ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Technologies for Deep Space Exploration

دانلود کتاب فناوریهای اکتشافات عمیق در فضا

Technologies for Deep Space Exploration

مشخصات کتاب

Technologies for Deep Space Exploration

ویرایش: 1 
نویسندگان:   
سری: Space Science and Technologies 
ISBN (شابک) : 9789811547935, 9789811547942 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: 630 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 مگابایت 

قیمت کتاب (تومان) : 47,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Technologies for Deep Space Exploration به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فناوریهای اکتشافات عمیق در فضا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فناوریهای اکتشافات عمیق در فضا

این کتاب به خوانندگان بینش های ضروری در مورد طراحی سیستم برای کاوشگرهای فضای عمیق ارائه می دهد و جنبه های کلیدی مانند طراحی سیستم، طراحی مدار، مخابرات، GNC، کنترل حرارتی، نیروی محرکه، ترمز هوا و محموله علمی را شرح می دهد. هر فصل شامل اصول اولیه، تجزیه و تحلیل نیازمندی‌ها، رویه‌ها، معادلات و نمودارها، و همچنین مثال‌های عملی است که به خوانندگان کمک می‌کند تا تحقیقات مربوط به هر فناوری و نگرانی‌های اصلی را هنگام توسعه کاوشگرهای فضایی عمیق درک کنند. یک منبع مرجع عالی برای محققان و مهندسان علاقه مند به اکتشافات اعماق فضا، همچنین می تواند به عنوان یک کتاب درسی برای دانشجویان دانشگاه و موسسات مرتبط با هوافضا باشد.


توضیحاتی درمورد کتاب به خارجی

This book offers readers essential insights into system design for deep space probes and describes key aspects such as system design, orbit design, telecommunication, GNC, thermal control, propulsion, aerobraking and scientific payload. Each chapter includes the basic principles, requirements analysis, procedures, equations and diagrams, as well as practical examples that will help readers to understand the research on each technology and the major concerns when it comes to developing deep space probes. An excellent reference resource for researchers and engineers interested in deep space exploration, it can also serve as a textbook for university students and those at institutes involved in aerospace.



فهرست مطالب

Series Editor’s Preface
Preface
Acknowledgements
Contents
About the Author
1 Introduction
	1.1 The Significance of Deep Space Exploration
	1.2 Overview of Deep Space Exploration Development
		1.2.1 Overview of International Deep Space Exploration Development
		1.2.2 Overview of Deep Space Exploration Development in China
		1.2.3 Development Trends of Deep Space Exploration
	1.3 Future Development Requirements for Deep Space Exploration Technologies
	1.4 Prospects
	References and Related Reading
2 Characteristics of Deep Space Environment and Corresponding Impact
	2.1 Introduction
	2.2 Geospace Environment
		2.2.1 Main Geospace Environment Characteristics for Deep Space Probes
		2.2.2 Impact of Geospace Environment on Deep Space Probes
	2.3 Lunar Space Environment
		2.3.1 General
		2.3.2 Lunar Radiation Environment and Impacts
		2.3.3 Lunar Atmosphere and the Impact
		2.3.4 Lunar Soil/Lunar Dust and Impacts
	2.4 Space Environment of Mars
		2.4.1 Overview
		2.4.2 Mars Radiation Environment and Its Impact
		2.4.3 Impact of Mars Atmospheric Environment
		2.4.4 Impact of Mars Dust Environment
		2.4.5 Landforms on the Surface of Mars
	2.5 Space Environment of Jupiter
		2.5.1 Overview
		2.5.2 Jupiter’s Strong Magnetic Field Environment
		2.5.3 Strong Radiation Environment of Jupiter
		2.5.4 Jupiter Plasma Environment
		2.5.5 Jupiter Atmosphere
	2.6 Space Environment of Venus
		2.6.1 Overview
		2.6.2 Magnetic Field of Venus
		2.6.3 Venus Atmosphere
		2.6.4 Venus Surface Topography
	2.7 Other Interplanetary Space Environments
		2.7.1 Interplanetary Environment
		2.7.2 Asteroid Environment
		2.7.3 Comet Environment
	2.8 Outlook
	References and Related Reading
3 System Design Technology
	3.1 Introduction
	3.2 Overview of the System Design of Deep Space Probes
		3.2.1 Characteristics of Deep Space Probe Missions
		3.2.2 System Mission Analysis
		3.2.3 Overall System Design Process
	3.3 System Design of Orbiting Exploration Missions
		3.3.1 Mission Analysis
		3.3.2 Decomposition of Technical Specifications
		3.3.3 Flight Procedure Design
		3.3.4 Analysis of Key Technologies
		3.3.5 Design Validation
	3.4 System Design of Landing Exploration Missions
		3.4.1 Mission Analysis
		3.4.2 Decomposition of Technical Specifications
		3.4.3 Flight Procedure Design
		3.4.4 Analysis of Key Technologies
		3.4.5 Design Validation
	3.5 System Design of Rover Exploration Missions
		3.5.1 Mission Analysis
		3.5.2 Decomposition of Technical Specifications
		3.5.3 Work Procedure Design
		3.5.4 Analysis of Key Technologies
		3.5.5 Design Validation
	3.6 System Design of Sample Return Exploration Mission
		3.6.1 Mission Analysis
		3.6.2 Definition of Specifications
		3.6.3 Flight Procedure Design
		3.6.4 Analysis of Key Technologies
		3.6.5 Design Validation
	3.7 Prospects
	References and Related Reading
4 Technology of Orbit Design
	4.1 Introduction
	4.2 Classical Types of Orbits
		4.2.1 Lunar Exploration Orbit
		4.2.2 Planetary Exploration Orbit
		4.2.3 Asteroid Exploration Orbit
		4.2.4 Libration Point Exploration Orbit
	4.3 Brief Introduction to Orbit Design Procedures
	4.4 Design of Transfer Trajectories
		4.4.1 Direct Transfer
		4.4.2 Deep Space Maneuver
		4.4.3 Gravity Assist
		4.4.4 Low Thrust Transfer
	4.5 Design of Mission Orbits
		4.5.1 Planet Orbiting Missions
		4.5.2 Missions to Lagrange Libration Points
		4.5.3 Rendezvous and Docking
	4.6 Design of Orbital Maneuver Strategy
	4.7 Future Prospects
	References and Related Reading
5 Payload Technology
	5.1 Introduction
	5.2 Major Scientific Issues in Deep Space Exploration Research
		5.2.1 Scientific Issues of Deep Space Exploration from a Systematic Perspective
		5.2.2 Scientific Objectives and Payload Configuration for Lunar and Mars Exploration in China
	5.3 Topography Acquisition Technology
		5.3.1 Introduction
		5.3.2 Stereo Image Acquisition Technology
		5.3.3 Color CMOS Devices
		5.3.4 Camera System Design
		5.3.5 Automatic Exposure Technology
		5.3.6 Calibration and Ground Verification Test
	5.4 Elemental Component Identification Technology
		5.4.1 Introduction
		5.4.2 Principles of Elemental Composition Identification
		5.4.3 Selection Strategy of Excitation Source
		5.4.4 Sensor Selection and Design Techniques
		5.4.5 System Design
		5.4.6 Calibration and Ground Verification Test
	5.5 Lunar-Based Astronomical Observation Technology
		5.5.1 Introduction
		5.5.2 Selection of Spectral Segments and Observation Sky Regions
		5.5.3 Telescope Design
		5.5.4 Stray Light Suppression
		5.5.5 Calibration and Ground Verification Test
	5.6 Prospects
	References and Related Reading
6 Guidance, Navigation and Control Technology
	6.1 Introduction
	6.2 Orbital Control Technology
		6.2.1 Features of Deep Space Orbital Control
		6.2.2 Large-Impulse Orbital Control Strategy
		6.2.3 Precision Orbit Control
		6.2.4 Design of Orbit Control System
	6.3 Entry and Landing GNC Technology
		6.3.1 Characteristics of Entry and Landing GNC Technology
		6.3.2 Atmospheric Entry Control
		6.3.3 Powered Descending Control
		6.3.4 Obstacle Identification and Avoidance
		6.3.5 Design of Entry and Landing GNC System
	6.4 GNC Technology in Celestial Body Surface Roving
		6.4.1 Features of Rover GNC
		6.4.2 Environmental Perception
		6.4.3 Position/Attitude Determination and Estimation
		6.4.4 Path Planning
		6.4.5 Motion Control
		6.4.6 Design of GNC System for Celestial Body Surface Roving
	6.5 Outlook
	References and Related Reading
7 Atmospheric Braking Technology
	7.1 Introduction
	7.2 Aerodynamics and Aerodynamic Analysis
		7.2.1 Basic Concepts of Aerodynamics
		7.2.2 A Study on Aerodynamic Problems in Atmospheric Entry
		7.2.3 Atmospheric Entry Aerodynamic Analysis and Prediction
	7.3 Aerodynamic Thermal Protection Design
		7.3.1 Basic Theory of Thermal Protection Technology
		7.3.2 Aerodynamic Thermal Protection Technology
		7.3.3 Aerodynamic Thermal Protection Design
	7.4 Atmospheric Entry Guidance and Control Design
		7.4.1 Atmospheric Entry Guidance and Control Technology
		7.4.2 Atmospheric Entry Trajectory Design
		7.4.3 Atmospheric Entry Guidance and Control Design
	7.5 Parachute Deceleration System Design
		7.5.1 Overview of Parachute Deceleration Technology
		7.5.2 Atmospheric Entry Parachute Technology
		7.5.3 Deep Space Probe-Parachute Design
		7.5.4 Simulation Analysis of Parachute Design
	7.6 Prospects
	References and Related Reading
8 TT&C and Communication Technology
	8.1 Introduction
	8.2 Deep Space Radio Measurement Technology
		8.2.1 Deep Space Ranging
		8.2.2 Deep Space Velocity Measurement
		8.2.3 Deep Space Angle Measurement
	8.3 Deep Space RF System Technology
		8.3.1 Radio Frequency Modulation
		8.3.2 High-Sensitivity Reception
		8.3.3 High EIRP Emission
		8.3.4 Laser Communication
	8.4 Deep Space Telemetry and Telecommand and Data Communication Technology
		8.4.1 Data Format
		8.4.2 Channel Encoding
	8.5 Design of Deep Space TT&C and Communication System
		8.5.1 Mission Analysis
		8.5.2 System Scheme
		8.5.3 Simulation and Verification
	8.6 Prospects
	References and Related Reading
9 Thermal Control Technology
	9.1 Introduction
	9.2 Characteristics of Thermal Environment in Deep Space
		9.2.1 Mercury’s Thermal Environment
		9.2.2 Venus’s Thermal Environment
		9.2.3 Lunar Thermal Environment
		9.2.4 Mars Thermal Environment
		9.2.5 Thermal Environment of Exoplanets
	9.3 Key Technologies of Thermal Control S
		9.3.1 Gravity-Assisted Two-Phase Fluid Loop Technology
		9.3.2 Water Sublimator Technology
		9.3.3 Variable Conductivity Heat Pipe Technology
		9.3.4 Aerogel Technology
	9.4 Thermal Control System Design for Deep Space Probe
		9.4.1 Introduction of Typical Thermal Control Systems for Deep Space Probes
		9.4.2 Basic Principles for Thermal Design
		9.4.3 Thermal Design
		9.4.4 Thermal Analysis
		9.4.5 Ground Simulation Test
	9.5 Prospect
	References and Related Reading
10 Propulsion Technology
	10.1 Introduction
	10.2 Propulsion System Classification
		10.2.1 Cold Gas Propulsion
		10.2.2 Chemical Propulsion
		10.2.3 Electric Propulsion
		10.2.4 New Concept Propulsions
	10.3 Design and Verification of Deep Space Exploration Propulsion System
		10.3.1 Mission Analysis
		10.3.2 Propulsion System Selection
		10.3.3 Scheme Design
	10.4 Outlook
	References and Related Reading
11 Power Supply Technology
	11.1 Introduction
	11.2 Solar Cell Technology
		11.2.1 Spectral Matching
		11.2.2 Dustproof Techniques
	11.3 MPPT Technology
		11.3.1 Basic Principles of MPPT
		11.3.2 MPPT Implementation
		11.3.3 MPPT Topology
	11.4 Lithium-Ion Battery Technology
		11.4.1 Overview of Lithium-Ion Batteries
		11.4.2 Low-Temperature Resistance Technology for Lithium-Ion Cells
	11.5 Space Nuclear Power
		11.5.1 Overview of Space Nuclear Power
		11.5.2 RTG Technology
		11.5.3 Nuclear Reactor Power Supply
	11.6 Deep Space Power System Design
		11.6.1 Mission Analysis
		11.6.2 Solar Array Design
		11.6.3 Battery Pack Design
		11.6.4 Power Controller Design
		11.6.5 Example of Power System Design
	11.7 Prospects
	References and Related Reading
12 Autonomous Management and Tele-operation Technology
	12.1 Introduction
	12.2 Autonomous Management Technology for Deep Space Probes
		12.2.1 Development of Autonomy Capabilities
		12.2.2 Mobile Intelligent Agent
		12.2.3 Mars Mobile Intelligent Agent
		12.2.4 Autonomous Management Implementation Framework of Mars Rovers
		12.2.5 Mars Rover Autonomous Mission Planning
	12.3 Tele-operation Technology of Rover
		12.3.1 Tele-operation in Space Environment
		12.3.2 Planetary Surface Roving Tele-operation
		12.3.3 Key Technology for Rover Tele-operation System
		12.3.4 Tele-operation System
	12.4 Prospects for Technology Development
	References and Related Reading
13 Mechanism Technology
	13.1 Introduction
	13.2 Landing Gear System
		13.2.1 Functions and Composition Characteristics of Landing Gear System
		13.2.2 Design and Verification of Landing Gear System
	13.3 Rover Transfer and Release System
		13.3.1 Functions and Composition Characteristics of Rover Transfer and Release System
		13.3.2 Design and Verification of Rover Transfer and Release System
	13.4 Rover Mobility System Mobility System
		13.4.1 Functions and Composition Characteristics of Rover Mobility System
		13.4.2 Design and Verification of Rover Mobility System
	13.5 Sampling Mechanism
		13.5.1 Functions and Composition Characteristics of Sampling Mechanism
		13.5.2 Design and Verification of Sampling Mechanism
	13.6 Outlook
	References and Related Reading
14 Ground Test Verification Technology
	14.1 Introduction
	14.2 Technological Development Status
		14.2.1 Aerodynamic Deceleration Test Technology
		14.2.2 Test Technology for Dynamic Deceleration
		14.2.3 Verification Technology of Soft-Landing Process
		14.2.4 Validation Technology for Takeoff Process
	14.3 Demand Analysis
		14.3.1 Principles of Test Planning
		14.3.2 Test Requirement Verification
	14.4 Test Verification Technology
		14.4.1 Aerodynamic Deceleration Test Technology
		14.4.2 Verification Technology for Powered Deceleration, Soft Landing and Takeoff
	14.5 Outlook
	References and Related Reading




نظرات کاربران