دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Martin Junginger (editor)
سری:
ISBN (شابک) : 012818762X, 9780128187623
ناشر: Academic Press
سال نشر: 2019
تعداد صفحات: 325
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 مگابایت
در صورت تبدیل فایل کتاب Technological Learning in the Transition to a Low-Carbon Energy System: Conceptual Issues, Empirical Findings, and Use, in Energy Modeling به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری تکنولوژیک در گذار به یک سیستم انرژی کم کربن: مسائل مفهومی، یافتههای تجربی و استفاده، در مدلسازی انرژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
یادگیری فناوری در انتقال به سیستم انرژی کم کربن: مسائل مفهومی، یافتههای تجربی و استفاده در مدلسازی انرژی روندها و محرکهای کلیدی فناوریهای انرژی به کار رفته در انتقال انرژی را کمیت میدهد. از ابزار منحنی تجربه استفاده میکند تا نشان دهد چگونه کاهش هزینههای آینده و استقرار تجمعی این فناوریها ممکن است ترکیب آینده بخشهای برق، گرما و حملونقل را شکل دهد. این کتاب منحنیهای تجربه را با جزئیات بررسی میکند، از جمله مشکلات احتمالی، و نشان میدهد که چگونه میتوان «کیفیت» منحنیهای تجربه را کمیت کرد. نحوه پیادهسازی این ابزار در مدلها را مورد بحث قرار میدهد و به چالشها و راهحلهای روششناختی میپردازد.
برای هر فناوری، روندهای فعلی بازار، کاهش هزینههای گذشته و محرکهای اساسی، منحنیهای تجربه موجود، و چشماندازهای آینده در نظر گرفته میشوند. مدلهای بخش برق، گرما و حملونقل به طور عمیق مورد بررسی قرار میگیرند تا نشان دهند که چگونه استقرار آینده این فناوریها - و هزینههای مرتبط با آنها - تعیین میکند که آیا میتوان به اهداف جاهطلبانه اقلیمی کربنزدایی - و با چه هزینههایی دست یافت. این کتاب همچنین به درسها و توصیههایی برای سیاستگذاران، صنعت و دانشگاهیان میپردازد، از جمله فنآوریهای کلیدی که نیاز به حمایت بیشتر سیاستی دارند، و اینکه چه شکافهای دانش علمی برای تحقیقات آینده باقی میماند.
Technological Learning in the Transition to a Low-Carbon Energy System: Conceptual Issues, Empirical Findings, and Use in Energy Modeling quantifies key trends and drivers of energy technologies deployed in the energy transition. It uses the experience curve tool to show how future cost reductions and cumulative deployment of these technologies may shape the future mix of the electricity, heat and transport sectors. The book explores experience curves in detail, including possible pitfalls, and demonstrates how to quantify the 'quality' of experience curves. It discusses how this tool is implemented in models and addresses methodological challenges and solutions.
For each technology, current market trends, past cost reductions and underlying drivers, available experience curves, and future prospects are considered. Electricity, heat and transport sector models are explored in-depth to show how the future deployment of these technologies-and their associated costs-determine whether ambitious decarbonization climate targets can be reached - and at what costs. The book also addresses lessons and recommendations for policymakers, industry and academics, including key technologies requiring further policy support, and what scientific knowledge gaps remain for future research.
Cover Technological Learning in the Transition to a Low-Carbon Energy System: Conceptual Issues, Empirical Findings, and Use, in Energy Modeling Copyright Contents Part I Introduction and methods1 Part II Case studies63 Part III Application of experience curves in modeling257 Part IV Final words307 List of contributors Part I: Introduction and methods 1 Introduction 1.1 Introduction 1.1.1 Background and rationale 1.1.2 Objectives and structure 2 The experience curve: concept, history, methods, and issues 2.1 Introduction 2.2 Learning and experience curves 2.2.1 The single factor experience curve 2.2.2 Two and multifactor experience curves 2.3 Empirical data collection for experience curves 2.3.1 Cost versus price data 2.3.2 Functional unit 2.3.3 Data harmonization 2.3.4 Common issues with data collection 2.4 Estimation of experience curve parameters 2.4.1 Regression method: linear or nonlinear 2.4.2 Determining fit accuracy and experience curve parameter errors 2.5 Applications of experience curves 2.5.1 Direct applications of experience curves for policy makers 2.5.2 Indirect application of experience curves for policy: energy and integrated modeling 2.6 Main issues and drawbacks of experience curves 2.6.1 Nonconstant learning rates and learning rate uncertainty 2.6.2 Technology systems and components 2.6.3 No explanation for cost reductions and causality 2.6.4 Radical innovations 2.6.5 Technology quality References 3 Implementation of experience curves in energy-system models 3.1 Introduction 3.2 Energy modeling approaches: bottom-up versus top down 3.2.1 Integrated assessment models 3.3 Implementation of experience curves in energy models 3.3.1 Technical discussion on model implementation of experience curves 3.4 Practical implications in different types of models 3.4.1 Endogenous technological learning 3.4.2 Exogenous technological learning 3.5 Issues, caveats, and drawbacks of experience-curve implementation in energy models 3.5.1 Geographical scope of model 3.5.2 Technological learning in an energy modeling system 3.5.3 Technical issues 3.5.4 Technology deployment constrained by modeling scenario and policy targets 3.5.5 Other issues 3.6 Concluding remarks References 4 Application of experience curves and learning to other fields 4.1 Introduction 4.2 Energy experience curves 4.2.1 Experience curves for energy efficiency in industrial processes 4.2.2 Experience curves for energy efficiency in energy demand technologies 4.3 Experience curves for environmental impacts and life cycle assessment 4.4 Social learning 4.4.1 Social learning in the transport sector 4.4.2 Modeling risk premiums and social and technological learning 4.4.2.1 Model setup 4.4.2.2 Scenario framework 4.4.3 Model results 4.4.3.1 Technological learning scenarios 4.4.3.2 Social learning and technological learning scenarios 4.5 Conclusion References Part II: Case studies 5 Photovoltaic solar energy 5.1 Introduction 5.2 Methodological issues and data availability 5.3 Results 5.3.1 State-of-the-art experience curves for photovoltaic modules, systems, and balance of system components 5.3.2 Multifactor learning curves for silicon photovoltaic module prices 5.3.3 Analysis and quantification of observed cost reductions 5.4 Future outlook for prices of photovoltaic modules, systems, and balance of system components 5.5 Conclusions and recommendations for science, policy, and business References 6 Onshore wind energy 6.1 Introduction 6.2 Market development 6.3 Trends in capital expenditures and levelized cost of energy 6.4 Experience curves for onshore wind energy 6.5 Data collection and methodological issues 6.6 Discussion, conclusion, and future outlook References Further reading 7 Offshore wind energy 7.1 Introduction 7.2 Methodological issues and data availability 7.3 Results 7.3.1 Experience curve analyses 7.3.2 Main drivers behind cost and price changes 7.3.3 Future outlook 7.3.4 Conclusions and recommendations for science, policy, and business References 8 Grid-scale energy storage 8.1 Introduction 8.2 Methodological issues and data availability for technological learning 8.3 Results 8.3.1 One-factor learning curves 8.3.2 Multifactor learning curves 8.4 Future outlook 8.5 Conclusions and recommendations for science, policy, and business References Further reading 9 Electric vehicles 9.1 Introduction 9.1.1 Description of technology 9.1.2 Market development 9.2 Methodological issues and data availability 9.2.1 Data collection and methodological issues 9.3 Results 9.4 Future outlook 9.5 Conclusions and recommendations for science, policy, and business References Further reading 10 Power to gas (H2): alkaline electrolysis 10.1 Introduction 10.1.1 Global hydrogen capacity 10.2 Data availability and methodological issues 10.3 Results 10.3.1 Experience curve 10.3.2 Drivers 10.4 Future developments 10.4.1 Current and future markets 10.4.2 Future drivers in CAPEX reduction 10.4.3 Future CAPEX of alkaline electrolysis systems 10.5 Summary and conclusion Acknowledgments References Further reading 11 Heating and cooling in the built environment 11.1 Introduction 11.2 Technology description of heat pumps 11.3 Technology description of condensing boilers 11.4 Market development of heating technologies in the EU 11.4.1 Current market developments of gas boilers 11.4.2 Current market developments of heat pumps 11.5 Current market developments of gas boilers and heat pumps—a case study for The Netherlands 11.6 Current market developments of fossil heating systems and heat pumps—a case study for Switzerland 11.7 Methodological issues and data availability 11.7.1 Methodological issues for heat pumps 11.7.1.1 Data availability and data collection 11.7.1.2 Data collection for heat pumps 11.7.2 Methodological issues and data collection for gas boilers 11.8 Techno-economic progress and experience curves 11.8.1 Decreasing costs (prices) per unit for the case of heat pumps 11.8.2 Decreasing costs (prices) per unit for the case of heat pump borehole heat exchangers and heat pump modules 11.8.2.1 Improved energy efficiency in the case of heat pumps 11.8.3 Decreasing costs (price) per unit in the case of gas boilers 11.9 Future market trends of heat pumps in The Netherlands and Switzerland 11.10 Summary and conclusions References Further reading 12 Concentrating solar power 12.1 Introduction 12.2 Methodological issues and data availability 12.3 Results 12.3.1 Time trend analyses 12.3.2 Learning curve analyses 12.3.3 Main drivers of the price decline 12.4 Future outlook 12.5 Conclusions and recommendations for science, policy, and business Acknowledgments References Further reading 13 Light-emitting diode lighting products 13.1 Light-emitting diode lighting technology in the 2010s 13.2 Methodological issues and data availability 13.2.1 Price data for light-emitting diode lighting products 13.2.2 Approach to inferring cumulative production 13.2.3 Summary of data and methodological issues 13.3 Results 13.3.1 Time-trend analyses 13.3.2 Learning-curve analyses 13.3.3 Main drivers of the price decline 13.4 Future outlook 13.4.1 Product-level price projections 13.4.2 Component-based manufacturing cost projections 13.4.3 Discussion 13.5 Conclusions and recommendations for science, policy, and business Acknowledgments References Part III: Application of experience curves in modeling 14 Experience curves in energy models—lessons learned from the REFLEX project 14.1 Technological progress and experience curves in energy system modeling 14.2 Description of applied energy models with implemented experience curves 14.2.1 Key new and incumbent technologies 14.2.1.1 Electricity generation technologies 14.2.1.2 Electricity storages 14.2.1.3 Energy demand technologies 14.2.2 Overview of energy markets involved 14.3 Model results with exogenous technological learning 14.3.1 Developments of novel technologies and concurrent price reductions 14.3.2 Effect of experience curve implementation on market developments including uncertainty analysis of experience curve ... 14.3.2.1 Uncertainty of experience curve parameters in FORECAST 14.3.2.2 Uncertainty of experience curve parameters in PowerACE 14.3.2.3 Uncertainty of experience curve parameters in ELTRAMOD Sensitivity of −50% of specific investment costs for batteries Sensitivity of no technological learning for carbon capture and storage technologies 14.4 Lessons learned and conclusion References 15 Global electric car market deployment considering endogenous battery price development 15.1 Introduction 15.1.1 Motivation 15.1.2 Status quo of electric vehicle market diffusion studies 15.1.3 System dynamics transport modeling 15.2 Model description 15.2.1 ASTRA 15.2.1.1 Overview 15.2.1.2 Modular structure of the ASTRA model 15.2.1.3 Vehicle fleet and technology diffusion in ASTRA 15.2.2 TE3 15.2.2.1 Overview 15.2.2.2 Modular structure of the TE3 model 15.2.2.3 Vehicle fleet and technology diffusion in TE3 15.2.3 Comparison of the two models 15.3 Experience curves and model coupling 15.3.1 Implementation of experience curves 15.3.2 Description of the interface and feedback loops between models 15.4 Scenario and sensitivity analyses 15.5 Results and discussion 15.5.1 Results of the Reference scenario 15.5.2 Results of the sensitivity analyses 15.5.3 Effects of global learning via model coupling 15.5.4 Comparison with other studies and limitations 15.6 Conclusion References Part IV: Final words 16 Synthesis, conclusions, and recommendations 16.1 Introduction 16.2 Methodological considerations 16.2.1 Cost of capacity versus LCOE and other metrics 16.2.2 Component-based assessments 16.2.3 Two- and multifactor experience curves 16.2.4 Environmental experience curves and social learning 16.2.5 Application in energy and climate models 16.2.6 Data availability and future data collection 16.3 Technology outlook till 2030 16.4 Final conclusions and recommendations Index Back Cover