دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2022] نویسندگان: Jin-Sung Kim (editor), Roger Härtl (editor), Michael Y. Wang (editor), Adrian Elmi-Terander (editor) سری: ISBN (شابک) : 9811901740, 9789811901744 ناشر: Springer سال نشر: 2022 تعداد صفحات: 508 [484] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 43 Mb
در صورت تبدیل فایل کتاب Technical Advances in Minimally Invasive Spine Surgery: Navigation, Robotics, Endoscopy, Augmented and Virtual Reality به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت های فنی در جراحی ستون فقرات کم تهاجمی: ناوبری، رباتیک، آندوسکوپی، واقعیت افزوده و مجازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب راهنمای جامعی برای کاربرد فناوری های اخیراً معرفی شده و در حال ظهور در جراحی با حداقل تهاجم ستون فقرات (MISS) است. این فناوریها، از جمله ناوبری دو بعدی و سه بعدی، آندوسکوپی، واقعیت مجازی و افزوده، روباتیک و پرینت سه بعدی، به غلبه بر محدودیتهای قبلی MISS، مانند منحنی یادگیری شیبدار و نیاز به تجربه زیاد برای دستیابی به اهداف کمک میکنند. نتایج بهینه در مقایسه با تکنیکهای سنتی، استفاده از آنها برای کاهش آسیب بافت جراحی موضعی، کاهش استرس جراحی سیستمیک و امکان بازگشت زودتر به عملکرد طراحی شده است. این کتاب گزارش های دقیق و گسترده ای از نقش فن آوری ها و تکنیک های جدید در طیف گسترده ای از نشانه ها ارائه می دهد. در اصل، تمام شرایط ستون فقرات، اعم از دژنراتیو، تروماتیک، یا انکولوژیک، در آینده نزدیک با استفاده از این رویکردها قابل MISS خواهند بود. این کتاب منبع بینش و کمک عملی برای همه جراحانی خواهد بود که صرف نظر از سطح تجربه آنها MISS را انجام می دهند.
This book is a comprehensive guide to the application of recently introduced and emerging technologies in minimally invasive spine surgery (MISS). These technologies, including 2D and 3D navigation, endoscopy, virtual and augmented reality, robotics, and 3D printing, are helping to overcome previous limitations of MISS, such as the steep learning curve and the need for a great deal of experience in order to achieve optimal outcomes. Compared with traditional techniques, their use is designed to reduce local operative tissue damage, alleviate systemic surgical stress, and enable earlier return to function. The book provides detailed and extensively illustrated accounts of the role of the new technologies and techniques in a wide range of indications. In essence, all spine conditions, whether degenerative, traumatic, or oncologic, will in the near future be amenable to MISS using these approaches. The book will be a source of insight and practical assistance for all surgeons who perform MISS, regardless of their level of experience.
Foreword Foreword Preface Contents List of Contributors Part I: Navigation Guided Spinal Fusion 1: History of Navigation Guided Spine Surgery 1.1 Introduction 1.2 Single and Biplanar Fluoroscopy (Non-navigated) 1.3 Navigated Two-Dimensional Fluoroscopy 1.4 Fan Beam and Cone Beam Computed Tomography-Based Three-Dimensional Navigation 1.5 Robotics 1.6 Augmented Reality and Virtual Reality 1.7 Conclusion References 2: Navigation Guided Single-Stage Lateral Surgery 2.1 Introduction 2.2 Published Reports of Single-Stage Lateral Surgery 2.3 Single Position Lateral Surgery with Navigation 2.4 General Technique 2.5 Positioning and Lateral Interbody Cage Placement 2.6 Navigated Pedicle Screw Placement 2.7 Illustrative Cases 2.7.1 Case 1 2.7.2 Case 2 2.7.3 Case 3 2.7.4 Case 4 References 3: The Six Pillars of Minimally Invasive Spine Surgery 3.1 The Unmet Potential of Minimally Invasive Spinal Surgery 3.2 The “6 T’s of MISS” 3.3 Target 3.3.1 Tools and Technology 3.3.2 Surgical Technique 3.3.3 Teaching/Training 3.3.4 Curriculum Development 3.3.5 Testing: Research and Outcomes 3.3.6 Talent 3.4 Conclusion References 4: MI-TLIF with 3D Navigation 4.1 Introduction 4.2 Components in Spine Navigation Systems [5] 4.2.1 Image Acquisition and Processing Unit 4.2.2 Referencing System 4.2.2.1 Dynamic Reference Array 4.2.2.2 Light-Emitting Diodes 4.2.2.3 Tracking System 4.2.3 Registration Process 4.3 Evolution 4.4 Generations of Navigation System [5] 4.4.1 First-Generation Spine Navigation 4.4.2 Second-Generation Spine Navigation 4.4.2.1 3D C-Arm Navigation System 4.4.2.2 Cone Beam CT 4.4.2.3 Third-Generation Spine Navigation Systems 4.4.3 Senior Author’s MIS Navigation Surgical Technique 4.5 Indications 4.5.1 Operating Room Setup 4.5.2 Anaesthesia 4.5.3 Positioning 4.5.4 3D Navigation Registration 4.5.5 Decompression 4.5.6 Disc Space Preparation 4.5.7 Percutaneous Pedicle Screw and Rod Fixation 4.5.8 Post Operative Care 4.5.9 Advantages of MIS 4.6 Advantages of Navigation-Assisted Surgery 4.6.1 Accuracy 4.6.2 Radiation Safety 4.6.3 Surgical Site Infection 4.6.4 Facet Joint Preservation 4.6.5 In Obese/Osteoporotic Patients 4.7 Concerns with Spine Navigation 4.7.1 Operative Time 4.7.2 Wobbling and Motion Related Artefacts 4.7.3 Distance from Reference Array 4.7.4 Cost-Effectiveness 4.7.5 Learning Curve 4.8 Senior Authors Experience 4.8.1 Results 4.9 Conclusions References 5: Navigation Guided Oblique Lumbar Interbody Fusion 5.1 Indications 5.2 Advantages of OLIF Over Other Interbody Fusion Techniques [8] 5.2.1 OLIF Vs. TLIF 5.2.2 OLIF Vs. Direct/Lateral Lumbar Interbody Fusion (DLIF/LLIF) 5.3 Relevant Surgical Anatomy 5.4 Advantages of Navigation in OLIF 5.5 Technique of OLIF 5.6 Complications of OLIF and Tips to Avoid them 5.7 Disadvantages of OLIF 5.8 Limitations of OLIF 5.9 Conclusion References 6: Navigation-Guided Spinal Fusion: MIS Fusion and Reconstruction in Complex Spine Disease and Deformity 6.1 Introduction 6.2 CT (O-Arm)-Based Navigation Surgery 6.3 Mixed Reality-Based Navigation 6.4 Augmented Reality-Based Navigation References 7: Single-Stage Lateral Lumbar Interbody Fusion Based on O-arm Navigation 7.1 Introduction 7.2 Settings and Surgical Techniques 7.3 Advantages of Single-Position Anterior and Posterior Lumbar Interbody Fusion 7.4 Learning Curve 7.5 Future Possibilities of Single-Position Surgery References 8: The Role of 3D Navigation for MIS Cervical Spine Surgery 8.1 The 3D Navigation for MIS Cervical Spine Surgery 8.1.1 Evolution of Posterior Cervical Fixation 8.1.2 Development of Navigation System for Cervical Spine Surgery 8.1.3 Development of Navigation Tools 8.2 Cervical Pedicle Screw Placement with Navigation 8.2.1 CPS Placement with Intraoperative 3D-CT Based Navigation System (O-Arm) 8.2.2 The Problems of the Navigated CPS Placement 8.2.3 Navigated Surgical Drill for CPS Placement 8.2.3.1 CPS Placement with the Use of a Navigated Drill with Use of O-arm 8.2.3.2 Clinical Results 8.2.3.3 Case Presentation 8.3 Minimally Invasive Cervical Pedicle Screw Fixation (MICEPS) via a Posterolateral Approach 8.3.1 Minimally Invasive Cervical Pedicle Screw Fixation (MICEPS) 8.3.1.1 Instruments and Materials 8.3.1.2 Surgical Technique 8.3.1.3 Instructions for the Procedure 8.3.1.4 Complications 8.3.1.5 Clinical Results 8.3.2 Advantages of MICEPS 8.4 Minimally Invasive C1–C2 Posterior Fixation Via a Posterolateral Approach. 8.4.1 Minimally Invasive C1–C2 Posterior Fixation 8.4.1.1 Surgical Technique 8.4.1.2 Instructions for the Procedure 8.4.1.3 Complications 8.4.1.4 Clinical Results 8.4.2 The Intraoperative 3D Navigation for Minimally Invasive C1–C2 Posterior Fixation References 9: Minimally Invasive Lateral Transpsoas Approach with Intraoperative CT Navigation 9.1 Introduction 9.1.1 Background 9.1.2 3D Navigation with an Intraoperative CT 9.1.3 Main Indications and Contraindications 9.1.4 Preoperative Assessment and Planning 9.2 Description of the Procedure 9.2.1 Surgical Technique 9.2.1.1 Patient Positioning 9.2.1.2 Room and Navigation Setup 9.2.1.3 Planning Skin Incision and Performing Initial Dissection 9.2.1.4 Deep Dissection and Crossing of the Psoas Muscle 9.2.1.5 Discectomy and Implant Insertion 9.2.2 Use of Intraoperative CT Navigation 9.2.3 IONM Tools 9.2.4 Postoperative Management 9.3 Outcomes 9.4 Complications 9.5 General Considerations 9.6 Conclusion 9.7 Summary References Part II: Navigation Guided MIS Decompressive Spinal Surgery 10: Navigation Guided MIS Tubular Decompression in Cervical Spine 10.1 Introduction 10.2 Anatomical Considerations 10.3 Indications 10.4 Surgical Technique 10.4.1 Patient Positioning, Anaesthesia, and Operating Room Set-Up 10.4.2 Surgical Procedure 10.4.3 Post-operative Care 10.4.4 Complications 10.5 Conclusion References 11: Navigation-Guided Tubular Decompression in the Lumbar Spine 11.1 Introduction 11.2 Indications and Contraindications 11.3 Operating Room Setup and Localization 11.4 Surgical Technique 11.5 Case Example 1: Revision Case 11.6 Case Example 2: Upper Lumbar Level 11.7 Case Example 3: Complex Anatomy 11.8 Conclusion References 12: EM-Based Navigation-Guided Transforaminal Endoscopic Lumbar Discectomy 12.1 Introduction 12.2 Components of the Electromagnetic Navigation System 12.3 Indications and Contraindications 12.3.1 Indications 12.3.2 Contraindications 12.4 Surgical Procedure 12.5 Case Study 12.6 Discussion 12.7 Conclusions References 13: Navigation-Guided Endoscopic Lumbar Laminotomy 13.1 Introduction 13.2 Indications 13.3 Operative Procedures 13.3.1 Equipment and Instruments 13.4 Operative Setting 13.5 Surgical Technique 13.6 Case Illustration 13.7 Discussion 13.8 Conclusion References 14: O-arm Navigation-Guided Lumbar Foraminotomy 14.1 Introduction 14.1.1 Anatomy 14.1.2 Options of Full-Endoscopic Lumbar Foraminotomy 14.1.3 Indications 14.2 Surgical Technique 14.2.1 Operating Room Setup 14.2.1.1 O-arm Navigation-Guided Transforaminal Endoscopic Lumbar Foraminotomy 14.2.1.2 Case Illustration 14.2.1.3 O-arm Navigation-Guided Interlaminar Contralateral Endoscopic Lumbar Foraminotomy 14.2.1.4 Case Illustration 14.3 Pitfalls and Complication Avoidance 14.4 Conclusion References 15: EM-based Navigation-Guided Percutaneous Endoscopic Lumbar Foraminoplasty 15.1 Introduction 15.1.1 Development of Foraminoplasty 15.1.2 Anatomical Basis of Lumbar Foraminoplasty 15.1.3 The Key Steps of TESSYS Technique 15.1.4 Application of Navigation System in Spinal Surgery 15.2 Working Principle of EM-Based Navigation 15.3 Indications and Contraindications 15.3.1 Indications 15.3.2 Contraindications 15.4 Surgical Tools 15.5 Surgical Procedure 15.6 Case Study 15.7 Discussion 15.8 Conclusion References 16: O-Arm Navigation-Guided Endoscopic Cervical Laminoforaminotomy 16.1 Introduction 16.2 Goal of the Surgery 16.3 Patient Selection and Indications [7–10] 16.4 Contraindications [7–10] 16.5 Setup 16.5.1 Information for the Patient 16.5.2 Preparation for Surgery 16.5.3 Instruments 16.6 Surgical Technique 16.6.1 Data Acquisition and Registration 16.6.2 Access 16.6.3 Decompression (Laminoforaminotomy) 16.7 Pearls and Pitfalls 16.7.1 Neural Structure Injury 16.7.2 Intraoperative Bleeding Control 16.7.3 Maintaining Navigation Accuracy 16.8 Conclusion References 17: Feasibility of Endoscopic Transforaminal Lumbar Interbody Fusion 17.1 Introduction 17.2 Anatomical Description of Kambin’s Triangle 17.3 The Working Zone and Safe Zone 17.4 Technical Considerations and Limitations 17.5 Conclusion References 18: O-Arm Navigation-Guided Biportal Endoscopic Transforaminal Lumbar Interbody Fusion 18.1 Introduction 18.2 Basic Concepts 18.3 Advantages of Navigation-Guided UBE-TLIF 18.4 Surgical Anatomy 18.5 Indications and Contraindications 18.6 Operative Technique 18.7 Discussion 18.8 Conclusions References 19: O-Arm Navigation-Guided Endoscopic Oblique Lumbar Interbody Fusion 19.1 Introduction 19.2 Indications 19.3 Contraindications 19.4 Operative Procedure 19.4.1 Preoperative Planning 19.4.2 Equipment and Instruments 19.4.3 Operative Flow 19.4.4 Endoscope and Its Role in OLIF 19.5 Advantages 19.6 Disadvantages 19.7 Discussion 19.8 Conclusion 19.9 Case Illustration References 20: Virtu4D Navigation-Guided Endoscopic Transforaminal Lumbar Interbody Fusion and Percutaneous Pedicle Screw Fixation 20.1 Historical Perspective 20.2 Terminology 20.3 Patient Selection 20.3.1 General Indications 20.3.2 Indications for Endo-TLIF 20.4 Pros and Cons of Endo-LIF 20.4.1 Pros 20.4.2 Cons 20.5 Preoperative Planning 20.5.1 Examinations 20.5.2 Preparation 20.5.3 Anesthesia 20.5.4 Positioning 20.5.5 Technical Equipment 20.6 Surgical Procedures 20.6.1 Surface Localization of the Surgical Area and Incision Planning 20.6.2 Electromagnetic Navigation Registration 20.6.3 Anatomical Identification and Exposure 20.6.4 Endoscopic Decompression 20.6.5 Intervertebral Disc Space Treatment 20.6.6 Intervertebral Bone Grafting and Cage Implantation 20.6.7 Percutaneous Pedicle Screws Implantation 20.6.8 Cleaning the Operating Field 20.7 Postoperative Care 20.8 Complications References 21: Three-dimensional Endoscopic Spine Surgery Using the Biportal Endoscopic Approach 21.1 Introduction 21.2 Surgical Instruments and Equipment 21.3 Surgical Procedure 21.4 Clinical Application 21.5 Discussion 21.6 Conclusion References 22: Navigation in Spinal Tumor Surgery 22.1 Introduction 22.2 Applications of Navigation in Spinal Tumor Surgery 22.2.1 Localization with Intraoperative CT Scanography 22.2.2 Tracking During the Surgical Procedures 22.3 Case Illustration 22.4 Conclusion References 23: The Usefulness of Navigation in Thoracic Endoscopic Discectomy and Decompression 23.1 Introduction 23.2 Anatomical Considerations 23.3 Indications and Contraindications of Full-Endoscopic Thoracic Decompression 23.4 Options of Full-Endoscopic Thoracic Decompression 23.5 Surgical Technique 23.5.1 Operating Room Setup 23.5.2 Navigation Setup 23.5.3 Case Illustration: Full-Endoscopic Interlaminar Thoracic Decompression 23.5.4 Determine Entry Point and Docking the Endoscope 23.5.5 Full-Endoscopic Discectomy and Decompression 23.6 Pitfalls and Avoidance of Complications 23.7 Conclusion References Part III: Robot-Assisted MISS 24: Currently Available Robot Systems in Spinal Surgery 24.1 Introduction 24.1.1 Brief History of Robotic Surgery 24.2 Currently Available Technologies 24.2.1 Medtronic/Mazor Robotics: Mazor Spine Assist, Renaissance, X 24.2.2 Zimmer Biomet/Medtech: ROSA® Spine 24.2.3 Globus Medical: ExcelsiusGPS 24.2.4 Brainlab: Cirq 24.2.5 Other Technologies 24.3 Where We Are 24.4 Where We Are Going 24.5 Conclusion References 25: Evidence of Navigation-Guided/Robot-Assisted Spinal Surgery 25.1 Introduction 25.2 Computer-Assistant Navigation 25.3 Telesurgical Robot System 25.3.1 da Vinci 25.4 Robotic-Assisted Navigation Systems 25.4.1 Mazor: SpineAssist 25.4.2 Mazor: Renaissance 25.4.3 Mazor: Mazor X 25.4.4 ROSA 25.4.5 ExcelsiusGPS 25.4.6 CUVIS-Spine 25.5 Advantages of Robotics and Navigation Systems 25.6 Accuracy of Pedicle Screw Placement 25.7 Radiation Exposure 25.8 Expansion of the Field of Use of Robotic Systems in Spine Surgery 25.9 Augmented Reality in Spine Surgery 25.10 Conclusion References 26: Workflows for Robotic Surgery in the Lumbar Spine: MIS TLIF 26.1 Case History 26.2 Surgical Decision-Making 26.3 Surgical Workflow 26.4 Procedure Description References 27: Recent Advancements in Robot-Assisted Spinal Surgery in China and Future Perspective 27.1 Introduction 27.2 Clinical Outcomes and Accuracy 27.3 TiRobot® 27.4 Mazor Renaissance® 27.5 Cost-Effectiveness Analysis 27.6 Future Perspective 27.7 Conclusion References 28: The Role of Robot-Assisted MIS Spinal Deformity Surgery 28.1 Case History 28.2 Key Challenges 28.3 Surgeon’s Rationale 28.4 Procedural Steps 28.5 Pearls and Tips to Optimize Surgical Planning 28.6 Key Points References 29: Endoscopic Robotic Spinal Surgery: Current Status and Future 29.1 Introduction 29.2 Localization and Access 29.3 Robotic Endoscopic Technique 29.4 Future Outlook 29.5 Conclusions References 30: Robot-Assisted Posterior Endoscopic Cervical Decompression 30.1 Introduction 30.2 The Composition of the TiRobot 30.3 The Key Principle of the TiRobot 30.4 Indications and Contraindications 30.4.1 Indications 30.4.2 Contraindications 30.5 Surgical Procedure 30.6 Case Study 30.7 Discussion 30.8 Conclusion References 31: Robot-Assisted Percutaneous Endoscopic Lumbar Interbody Fusion 31.1 Introduction 31.2 The Key Working Principle of Orthopedic Robot 31.3 The Composition of the Robot 31.3.1 Robotic Arm System 31.3.2 Optical Tracking System 31.3.3 Surgical Planning and Navigation System 31.4 Indications and Contraindications 31.4.1 Indications 31.4.2 Contraindications 31.5 Surgical Procedure 31.6 Case Study 31.7 Discussion 31.8 Conclusion References 32: Future Perspective of Robot-Assisted Minimally Invasive Spine Surgery 32.1 Introduction 32.2 Current Products in the Corporate Pipeline 32.2.1 NuVasive: Pulse 32.2.2 Medtronic: Mazor X Stealth 32.2.3 Globus: Excelsius GPS 32.2.4 Zimmer Biomet: Rosa ONE 32.2.5 Discussion 32.3 New Advances in Robotics 32.3.1 Remote Surgery 32.3.2 Haptic and Auditory Feedback 32.3.3 Expanding Procedures for Robotics in MISS 32.3.4 Machine Learning (ML) for MISS 32.3.4.1 What Is Machine Learning? 32.3.4.2 Radiation- and Fluoroscopy-Free Navigation 32.3.4.3 Collision Avoidance and Path Planning 32.3.4.4 Outcome predictions 32.4 Necessity Dictates Innovation: What the Field of MISS Needs 32.4.1 Reduction of Cost 32.4.2 Increased Portability 32.4.3 Better Generalization 32.5 Conclusion References Part IV: Augmented and Virtual Reality in Spine Surgery 33: Current Status of Augmented Reality in the Spine 33.1 Introduction 33.2 Historical Background 33.3 Terminology 33.4 Why Do We Need AR Navigation in Spine Surgery? 33.5 How to Design a Surgical Navigation System: The Necessary Components 33.6 Current Applications of VR, AR, MIXR Navigation 33.7 Currently Available AR Navigation Systems References 34: Optimizing Visualization in Endoscopic Spine Surgery 34.1 A Global View of Spinal Endoscopy 34.2 A Brief History of Light and Endoscopy 34.3 The Scientific Foundations of the Modern Spinal Endoscope 34.3.1 Transmission of Light 34.3.2 Image Visualization and Processing 34.4 Methods of Enhanced Visualization 34.5 Methods of Direct Tissue Manipulation 34.5.1 Topical Chromoendoscopy 34.5.2 Endoscopic Tattooing 34.6 Methods of Light Transformation 34.6.1 Optical Chromendoscopy 34.6.2 LASER as a Light Source 34.7 A Culmination of Methods: Tissue Manipulation with Light Transformation 34.7.1 5-ALA 34.7.2 Indocyanine Green 34.7.3 Fluorescein 34.7.4 Laser Scanning Confocal Endomicroscopy 34.8 Methods of Image Processing 34.8.1 Three-Dimensional Endoscopy 34.9 Looking Forward: The Future of Endoscopic Spinal Surgery References 35: MIS-TLIF with 3D Navigation and Augmented Reality Enhanced 35.1 Introduction 35.1.1 Preoperative Planning 35.1.2 Procedure Steps 35.2 Summary References 36: Application of Extended Reality to MIS Lumbar Fusion 36.1 Single Position Lateral Surgery with 3D Navigation Enhanced by XR 36.2 Extended Reality (XR) 36.3 Single Position Lumbar Interbody Fusion in VR Technology 36.4 Utility of Augmented Reality (AR) in Spinal Surgery 36.5 Intraoperative MR Assistance for PPS in the Lateral Position 36.6 Remote Conferencing Using XR Technology (Teleconferencing) 36.7 Future Prospects and Challenges of Reality Technology References 37: Technical Feasibility of Augmented Reality in Spinal Tumor Surgery 37.1 Introduction 37.2 Spinal Tumor Surgery 37.3 Intradural Tumors 37.4 Extradural Tumors References 38: Future Perspective of Augmented Reality in Minimally Invasive Spine Surgery 38.1 Introduction 38.2 Segmentation 38.3 Hybrid OR and AR 38.4 Tracking Technologies 38.5 Intraoperative Imaging to Realign Co-registration 38.6 Robotics and AR 38.7 Machine Learning Technology 38.8 Tissue Recognition for MISS and AR Navigation References Part V: Augmented and Virtual Reality in Spine Surgery Training 39: History and Application of Virtual Reality in Spinal Surgery 39.1 Historical Overview of Surgical Simulation 39.2 Historical Overview of Virtual Reality in Surgery 39.3 First Publications on Spinal Surgery and VR References 40: The Impact of Virtual Reality on Surgical Training References 41: Mixed and Augmented Reality Simulation for Minimally Invasive Spine Surgery Education 41.1 Introduction 41.2 VR and AR Simulation 41.3 AR in Spine Surgery Simulation 41.4 AR in Simulation-Based Assessment 41.5 Discussion 41.5.1 The Goal of the Simulation 41.5.2 The Case for AR 41.5.3 Current Status of AR Spine Simulation 41.5.4 Skills Transfer 41.5.5 Economics 41.6 Conclusion References 42: Immersive Virtual Reality of Endoscopic and Open Spine Surgery Training 42.1 Introduction 42.2 Immersive Virtual Reality 42.2.1 Haptics and Spine Surgery Training with Immersive Virtual Reality 42.3 Endoscopic Spine Surgery Training and Immersive Virtual Reality 42.3.1 Skill Acquisition 42.3.2 Medical Student 42.3.3 Resident 42.3.4 Surgeons 42.3.5 Summary 42.4 Open Spine Surgery Training and Immersive Virtual Reality 42.4.1 Medical Student 42.4.2 Resident 42.4.3 Surgeon 42.5 Future Directions 42.5.1 Evidence of Training Effectiveness 42.5.2 Skill Retention 42.5.3 Improved Haptic Interfaces, Commercial Availability, and Cost Analyses 42.5.4 Integrative Immersive VR, AR, and MR and Longitudinal Patient Study References 43: Future Applications of Virtual Reality in Spinal Surgery