دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: 2 نویسندگان: Andrew Gelman سری: ISBN (شابک) : 0198785704, 9780198785705 ناشر: Oxford University Press سال نشر: 2017 تعداد صفحات: 421 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 48 مگابایت
در صورت تبدیل فایل کتاب Teaching Statistics: A Bag of Tricks به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آموزش آمار: یک کلاهبرداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
دانشجویان علوم، اقتصاد، علوم اجتماعی و پزشکی یک دوره آمار مقدماتی را می گذرانند. با این حال، آموزش آمار برای مربیان و یادگیری برای دانش آموزان بسیار دشوار است. برای کمک به غلبه بر این چالش ها، گلمن و نولان این کتاب جذاب و قابل تامل را گردآوری کرده اند. این کتاب بر اساس سال ها تجربه تدریس، مجموعه ای از نمایش ها، فعالیت ها، نمونه ها و پروژه هایی را ارائه می دهد که شامل مشارکت فعال دانش آموزان است. بخش اول کتاب مجموعه وسیعی از فعالیتها را برای دورههای آمار مقدماتی ارائه میکند و دارای فصلهایی مانند «هفته اول کلاس» است – با تمرینهایی برای شکستن یخ و تشویق دانشآموزان به صحبت. سپس آمار توصیفی، گرافیک، رگرسیون خطی، جمع آوری داده ها (نمونه گیری و آزمایش)، احتمال، استنتاج و ارتباط آماری. بخش دوم نکاتی را در مورد اینکه چه چیزی مؤثر است و چه چیزی مفید نیست، چگونه می توان نمایش های مؤثری ترتیب داد، چگونه دانش آموزان را به شرکت در کلاس و کار مؤثر در پروژه های گروهی تشویق کرد، ارائه می دهد. برنامه های دوره برای آمار مقدماتی، آمار برای دانشمندان علوم اجتماعی و ارتباطات و گرافیک ارائه شده است. بخش سوم مطالبی را برای دوره های پیشرفته تر در مورد موضوعاتی مانند نظریه تصمیم گیری، آمار بیزی، نمونه گیری و علم داده ارائه می کند.
Students in the sciences, economics, social sciences, and medicine take an introductory statistics course. And yet statistics can be notoriously difficult for instructors to teach and for students to learn. To help overcome these challenges, Gelman and Nolan have put together this fascinating and thought-provoking book. Based on years of teaching experience the book provides a wealth of demonstrations, activities, examples, and projects that involve active student participation. Part I of the book presents a large selection of activities for introductory statistics courses and has chapters such as 'First week of class'― with exercises to break the ice and get students talking; then descriptive statistics, graphics, linear regression, data collection (sampling and experimentation), probability, inference, and statistical communication. Part II gives tips on what works and what doesn't, how to set up effective demonstrations, how to encourage students to participate in class and to work effectively in group projects. Course plans for introductory statistics, statistics for social scientists, and communication and graphics are provided. Part III presents material for more advanced courses on topics such as decision theory, Bayesian statistics, sampling, and data science.
Cover Preface Contents 1 Introduction 1.1 The challenge of teaching introductory statistics 1.2 Fitting demonstrations and examples into a course 1.3 What makes a good example? 1.4 Why is statistics important? 1.5 The best of the best 1.6 Our motivation for writing this book Part I Introductory probability and statistics 2 First week of class 2.1 Guessing ages 2.2 Where are the cancers? 2.3 Estimating a big number 2.4 What’s in the news? 2.5 Collecting data from students 3 Descriptive statistics 3.1 Displaying graphs on the blackboard 3.2 Time series 3.2.1 World record times for the mile run 3.3 Numerical variables, distributions, and histograms 3.3.1 Categorical and continuous variables 3.3.2 Handedness 3.3.3 Soft drink consumption 3.4 Numerical summaries 3.4.1 Average soft drink consumption 3.4.2 The average student 3.5 Data in more than one dimension 3.5.1 Guessing exam scores 3.5.2 Who opposed the Vietnam War? 3.6 The normal distribution in one and two dimensions 3.6.1 Heights of men and women 3.6.2 Heights of conscripts 3.6.3 Scores on two exams 3.7 Linear transformations and linear combinations 3.7.1 College admissions 3.7.2 Social and economic indexes 3.7.3 Age adjustment 3.8 Logarithmic transformations 3.8.1 Simple examples: amoebas, squares, and cubes 3.8.2 Log-linear transformation: world population 3.8.3 Log-log transformation: metabolic rates 4 Statistical graphics 4.1 Guiding principles 4.2 Lecture topics 4.3 Assignments 4.4 Deconstruct and reconstruct a plot 4.5 One-minute revelation 4.6 Turning tables 5 Linear regression and correlation 5.1 Fitting linear regressions 5.1.1 Simple examples of least squares 5.1.2 Tall people have higher incomes 5.1.3 Logarithm of world population 5.2 Correlation 5.2.1 Correlations of body measurements 5.2.2 Correlation and causation in observational data 5.3 Regression to the mean 5.3.1 Mini-quizzes 5.3.2 Exam scores, heights, and the general principle 6 Data collection 6.1 Sample surveys 6.1.1 Sampling from the telephone book 6.1.2 First digits and Benford’s law 6.1.3 Wacky surveys 6.1.4 An election exit poll 6.1.5 Simple examples of bias 6.1.6 How large is your family? 6.2 Class projects in survey sampling 6.2.1 The steps of the project 6.2.2 Topics for student surveys 6.3 How big was the crowd? 6.4 Experiments 6.4.1 An experiment that looks like a survey 6.4.2 Randomizing the order of exam questions 6.4.3 Taste tests 6.4.4 Can they taste the difference? 6.5 Observational studies 6.5.1 The Surgeon General’s report on smoking 6.5.2 Large population studies 6.5.3 Coaching for the SAT 7 Statistical literacy and the news media 7.1 Introduction 7.2 Assignment based on instructional packets 7.3 Assignment where students find their own articles 7.4 Guidelines for finding and evaluating sources 7.5 Discussion and student reactions 7.6 Examples of course packets 7.6.1 A controlled experiment: Fluids for trauma victims 7.6.2 A sample survey: 1 in 4 youths abused, survey finds 7.6.3 An observational study: Monster in the crib 7.6.4 A model-based analysis: Illegal aliens 8 Probability 8.1 Constructing probability examples 8.2 Random numbers via dice or handouts 8.2.1 Random digits via dice 8.2.2 Random digits via handouts 8.2.3 Normal distribution 8.2.4 Poisson distribution 8.3 Probabilities of compound events 8.3.1 Babies 8.3.2 Real vs. fake coin flips 8.3.3 Lotteries 8.4 Probability modeling 8.4.1 Lengths of baseball World Series 8.4.2 Voting and coalitions 8.4.3 Space shuttle failure and other rare events 8.5 Conditional probability 8.5.1 What’s the color on the other side of the card? 8.5.2 Lie detectors and false positives 8.6 You can load a die but you can’t bias a coin flip 8.6.1 Demonstration using wooden dice 8.6.2 Sporting events and quantitative literacy 8.6.3 Physical explanation 9 Statistical inference 9.1 Weighing a “random” sample 9.2 From probability to inference: totals and averages 9.2.1 Where are the missing girls? 9.2.2 Real-time gambler’s ruin 9.3 Confidence intervals: examples 9.3.1 Biases in age guessing 9.3.2 Comparing two groups 9.3.3 Land or water? 9.3.4 Poll differentials: a discrete distribution 9.3.5 Golf: can you putt like the pros? 9.4 Confidence intervals: theory 9.4.1 Coverage of confidence intervals 9.4.2 Noncoverage of confidence intervals 9.5 Hypothesis testing: z, t, and χ2 tests 9.5.1 Hypothesis tests from confidence intervals 9.5.2 Binomial model: sampling from the phone book 9.5.3 Hypergeometric model: taste testing 9.5.4 Benford’s law of first digits 9.5.5 Length of baseball World Series 9.6 Simple examples of applied inference 9.6.1 How good is your memory? 9.6.2 How common is your name? 9.7 Advanced concepts of inference 9.7.1 Shooting baskets and statistical power 9.7.2 Do-it-yourself data dredging 9.7.3 Praying for your health 10 Multiple regression and nonlinear models 10.1 Regression of income on height and sex 10.1.1 Inference for regression coefficients 10.1.2 Multiple regression 10.1.3 Regression with interactions 10.1.4 Transformations 10.2 Exam scores 10.2.1 Studying the fairness of random exams 10.2.2 Measuring the reliability of exam questions 10.3 A nonlinear model for golf putting 10.3.1 Looking at data 10.3.2 Constructing a probability model 10.3.3 Checking the fit of the model to the data 10.4 Pythagoras goes linear 11 Lying with statistics 11.1 Examples of misleading presentations of numbers 11.1.1 Fabricated or meaningless numbers 11.1.2 Misinformation 11.1.3 Ignoring the baseline 11.1.4 Arbitrary comparisons or data dredging 11.2 Selection bias 11.2.1 Distinguishing from other sorts of bias 11.2.2 Some examples presented as puzzles 11.2.3 Avoiding over-skepticism 11.3 Reviewing the semester’s material 11.3.1 Classroom discussion 11.3.2 Assignments: Find the lie or create the lie 11.4 1 in 2 marriages end in divorce? 11.5 Ethics and statistics 11.5.1 Cutting corners in a medical study 11.5.2 Searching for statistical significance 11.5.3 Controversies about randomized experiments 11.5.4 How important is blindness? 11.5.5 Use of information in statistical inferences Part II Putting it all together 12 How to do it 12.1 Getting started 12.1.1 Multitasking 12.1.2 Advance planning 12.1.3 Fitting an activity to your class 12.1.4 Common mistakes 12.2 In-class activities 12.2.1 Setting up effective demonstrations 12.2.2 Promoting discussion 12.2.3 Getting to know the students 12.2.4 Fostering group work 12.3 Tricks for the large lecture 12.4 Using exams to teach statistical concepts 12.5 Projects 12.5.1 Monitoring progress 12.5.2 Organizing independent projects 12.5.3 Topics for projects 12.5.4 Statistical design and analysis 12.6 Resources 12.6.1 What’s in a spaghetti box? 12.6.2 Books 12.6.3 Periodicals 12.6.4 Web sites 12.6.5 People 13 Structuring an introductory statistics course 13.1 Before the semester begins 13.2 Finding time for student activities in class 13.3 A detailed schedule for a semester-long course 13.4 Outline for an alternative schedule of activities 14 Teaching statistics to social scientists 14.1 Starting with predictions, graphs, and deterministic models 14.2 Teaching style 14.3 A case study: the sampling distribution of the sample mean 14.4 Starting an applied regression course 14.5 How is there time to cover all the material? 15 Statistics diaries 15.1 Examples of student diaries 15.2 Using diaries in statistics classes 16 A course in statistical communication and graphics 16.1 Background 16.2 Plan for a 13-week course Part III More advanced courses 17 Decision theory and Bayesian statistics 17.1 Decision analysis 17.1.1 How many quarters are in the jar? 17.1.2 Utility of money 17.1.3 Risk aversion 17.1.4 What is the value of a life? 17.1.5 Probabilistic answers to true–false questions 17.1.6 Homework project: evaluating real-life forecasts 17.1.7 Real decision problems 17.2 Bayesian statistics 17.2.1 Where are the cancers? 17.2.2 Subjective probability intervals and calibration 17.2.3 Drawing parameters out of a hat 17.2.4 Where are the cancers? A simulation 17.2.5 Hierarchical modeling and shrinkage 18 Student activities in survey sampling 18.1 First week of class 18.1.1 News clippings 18.1.2 Question bias 18.1.3 Class survey 18.2 Random number generation 18.2.1 What do random numbers look like? 18.2.2 Random numbers from coin flips 18.3 Estimation and confidence intervals 18.4 A visit to Clusterville 18.5 Statistical literacy and discussion topics 18.6 Projects 18.6.1 Analyzing data from a complex survey 18.6.2 Research papers on complex surveys 18.6.3 Sampling and inference in StatCity 18.6.4 A special topic in sampling 19 Problems and projects in probability 19.1 Setting up a probability course as a seminar 19.2 Introductory problems 19.2.1 Probabilities of compound events 19.2.2 Introducing the concept of expectation 19.3 Challenging problems 19.4 Does the Poisson distribution fit real data? 19.5 Organizing student projects 19.6 Examples of structured projects 19.6.1 Fluctuations in coin tossing—arcsine laws 19.6.2 Recurrence and transience in Markov chains 19.7 Examples of unstructured projects 19.7.1 Martingales 19.7.2 Generating functions and branching processes 19.7.3 Limit distributions of Markov chains 19.7.4 Permutations 19.8 Research papers as projects 20 Directed projects in a mathematical statistics course 20.1 Organization of a case study 20.2 Fitting the cases into a course 20.2.1 Covering the cases in lectures 20.2.2 Group work in class 20.2.3 Cases as reports 20.2.4 Independent projects in a seminar course 20.3 A case study: quality control 20.4 A directed project: helicopter design 20.4.1 General instructions 20.4.2 Designing the study and fitting a response surface 21 Statistical thinking in a data science course 21.1 Goals 21.1.1 Statistical thinking in a computational context 21.1.2 Core paradigms 21.1.3 Learn how to learn new technologies 21.1.4 Connect to real modern problems 21.2 Topics 21.2.1 Language basics 21.2.2 Graphics 21.2.3 Data structures 21.2.4 Programming concepts 21.2.5 Text manipulation 21.2.6 Information technologies 21.2.7 Statistical methods 21.3 Projects and student work 21.4 Copy the master 21.5 Spam filtering assignment 21.6 Interactive visualization assignment Notes References Author Index Subject Index