دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: ACHIM SCHMIDT
سری:
ISBN (شابک) : 9783030971502, 3030971503
ناشر: SPRINGER NATURE
سال نشر: 2022
تعداد صفحات: [987]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 26 Mb
در صورت تبدیل فایل کتاب TECHNICAL THERMODYNAMICS FOR ENGINEERS basics and applications. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی و کاربردهای ترمودینامیک فنی برای مهندسان. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب حوزه های کلاسیک ترمودینامیک فنی را پوشش می دهد: بخش اول به معادلات اساسی برای تبدیل انرژی و سیالات ایده آل می پردازد. قسمت دوم به سیالات واقعی می پردازد که برای مثال می توانند در معرض تغییر فاز باشند. علاوه بر این، مخلوط های ترمودینامیکی سیالات در نظر گرفته می شوند، به عنوان مثال، مخلوط هوای مرطوب و گاز. در قسمت آخر کتاب، فرآیندهای احتراق و واکنش های شیمیایی ارائه شده و از نظر ترمودینامیکی متعادل می شوند. در هر فصل مثال ها و تمرین هایی برای تعمیق دانش نظری وجود دارد. در مقایسه با ویرایش اول، مبحث نمودارهای حالت ترمودینامیکی بسیار اصلاح شده است. نمودارهای حالت مبردهای مربوطه و همچنین یک فرمول اضافه شده است. بخش مربوط به سیستم های واکنش شیمیایی گسترش یافته و به طور کامل بازنگری شده است. در فصول اصلی، تکالیف و مثالهایی برای تثبیت درک موضوع اضافه شده است. این کتاب برای دانشجویان مهندسی مکانیک و مهندسین حرفه ای طراحی شده است.
The book covers the classical areas of technical thermodynamics: The first part deals with the basic equations for energy conversion and idealized fluids. The second part deals with real fluids, which can be subject to a phase change, for example. Furthermore, thermodynamic mixtures of fluids are considered, e.g., humid air and gas mixtures. In the last part of the book, combustion processes and chemical reactions are presented and thermodynamically balanced. In each chapter, there are examples and exercises to deepen the theoretical knowledge. Compared to the first edition, the topic of thermodynamic state diagrams has been greatly revised. State diagrams of relevant refrigerants have been added as well as a formulary. The section on chemically reacting systems has been expanded and thoroughly revised. In the basic chapters, tasks and examples have been added to consolidate the understanding of the subject. The book is aimed at students of mechanical engineering and professional engineers.
Preface Contents Nomenclature Roman Symbols Greek Symbols Subscripts Acronyms List of Figures List of Tables 1 Introduction 1.1 How Is This Book Structured? 1.2 Classification of Thermodynamics 1.2.1 Technical Thermodynamics 1.2.2 Statistical Thermodynamics 1.2.3 Chemical Thermodynamics 1.3 Distinction Thermodynamics/Heat Transfer 1.3.1 Thermodynamics 1.3.2 Heat Transfer 1.4 History of Thermodynamics 1.4.1 The Caloric Theory Around 1780 1.4.2 Thermodynamics as from the 18th Century 1.4.3 Thermodynamics in the 21st Century 1.4.4 Modern Automotive Applications Part I Basics and Ideal Fluids 2 Energy and Work 2.1 Mechanical Energy 2.1.1 Kinetic Energy 2.1.2 Potential Energy 2.1.3 Spring Energy 2.2 Thermal Energy—Heat 2.3 Chemical Energy 2.4 Changeability of Energy 2.4.1 Joule's Paddle Wheel 2.4.2 Internal Energy 3 System and State 3.1 System 3.1.1 Classification of Systems 3.1.2 Permeability of Systems—Open Versus Closed Systems 3.1.3 Examples for Thermodynamic Systems 3.2 State of a System 3.2.1 Thermal State Values 3.2.2 Caloric State Values 3.2.3 Outer State Values 3.2.4 Size of a System 3.2.5 Extensive, Intensive and Specific State Values 4 Thermodynamic Equilibrium 4.1 Mechanical Equilibrium 4.2 Thermal Equilibrium 4.3 Chemical Equilibrium 4.4 Local Thermodynamic Equilibrium 4.5 Assumptions in Technical Thermodynamics 5 Equations of State 5.1 Gibbs' Phase Rule 5.1.1 Single-Component Systems Without Phase Change 5.1.2 Single-Component Systems with Phase Change 5.1.3 Multi-Component Systems 5.2 Explicit Versus Implicit Equations of State 6 Thermal Equation of State 6.1 Temperature Variations 6.2 Pressure Variations 6.3 Ideal Gas Law 7 Changes of State 7.1 The p,v-Diagram 7.1.1 Isothermal Change of State 7.1.2 Isobaric Change of State 7.1.3 Isochoric Change of State 7.2 Equilibrium Thermodynamics 7.2.1 Quasi-Static Changes of State 7.2.2 Requirement for a Quasi-Static Change of State 7.3 Reversible Versus Irreversible Changes of State 7.3.1 Mechanical 7.3.2 Thermal 7.3.3 Chemical 7.4 Conventional Thermodynamics 8 Thermodynamic Processes 8.1 Equilibrium Process 8.2 Transient State 8.3 Thermodynamic Cycles 8.4 Steady State Process 8.4.1 Open Systems 8.4.2 Closed Systems 8.4.3 Cycles 9 Process Values Heat and Work 9.1 Thermal Energy—Heat 9.2 Work 9.2.1 Definition of Work 9.2.2 Volume Work 9.2.3 Effective Work 9.2.4 Systems with Internal Friction—Dissipation 9.2.5 Dissipation Versus Outer Friction 9.2.6 Mechanical Work 9.2.7 Shaft Work 9.2.8 Shifting Work 9.2.9 Technical Work Respectively Pressure Work 10 State Value Versus Process Value 10.1 Total Differential 10.2 Schwarz's Theorem 11 First Law of Thermodynamics 11.1 Principle of Equivalence Between Work and Heat 11.2 Closed Systems 11.2.1 Systems at Rest 11.2.2 Systems in Motion 11.2.3 Partial Energy Equation 11.3 Open Systems 11.3.1 Formulation of the First Law of Thermodynamics for Open Systems 11.3.2 Non-steady State Flows 11.3.3 Steady State Flows 11.3.4 Partial Energy Equation 12 Caloric Equations of State 12.1 Specific Internal Energy u and Specific Enthalpy h for Ideal Gases 12.2 Specific Entropy s as New State Value for Ideal Gases 12.3 Derivation of the Caloric Equations for Real Fluids 12.3.1 Specific Internal Energy u 12.3.2 Specific Enthalpy h 12.4 Handling of the Caloric State Equations 12.4.1 Ideal Gases 12.4.2 Distinction Between cv and cp for Ideal Gases 12.4.3 Isentropic Exponent 12.4.4 Temperature Dependent Specific Heat Capacity 12.4.5 Incompressible Fluids, Solids 12.4.6 Adiabatic Throttle 13 Meaning and Handling of Entropy 13.1 Entropy—Clarification 13.2 Comparison Entropy Balance Versus First Law of Thermodynamics 13.3 Energy Conversion—Why Do We Need Entropy? 13.4 The T,s-Diagram 13.4.1 Benefit of a New State Diagram 13.4.2 Physical Laws in a T,s-Diagram for Ideal Gases 13.5 Adiabatic, Reversible Change of State 13.6 Polytropic Change of State 13.7 Entropy Balancing 13.7.1 Entropy Balance for Closed Systems 13.7.2 Entropy Balance for Open Systems 13.7.3 Thermodynamic Mean Temperature 13.7.4 Entropy and Process Evaluation 13.8 Entropy—Conclusion 14 Transient Processes 14.1 Mechanical Driven Process 14.2 Thermal Driven Process 14.3 Chemical Driven Process 14.4 Conclusions 15 Second Law of Thermodynamics 15.1 Formulation According to Planck—Clockwise Cycle Processes 15.1.1 The Thermal Engine 15.1.2 Why Clockwise Cycle? 15.2 Formulation According to Clausius—Counterclockwise Cycle processes 15.2.1 The Cooling Machine/Heat Pump 15.2.2 Why Counterclockwise Cycle? 15.3 The Carnot-Machine 15.3.1 The Carnot-Machine—Clockwise Cycle 15.3.2 The Carnot-Machine—Counterclockwise Cycle 16 Exergy 16.1 Exergy of Heat 16.1.1 Heat at Constant Temperature 16.1.2 Heat at Variable Temperature 16.1.3 Sign of the Exergy of Heat 16.2 Exergy of Fluid Flows 16.3 Exergy of Closed Systems 16.4 Loss of Exergy 16.4.1 Closed System 16.4.2 Open System in Steady State Operation 16.4.3 Thermodynamic Cycles 16.5 Sankey-Diagram 16.5.1 Open System 16.5.2 Heat Transfer 17 Components and Thermodynamic Cycles 17.1 Components 17.1.1 Turbine 17.1.2 Compressor 17.1.3 Thermal Turbomachines in a h,s-Diagram 17.1.4 Adiabatic Throttle 17.1.5 Heat Exchanger 17.2 Thermodynamic Cycles 17.2.1 Carnot Process 17.2.2 Joule Process 17.2.3 Clausius Rankine Process 17.2.4 Seiliger Process 17.2.5 Stirling Process 17.2.6 Compression Heat Pump 17.2.7 Process Overview Part II Real Fluids and Mixtures 18 Single-Component Fluids 18.1 Ideal Gas Versus Real Fluids 18.2 Phase Change Real Fluids 18.2.1 Example: Isobaric Vaporisation 18.2.2 The p,v,T-state Space 18.2.3 p,T-Diagram 18.2.4 T,v-Diagram 18.2.5 p,v-Diagram 18.2.6 State Description Within the Wet Steam Region 18.3 State Values of Real Fluids 18.3.1 Van der Waals Equation of State 18.3.2 Redlich-Kwong 18.3.3 Peng-Robinson 18.3.4 Berthelot 18.3.5 Dieterici 18.3.6 Virial Equations 18.3.7 Steam Tables 18.4 Energetic Consideration 18.4.1 Reversibility of Vaporisation 18.4.2 Heat of Vaporisation 18.4.3 Caloric State Diagrams 18.4.4 Clausius-Clapeyron Relation 18.5 Adiabatic Throttling—Joule-Thomson Effect 18.5.1 Ideal Gas 18.5.2 Real Gas 19 Mixture of Ideal Gases 19.1 Concentration Specifications 19.2 Dalton's Law 19.3 Laws of Mixing 19.3.1 Concentration, Thermal State Values 19.3.2 Internal Energy, Enthalpy 19.3.3 Adiabatic Mixing Temperature 19.3.4 Irreversibility of Mixing 20 Humid Air 20.1 Thermodynamic State 20.1.1 Concentration 20.1.2 Aggregate State of the Water 20.1.3 Distinction Between Vaporisation and Evaporation 20.1.4 Unsaturated Versus Saturated Air 20.2 Specific State Values 20.2.1 Thermal State Values 20.2.2 Caloric State Values 20.2.3 Specific Enthalpy h1+x 20.2.4 Specific Entropy s1+x 20.2.5 Overview Possible Cases 20.3 The h1+x,x-diagram According to Mollier 20.4 Changes of State for Humid Air 20.4.1 Heating and Cooling at Constant Water Content 20.4.2 Dehumidification 20.4.3 Adiabatic Mixing of Humid Air 20.4.4 Humidification of Air 20.4.5 Adiabatic Saturation Temperature 20.4.6 The h1+x,x-Diagram for Varying Total Pressure 21 Steady State Flow Processes 21.1 Incompressible Flows 21.2 Adiabatic Flows 21.2.1 Adiabatic Diffusor 21.2.2 Adiabatic Nozzle 21.3 Velocity of Sound 21.4 Fanno Correlation 21.5 Rayleigh Correlation 21.6 Normal Shock 21.7 Supersonic Flows 21.7.1 Flow of a Converging Nozzle 21.7.2 Laval-Nozzle 22 Thermodynamic Cycles with Phase Change 22.1 Steam Power Process 22.1.1 Clausius–Rankine Process 22.1.2 Steam Power Plant 22.2 Heat Pump and Cooling Machine 22.2.1 Mechanical Compression 22.2.2 Thermal Compression Part III Reactive Systems 23 Combustion Processes 23.1 Fossil Fuels 23.2 Fuel Composition 23.2.1 Solid Fuels 23.2.2 Liquid Fuels 23.2.3 Gaseous Fuels 23.3 Stoichiometry 23.3.1 Solid/Liquid Fuels 23.3.2 Gaseous Fuels 23.3.3 Mass Conservation 23.3.4 Conversions 23.3.5 Setting Up a Chemical Equation 23.3.6 Dew Point of the Exhaust Gas 23.4 Energetic Balancing 23.4.1 Lower Heating Value 23.4.2 Conceptual 3-Steps Combustion 23.4.3 Higher Heating Value 23.4.4 Combustion Calculation Component by Component 23.4.5 Molar and Volume Specific Lower/Higher Heating Value 23.4.6 Combustion Temperature 23.5 Combustion Chamber 23.5.1 Efficiency 23.5.2 Operation 24 Chemical Reactions 24.1 Mass Balance 24.2 Energy Balance 24.2.1 Caloric Equations of State 24.2.2 Open Systems 24.2.3 Closed Systems 24.3 Gibbs Energy 24.3.1 Definition 24.3.2 Molar Gibbs Energy 24.3.3 Motivation 24.4 Chemical Potential 24.4.1 Multi-Component Systems 24.4.2 Chemical Reactions 24.5 Exergy of a Fossil Fuel Appendix A Steam Table (Water) According to IAPWS Appendix B Selected Absolute Molar Specific Enthalpies/Entropies Appendix C Caloric State Diagrams C.1 Water C.2 Refrigerants Appendix D The h1+x,x-Diagram Appendix E Formulary Appendix References Index