دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Lietai Yang (editor)
سری:
ISBN (شابک) : 0081030037, 9780081030035
ناشر: Woodhead Publishing
سال نشر: 2020
تعداد صفحات: 590
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 مگابایت
در صورت تبدیل فایل کتاب Techniques for Corrosion Monitoring (Woodhead Publishing Series in Metals and Surface Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تکنیکهای پایش خوردگی (مجموعه انتشارات Woodhead در مهندسی فلزات و سطوح) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تکنیکهای پایش خوردگی، ویرایش دوم، تکنیکهای الکتروشیمیایی برای پایش خوردگی، مانند تکنیکهای پلاریزاسیون، روشهای پتانسیومتری، نویز الکتروشیمیایی و آنالیزهای هارمونیک، حسگرهای گالوانیکی، جریان دیفرانسیل از طریق سلولها و سیستمهای چند الکترودی را بررسی میکند. بخشهای دیگر روشهای فیزیکی یا شیمیایی پایش خوردگی، از جمله تکنیکهای وزنسنجی، ردیاب رادیواکتیو، نفوذ هیدروژن، مقاومت الکتریکی و تکنیکهای قفس چرخشی را تحلیل میکنند و پایش خوردگی را در محیطهای خاص مانند سیستمهای میکروبی، بتن و خاک، و پایش از راه دور و پیشبینیهای مدل بررسی میکنند. . آخرین گروه از فصلهای مطالعات موردی که روشهایی را پوشش میدهد که از طریق آن میتوان پایش خوردگی را در سیستمهای اگزوز موتور، سیستمهای آب خنککننده و موارد دیگر اعمال کرد.
با ویراستار برجسته و تیم بینالمللی از همکاران، این کتاب یک کتاب ارزشمند است. راهنمای مرجع برای مهندسین و پرسنل علمی و فنی که با خوردگی در زمینه هایی مانند مهندسی خودرو، تولید برق، تامین کنندگان آب و صنعت پتروشیمی سروکار دارند.
Techniques for Corrosion Monitoring, Second Edition, reviews electrochemical techniques for corrosion monitoring, such as polarization techniques, potentiometric methods, electrochemical noise and harmonic analyses, galvanic sensors, differential flow through cells and multielectrode systems. Other sections analyze the physical or chemical methods of corrosion monitoring, including gravimetric, radioactive tracer, hydrogen permeation, electrical resistance and rotating cage techniques, and examine corrosion monitoring in special environments such as microbial systems, concrete and soil, and remote monitoring and model predictions. A final group of chapters case studies covering ways in which corrosion monitoring can be applied to engine exhaust systems, cooling water systems, and more.
With its distinguished editor and international team of contributors, this book is a valuable reference guide for engineers and scientific and technical personnel who deal with corrosion in such areas as automotive engineering, power generation, water suppliers and the petrochemical industry.
Front Matter Copyright Contributors Introduction General Corrosion cost Corrosion monitoring and its importance in corrosion prevention and control Organization of the book References Corrosion fundamentals and characterization techniques Introduction General corrosion Passivity and localized corrosion Galvanic corrosion Pitting corrosion Crevice corrosion Dealloying Intergranular corrosion Microbially influenced corrosion Flow-assisted corrosion and erosion corrosion Stress corrosion cracking Corrosion fatigue Hydrogen embrittlement Characterization techniques Surface characterization Corrosion products characterization References Electrochemical polarization techniques for corrosion monitoring Introduction Electrochemical nature of corrosion Energy-potential-current relationship Energy Potential Current Electrochemical polarization techniques for determining corrosion rates Polarization resistance method Tafel extrapolation method Cyclic potentiodynamic polarization Cyclic galvano-staircase polarization Potentiostatic polarization Galvanic corrosion rate Conversion of Icorr into corrosion rate Measurement of corrosion rate by polarization methods in the laboratory Working electrode Counter electrode Reference electrode Electrolyte Potentiostat Monitoring of corrosion rate by polarization methods in the field General limitations of polarization methods of determining corrosion rate Solution resistance Scan rate Electrode-bridging Presence of oxidation-reduction species Variation of corrosion potential Diffusion-controlled condition General corrosion only Applications of polarization methods in the field Future trends Further information References Electrochemical polarization technique based on the nonlinear region weak polarization curve fitting analysis Introduction Measurement in the linear polarization region near the corrosion potential Measurement in the Tafel region Measurement in the nonlinear medium polarization region Characteristics of the curve fitting method Numerical simulation of the polarization curves in the nonlinear region-Weak polarization analysis Computing software platform Mathematical expression of calculation principle of numerical simulation method based on polarization measurement data Curve fitting software that simultaneously solves for the corrosion current and Tafel slopes Advanced model that accounts for diffusion control Electrochemical polarization method for general corrosion monitoring Calculation examples Design of low-power consumption real-time sensor systems for general corrosion monitoring Application of corrosion sensors based on weak polarization analysis method Smart Marine Corrosion Sensor Measuring the corrosion potential Measuring the corrosion current Inner design of SMCS Characteristics of SMCS Application of SMCS Deep-sea corrosion rate sensor Technical principle Research status, latest progress, and development prospect Performance of the present deep-sea corrosion rate sensor Challenges of deep-sea corrosion sensors Communication Deeper depth Power supply Underlying software Acknowledgments References Electrochemical noise for corrosion monitoring Introduction to electrochemical noise What is electrochemical noise? History of EN measurement Measurement of EN Electrochemical potential noise Electrochemical current noise Simultaneous measurement of potential and current noise Instrumental requirements Potential measurement Current measurement Filtering Error sources Aliasing Quantization Interference Validation Alternative EN measurement methods Methods using asymmetric electrodes Switching methods Combined noise and impedance measurement Testing EN instrumentation Interpretation of EN Introduction Direct examination of time records Statistical methods Mean current and potential Standard deviation of current and potential Noise resistance Skewness of current and potential Kurtosis of current and potential Coefficient of variation Localization index Pitting factor Shot-noise parameters Coulomb counting Spectral methods Wavelet methods Time-frequency methods Chaos methods Classifier and neural network methods Comparison of EN and polarization resistance for the estimation of corrosion rate Claimed advantages of noise resistance Use of EN for the identification of the type of corrosion Practical applications Harmonic distortion analysis Electrochemical frequency modulation References Galvanic sensors and zero-voltage ammeter Introduction Galvanic current and corrosion current Galvanic current Corrosion current Galvanic current from two pieces of same metals Measurement of galvanic current and zero-voltage ammeter Zero-voltage ammeters formed with operational amplifiers Zero-voltage ammeters formed with a potentiostat Zero-voltage ammeters formed with a low-cost voltmeter and shunt resistor Effect of the voltage imposed by ZVA on galvanic current measurements Galvanic sensors Applications of galvanic sensors Galvanic sensors for monitoring corrosion in industrial processes Galvanic sensors for monitoring atmospheric corrosion Galvanic sensors for corrosion monitoring in other systems Advantages and limitations of galvanic sensors Summary References Differential flow cell technique Introduction Principles of the differential flow cell (DFC) method The problem the method designed to solve The physical model The DFC method to obtain localized corrosion rate Typical electrolytic cell assembly Electrical instrument assembly Methods to obtain localized corrosion rates Validation of the technique How to use a DFC-based localized corrosion monitor (LCM) for field applications Data interpretation and use General considerations for effective carbon steel corrosion control How corrosion inhibitors work Performance issues in cooling water treatments Integrated solutions needed to improve cooling water treatment performance Factors to consider in interpreting LCM readings Time-dependence of corrosion rate measurements Effect of water temperature Attributing causes of corrosion rate variations and treatment optimization strategy Maximum localized corrosion rate vs. length of localized corrosion events Comparison with ZRA-based occluded cell measurement results Applications Future trends and additional information References Multielectrode systems Introduction Earlier multielectrode systems for high-throughput corrosion studies Uncoupled multielectrode arrays Coupled multielectrode systems for corrosion detection Coupled multielectrode arrays for spatiotemporal corrosion and electrochemical studies Coupled multielectrode arrays for spatiotemporal corrosion measurements Ammeters used for the measurements of coupling currents Coupled multielectrode array sensors with simple output parameters for corrosion monitoring Principle of coupled multielectrode array sensors for corrosion monitoring Maximum localized corrosion rate Estimation of general corrosion rate using coupled multielectrode array sensors and localized corrosion rate factor Estimation of general corrosion depth using coupled multielectrode array sensors and localized corrosion depth factor Cumulative maximum localized corrosion rate Effects of internal currents on CMAS and minimization of the internal effect Internal current effects on nonuniform corrosion rate measurement using coupled multielectrode array sensors Evaluation of Internal current effects on nonuniform corrosion rate measurement CMAS that measures the internal current effect during the measurement of corrosion rate Estimation of the internal current based on overpotential measurements Method to determine the overpotential without using a reference electrode Minimization of internal current effects on localized corrosion rate measurement using coupled multielectrode arra ... Electrode spacing effect on corrosion rate measurement with CMAS Minimization of the effects by corrosion products formed in H2S-containing environment on localized corrosion rate ... Minimization of the effect by crevice on corrosion rate measurement using coupled multielectrode array sensors Stochastic nature of localized corrosion and variability of localized corrosion rates of metals Validation of corrosion rate measurement using coupled multielectrode array sensors Comparison with literature coupon data Comparison with penetration probes with multilayer, multithickness elements or multiwires Comparison with parallel coupons and with the corroded depth of the electrodes on the CMAS probes Corroded depth of the electrodes on the CMAS probes Comparison with parallel coupons Applications of coupled multielectrode array sensor for real-time corrosion monitoring Limitations of multielectrode systems Summary References Gravimetric techniques Introduction Thermogravimetric analysis technique Examples of microbalance applications Thermal decomposition of calcium oxalate hydrate Oxidation kinetics of nanostructured coatings QCM technique Principle of QCM QCM experiments and equipment QCM equipment QCM applications Dissipation technique Dissipation monitoring equipment Electrochemical quartz crystal microbalance EQCM equipment Applications Gravimetric techniques summary References Radioactive tracer methods Principle and history Assumptions Labeling methods Bulk or thermal neutron activation Thin or surface layer activation Potential isotopes Calibration and conversion to corrosion units Applications and limitations Example applications Real-time crude oil corrosivity measurement Real-time measurement of in-cylinder corrosion in operating internal combustion engine Discussion of limitations Sources of further information References Electrical resistance techniques Introduction and background Sensing probe designs Examples of application and use Chemical process and oil and gas industries Concrete structures Atmospheric Corrosion in soils Sensing probe electronics and instrumentation Variations on the ER theme Inductance method Field signature method Advantages and limitations Summary and conclusions References Nondestructive evaluation technologies for monitoring corrosion Introduction NDE methods for corrosion monitoring Ultrasonic monitoring technologies Eddy current Acoustic emission and equipment Guided waves and equipment Infrared thermography New inspection technology Future trends References Acoustic emission Introduction Principle of method Equipment Typical sensor Typical electronics Typical software Typical tab data for real-time monitoring Aboveground storage tank inspection Corrosion monitoring of pipe wall thickness Advantages, limitations, cost, maintenance, ease of use, online and real-time vs offline, effect of environmental ... Continuous development and future trends References Hydrogen flux measurements in petrochemical applications Introduction Scenarios leading to the detection of hydrogen flux A measurement of hydrogen activity based on flux measurement Comments pertaining to particular flux measurement applications Using flux measurements to assess hydrogen damage risk Hydrogen bakeouts Using flux to indicate corrosion by sour gas and related species Using flux to indicate corrosion by HF acid Naphthenic acid corrosion and sulfidic corrosion References Corrosion monitoring in microbial environments Introduction Biofilm and MIC monitoring Corrosion monitoring applied to MIC Redox potential and open circuit potential measurement (OCP) Linear polarization resistance (LPR) Electrochemical impedance spectroscopy (EIS) Electrochemical noise (EN) Electrical resistance (ER) Other techniques Biofilm and bacteria monitoring Online biofilm and fouling monitoring Electrochemical biofilm sensors Integrated online monitoring systems Costs of monitoring equipment Case histories Inhibition of crevice corrosion on stainless steel Optimization of cooling water treatment in power plants Detection of biofilm in mineral water plant Testing of a disinfecting treatment based on peracetic acid in wastewater and seawater Monitoring of copper alloy condenser tube passivation in power plants Monitoring of corrosion-erosion in aluminum brass condenser tubes Monitoring of cooling water treatment in a steel factory Evaluation of a water treatment in a cooling tower Summary References Corrosion monitoring in concrete Introduction Deterioration mechanisms for corrosion of steel in concrete General deterioration model Initiation phase Carbonation Chloride ingress Deterioration phase Corrosion mechanisms Rate-determining parameters Service life management Condition assessment of reinforced concrete structures Stage 1-Design phase Stage 2-Construction phase Stage 3-Operational service life of a structure Measurement principles General Half-cell potential measurements Electrolytic resistance measurements Corrosion current measurements Linear polarization resistance (LPR) measurements Case studies Case study 1-Corrosion monitoring to avoid chloride ingress Case study 2-Corrosion monitoring during the initiation phase Case study 3-Corrosion monitoring during the deterioration phase Conclusions References Corrosion monitoring in soil Introduction Types of soil corrosion probes Electrical resistance probes Types of ER probes Typical applications Selection of ER probe installation locations Monitoring and data interpretation Effectiveness criteria New developments in soil corrosion probe monitoring technology Multifunction ER soil corrosion probes Ultrasound soil corrosion monitoring probes Coupled multielectrode probes References Corrosion monitoring in refineries Introduction Types of refinery corrosion Corrosion monitoring technologies available Purpose of monitoring-Select monitoring technology and set up accordingly Operational recommendations Continuous vs noncontinuous monitoring Online vs off-line communication Understanding the data Proactive management of CM system for performance and data management Monitoring from tank farm to product Summary and conclusions References Corrosion monitoring undercoatings and insulation Introduction Corrosion monitoring methods undercoatings Electrochemical impedance spectroscopy (EIS) Electrochemical noise (EN) Other techniques Corrosion monitoring methods for CUI Summary and conclusions References Cathodic protection and stray current measurement and monitoring Cathodic protection measurement and monitoring Introduction of cathodic protection mechanism and methods Cathodic protection criteria and understanding Cathodic protection measurement and monitoring DC stray current interference detection and monitoring Introduction of DC stray current interference and types DC stray current interference evaluation criteria DC stray current interference detection and monitoring AC Stray current interference detection and monitoring Introduction of AC stray current interference and types AC interference evaluation criteria AC interference detection and monitoring Cathodic protection monitoring with corrosion probes References Remote monitoring and computer applications Introduction Why remote monitoring? Chapter scope Remote monitoring basics Critical decisions in a remote monitoring system Data considerations Nature and criticality of the data Frequency and amount of data transmitted Communications networks Private networks Wide-area networks WAN choice and obsolescence Application-specific requirements Power requirements Environmental requirements RMU inputs Remote control; output requirements Website and supporting systems Website basics Data security and redundancy Data export, analysis, and grouping Alarm notifications Supporting systems References Further reading Corrosion monitoring in cooling water systems using differential flow cell technique Introduction Corrosion inhibition program selection and optimization Program optimization at a chemical processing plant Program optimization using pilot cooling tower tests Refinery hydrocarbon leak detection and control Refinery leak detection and program optimization Admiralty brass corrosion control in cooling water system using brackish water as make-up References Advanced corrosion control at chemical plants using a electrochemical noise method Introduction Investigation Principles of the three-electrode electrochemical noise measurement Verification of the three-electrode electrochemical noise measurement Monitoring and corrosion control Operation Damage Monitoring Measurement results Analysis Corrosion control Conclusion References Corrosion monitoring under cathodic protection conditions using multielectrode array sensors Introduction Evaluation of the effectiveness of cathodic protections with CMAS probes Minimum adequate CP potential, excessive CP potential, and maximum allowable current Corrosion rate as an indicator for the effectiveness of CP when the CP is inadequate CP margin of effectiveness as the degree of adequate cathodic protection Corrosion rate and CP effectiveness margin as the most effective CP parameters from a CMAS probe Determination of the maximum allowable CP current Typical application for cathodically protected carbon steel in simulated seawater Measurements of stray current effect and the effectiveness of CP Measurements of the dynamic stray current effect Summary Measurements of the effectiveness of CP for carbon steel in concrete Localized corrosion of carbon steel in freshly mixed concrete Localized corrosion rate during cathodic protection Summary Measurements of the effectiveness of CP for carbon steel in soil Corrosion rate in soil Corrosion rate in soil under cathodic protection conditions Measurement of effectiveness of cathodic protection of pipeline in an oil field Summary Measurements of localized corrosion rates of cathodically protected carbon steel in drinking water Maximum localized corrosion rates and their usefulness for the evaluation of CP effectiveness General corrosion rates Probe potentials Posttest visual examination of the probes Summary References Corrosion monitoring using the field signature method Introduction FSM measurement technology Temperature Determining corrosion and erosion data from FSM measurements FSM data management System configurations Applications Pipelines Value of FSM monitoring on pipelines Selecting FSM locations along a pipeline Assessment of other data, e.g., intelligent pig data Pipeline corrosion predictions FSM for pipeline monitoring FSM applications on pipelines Refineries Value of FSM monitoring in refineries Selecting locations for FSM monitoring in refineries FSM refinery case stories Upstream FSM upgrades Summary and perspectives ahead References Index A B C D E F G H I K L M N O P Q R S T U V W X Z