 Basic Theory of Thermal Protection Technology 7.3.2 Aerodynamic Thermal Protection Technology 7.3.3 Aerodynamic Thermal Protection Design 7.4 Atmospheric Entry Guidance and Control Design 7.4.1 Atmospheric Entry Guidance and Control Technology 7.4.2 Atmospheric Entry Trajectory Design 7.4.3 Atmospheric Entry Guidance and Control Design 7.5 Parachute Deceleration System Design 7.5.1 Overview of Parachute Deceleration Technology 7.5.2 Atmospheric Entry Parachute Technology 7.5.3 Deep Space Probe-Parachute Design 7.5.4 Simulation Analysis of Parachute Design 7.6 Prospects References and Related Reading 8 TT&C and Communication Technology 8.1 Introduction 8.2 Deep Space Radio Measurement Technology 8.2.1 Deep Space Ranging 8.2.2 Deep Space Velocity Measurement 8.2.3 Deep Space Angle Measurement 8.3 Deep Space RF System Technology 8.3.1 Radio Frequency Modulation 8.3.2 High-Sensitivity Reception 8.3.3 High EIRP Emission 8.3.4 Laser Communication 8.4 Deep Space Telemetry and Telecommand and Data Communication Technology 8.4.1 Data Format 8.4.2 Channel Encoding 8.5 Design of Deep Space TT&C and Communication System 8.5.1 Mission Analysis 8.5.2 System Scheme 8.5.3 Simulation and Verification 8.6 Prospects References and Related Reading 9 Thermal Control Technology 9.1 Introduction 9.2 Characteristics of Thermal Environment in Deep Space 9.2.1 Mercury’s Thermal Environment 9.2.2 Venus’s Thermal Environment 9.2.3 Lunar Thermal Environment 9.2.4 Mars Thermal Environment 9.2.5 Thermal Environment of Exoplanets 9.3 Key Technologies of Thermal Control S 9.3.1 Gravity-Assisted Two-Phase Fluid Loop Technology 9.3.2 Water Sublimator Technology 9.3.3 Variable Conductivity Heat Pipe Technology 9.3.4 Aerogel Technology 9.4 Thermal Control System Design for Deep Space Probe 9.4.1 Introduction of Typical Thermal Control Systems for Deep Space Probes 9.4.2 Basic Principles for Thermal Design 9.4.3 Thermal Design 9.4.4 Thermal Analysis 9.4.5 Ground Simulation Test 9.5 Prospect References and Related Reading 10 Propulsion Technology 10.1 Introduction 10.2 Propulsion System Classification 10.2.1 Cold Gas Propulsion 10.2.2 Chemical Propulsion 10.2.3 Electric Propulsion 10.2.4 New Concept Propulsions 10.3 Design and Verification of Deep Space Exploration Propulsion System 10.3.1 Mission Analysis 10.3.2 Propulsion System Selection 10.3.3 Scheme Design 10.4 Outlook References and Related Reading 11 Power Supply Technology 11.1 Introduction 11.2 Solar Cell Technology 11.2.1 Spectral Matching 11.2.2 Dustproof Techniques 11.3 MPPT Technology 11.3.1 Basic Principles of MPPT 11.3.2 MPPT Implementation 11.3.3 MPPT Topology 11.4 Lithium-Ion Battery Technology 11.4.1 Overview of Lithium-Ion Batteries 11.4.2 Low-Temperature Resistance Technology for Lithium-Ion Cells 11.5 Space Nuclear Power 11.5.1 Overview of Space Nuclear Power 11.5.2 RTG Technology 11.5.3 Nuclear Reactor Power Supply 11.6 Deep Space Power System Design 11.6.1 Mission Analysis 11.6.2 Solar Array Design 11.6.3 Battery Pack Design 11.6.4 Power Controller Design 11.6.5 Example of Power System Design 11.7 Prospects References and Related Reading 12 Autonomous Management and Tele-operation Technology 12.1 Introduction 12.2 Autonomous Management Technology for Deep Space Probes 12.2.1 Development of Autonomy Capabilities 12.2.2 Mobile Intelligent Agent 12.2.3 Mars Mobile Intelligent Agent 12.2.4 Autonomous Management Implementation Framework of Mars Rovers 12.2.5 Mars Rover Autonomous Mission Planning 12.3 Tele-operation Technology of Rover 12.3.1 Tele-operation in Space Environment 12.3.2 Planetary Surface Roving Tele-operation 12.3.3 Key Technology for Rover Tele-operation System 12.3.4 Tele-operation System 12.4 Prospects for Technology Development References and Related Reading 13 Mechanism Technology 13.1 Introduction 13.2 Landing Gear System 13.2.1 Functions and Composition Characteristics of Landing Gear System 13.2.2 Design and Verification of Landing Gear System 13.3 Rover Transfer and Release System 13.3.1 Functions and Composition Characteristics of Rover Transfer and Release System 13.3.2 Design and Verification of Rover Transfer and Release System 13.4 Rover Mobility System Mobility System 13.4.1 Functions and Composition Characteristics of Rover Mobility System 13.4.2 Design and Verification of Rover Mobility System 13.5 Sampling Mechanism 13.5.1 Functions and Composition Characteristics of Sampling Mechanism 13.5.2 Design and Verification of Sampling Mechanism 13.6 Outlook References and Related Reading 14 Ground Test Verification Technology 14.1 Introduction 14.2 Technological Development Status 14.2.1 Aerodynamic Deceleration Test Technology 14.2.2 Test Technology for Dynamic Deceleration 14.2.3 Verification Technology of Soft-Landing Process 14.2.4 Validation Technology for Takeoff Process 14.3 Demand Analysis 14.3.1 Principles of Test Planning 14.3.2 Test Requirement Verification 14.4 Test Verification Technology 14.4.1 Aerodynamic Deceleration Test Technology 14.4.2 Verification Technology for Powered Deceleration, Soft Landing and Takeoff 14.5 Outlook References and Related Reading