دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Aninda Mazumdar. Wriddhiman Ghosh
سری:
ISBN (شابک) : 1119554381, 9781119554387
ناشر: Wiley
سال نشر: 2022
تعداد صفحات: 331
[333]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 23 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Systems Biogeochemistry of Major Marine Biomes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستمهای بیوژئوشیمی بیومهای اصلی دریایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
یک بحث جامع در سطح سیستم درباره ژئومیکروبیولوژی اقیانوسهای زمین
در سیستمهای بیوژئوشیمی بیومهای اصلی دریایی، تیمی از محققان برجسته یک نمای کلی از بیوژئوشیمی در تعدادی از فیزیوگرافیهای اصلی اقیانوس جهانی ارائه میدهند: آبها و رسوبات پوشاننده حاشیههای قاره. سطوح زیرین عمیق؛ اقیانوس های قطب شمال و قطب جنوب؛ و افراط فیزیکوشیمیایی مانند مناطق دریایی بیش از حد شور و سولفیدی، نشت متان سرد و اکوسیستم های گرمابی.
این کتاب به بررسی پیشرفتهای پیشرفته در ژئومیکروبیولوژی دریایی میپردازد و محرکهای فرآیندهای بیوژئوشیمیایی را بررسی میکند. در حین مطالعه تظاهرات زمین شناسی و بازخوردهای اکولوژیکی متابولیسم های میکروبی درجا، الزامات فرآیندهای منحصر به فرد، حاشیه ای و رمزآلود را برجسته می کند. این کتاب با اتخاذ رویکردی جامع به سمت درک استانهای بیوژئوشیمی دریایی، بر مرکزیت اطلاعات میکروبیولوژیکی وابسته به فرهنگ و مستقل از فرهنگ (مبتنی بر فراتومیک) در چارچوب بیوژئوشیمی سیستمها تأکید میکند.
ایده آل برای محققان و دانشمندان در زمینه های ژئوشیمی، ژئوفیزیک، ژئومیکروبیولوژی، اقیانوس شناسی و علوم دریایی، سیستم های بیوژئوشیمی بیوم های اصلی دریایی span> همچنین جایگاهی را در کتابخانه های سیاست گذاران و دانشجویان فارغ التحصیل پیشرفته ای که به دنبال یک مرجع یک مرحله ای در مورد بیوژئوشیمی دریایی هستند، به دست خواهد آورد.
A comprehensive system-level discussion of the geomicrobiology of the Earth’s oceans
In Systems Biogeochemistry of Major Marine Biomes, a team of distinguished researchers delivers a systemic overview of biogeochemistry across a number of major physiographies of the global ocean: the waters and sediments overlying continental margins; the deep sub-surfaces; the Arctic and Antarctic oceans; and the physicochemical extremes such as the hypersaline and sulfidic marine zones, cold methane seeps and hydrothermal ecosystems.
The book explores state-of-the-art advances in marine geomicrobiology and investigates the drivers of biogeochemical processes. It highlights the imperatives of the unique, fringe, and cryptic processes while studying the geological manifestations and ecological feedbacks of in situ microbial metabolisms. Taking a holistic approach toward the understanding of marine biogeochemical provinces, this book emphasizes the centrality of culture-dependent and culture-independent (meta-omics-based) microbiological information within a systems biogeochemistry framework.
Perfect for researchers and scientists in the fields of geochemistry, geophysics, geomicrobiology, oceanography, and marine science, Systems Biogeochemistry of Major Marine Biomes will also earn a place in the libraries of policymakers and advanced graduate students seeking a one-stop reference on marine biogeochemistry.
Cover Title Page Copyright Page Contents List of Contributors Preface Biome I Continental Margins 1 Biogeochemistry of Marine Oxygen Minimum Zones with Special Emphasis on the Northern Indian Ocean 1.1 Introduction 1.1.1 The Arabian Sea Oxygen Minimum Zone 1.1.2 The Bay of Bengal Oxygen Minimum Zone 1.2 Preservation of Organic matter and Sediment Biogeochemistry 1.3 Pore Fluid Geochemistry 1.4 Sedimentary Sulfidization and Sulfurization 1.5 Benthic Biology 1.6 Microbial Metabolism in the Marine Oxygen Minimum Zone Water Column and Sediment 1.7 Nitrogen Metabolism in the Marine Marine Oxygen Minimum Zone Water Column 1.8 Microbiological Perspective of Sulfur Metabolism in the Marine Oxygen Minimum Zone Water Column 1.9 Microbiology of Methane Cycling in the Oxygen Minimum Zone Water Column 1.10 Microbial Metabolism in Marine Oxygen Minimum Zone Sediments 1.11 Oxygen Minimum Zone expansion 1.12 Conclusion Acknowledgment References 2 Sedimentary Records of Present and Past Marine Sulfur Cycling 2.1. Introduction 2.2. Stable Sulfur Isotopes – a Tool for Reconstructing Spatial and Temporal Changes in Sulfur Cycling 2.3. The Modern Marine Realm 2.4. Oceanic Sulfate and its Evolution Through Time 2.5. Pyrite and Organic-Bound Sulfur as Recorders of Microbial Sulfur Cycling in the Past 2.6. Mass-Independently Fractionated Sulfur Isotopes – a record of Earth’s Oxygenation 2.7. Summary and Direction of Future Research Acknowledgments References 3 The Role of Microorganisms in Iron Reduction in Marine Sediments 3.1. INTRODUCTION 3.2. THE REDOX ZONES IN SHALLOW MARINE SEDIMENTS 3.3. BIOCHEMICAL PATHWAYS OF IRON REDUCTION 3.3.1. The Specificity of Microbial Pathways with Respect to Iron 3.3.2. Microbial Strategies to Reduce Solid Iron Phases 3.3.3. Uptake of Iron as a Nutrient 3.4. DIVERSITY OF POTENTIAL IRON-REDUCING AND IRON-OXIDIZING ORGANISMS 3.4.1. Correlation of Phylogenetic Abundances with Porewater Chemistry Data 3.4.2. Diversity of Iron Reducers in Suboxic Zones 3.4.3. Methanogenic Zones 3.4.4. The Phylogenetic Tree of Marine Iron Reducers 3.5. SUMMARY AND CONCLUSIONS References 4 Biogeochemistry of Nitrogen in the Marine System with Special Emphasis on the Arabian Sea and Bay of Bengal 4.1 Introduction 4.2 Sources of Nitrogen for the Ocean 4.2.1 Riverine and Groundwater Input 4.2.2 Atmospheric Deposition 4.2.3 Volcanic Input 4.2.4 Marine Upwelling 4.3 Marine Nitrogen Biogeochemistry 4.3.1 Biological Nitrogen Fixation 4.3.2 Nitrogen Assimilation 4.3.3 Nitrification 4.3.4 Denitrification 4.3.5 Ammonium Production in the Marine Realm 4.3.6 Dissimilatory Nitrate Reduction to Ammonia 4.3.7 Anammox 4.3.8 Nitrate/Nitrite-Dependent Anaerobic Methane Oxidation 4.4. N-cycle in Marine Sediments 4.4.1 Nitrogen Fixation in Sediments 4.4.2 Nitrification in Marine Sediments 4.4.3 Denitrification in Marine Sediments 4.4.4 Anammox in Marine Sediments 4.4.5 Dissimilatory Nitrate Reduction to Ammonia In Marine Sediments 4.5 Nitrogen Cycling in the Northern Indian Ocean 4.5.1 Pelagic Nitrogen Cycle in Oxygen Minimum Zones 4.5.2 Sedimentary Denitrification and Anammox Rates in the Arabian Sea 4.6 Nitrogen isotopic values in sinking particulates 4.6.1 15N in Marine Sediments from the Arabian Sea and Bay of Bengal 4.7 Summary Acknowledgement References 5 Organic Carbon in Sediments of the Western Indian Margin 5.1. Introduction 5.2. Organic Matter and Organic Carbon 5.3. Organic Carbon Distribution in the World Ocean and the Arabian Sea 5.4. Methods Adopted to Determine OC in the Arabian Sea 5.5. Processes Responsible for Primary Productivity and Transport of Organic Carbon 5.6. Oxygen Minimum Zone and Organic Carbon 5.7. Studies Carried out on Organic Carbon from the Western Margin of India 5.7.1. Particulate/Dissolved Organic Carbon from the Water Column 5.7.2. Organic Carbon in Surface Sediments 5.7.3. Variations in Organic Carbon in the Sediment Cores 5.7.4. Early Diagenesis of Organic Matter and the Sedimentary Environment 5.8. Summary and Future Work Acknowledgement References Biome II Ocean Depths 6 Deep Subsurface Microbiomes of the Marine Realm 6.1. INTRODUCTION 6.2. ECOSYSTEM CONSTRAINTS IN THE MARINE DEEP SUBSURFACE 6.3. FACTORS CONSTRAINING THE STUDY OF MARINE DEEP SUBSURFACES 6.4. BIOGEOCHEMISTRY OF MARINE DEEP SUBSURFACES 6.4.1. Major Sites of Exploration and Their Geological Contexts 6.4.2. Geomicrobiology of Marine Deep Subsurfaces 6.4.3. Geomicrobiology of Marine Subsurfaces >5 mbsf 6.5. SUMMING UP THE GEOMICROBIOLOGY OF THE MARINE DEEP SUBSURFACE 6.6. ULTRASLOW METABOLISM AND SUSTAINABILITY OF DEEP LIFE: IMPLICATIONS FOR EVOLUTION AND ASTROBIOLOGY REFERENCES 7 Biogeochemistry of Marine Petroleum Systems 7.1. INTRODUCTION 7.2. FORMATION OF OIL RESERVOIRS 7.3. ECOSYSTEM CONSTRAINTS AND HABITABILITY OF PETROLEUM BASINS 7.4. MICROBIOME FRAMEWORK OF PETROLEUM RESERVOIRS 7.5. MICROBIAL COMMUNITY STRUCTURES AND FUNCTIONS IN MARINE OIL RESERVOIRS 7.5.1. Anaerobic Breakdown of Hydrocarbons and Fermentation 7.5.2. Methanogenesis 7.5.3. Sulfate Reduction 7.6. SUMMARY VIEW OF THE POTENTIAL NETWORK OF BIOGEOCHEMICAL PROCESSES IN OFFSHORE OIL RESERVOIRS 7.7. EFFECTS OF BIODEGRADATION ON PETROLEUM PROPERTIES 7.8. DELETERIOUS MICROBIAL ACTIVITIES: HYDROGEN SULFIDE PRODUCTION (SOURING) AND ITS REMEDIATION WITH NITRATE 7.9. IN SITU MICROBIAL PROCESSES BENEFICIAL TO OIL RECOVERY 7.10. CONCLUDING REMARKS ACKNOWLEDGEMENTS REFERENCES Biome III Polar Oceans 8 Biogeochemical Processes in the Arctic Ocean 8.1. Introduction 8.2. The Arctic Ocean and its Biogeochemistry 8.3. Response of the Arctic Ocean and Arctic Fjords to Climate Change 8.4. Biochemical Effects of Glacial Discharge on Marine Resources 8.5. Effect of Biochemical Changes on Primary and Secondary Production 8.6. Arctic Permafrost 8.6.1 Biogeochemistry and Significance of Arctic Permafrost 8.6.2 Impact of Thawing Permafrost on Arctic Environment 8.7. Summary and Future Perspectives Acknowledgements References 9 Biogeochemistry and Ecology of the Indian Sectorof the Southern Ocean 9.1. Introduction 9.2. Role of Currents and Oceanic Fronts in the Southern Ocean 9.3. Nutrients in the Southern Ocean 9.4. Southern Ocean Plankton Ecology 9.5. Ocean Carbonate Chemistry 9.6. Sea Ice and Implications for Future Global Change 9.7. Summary Acknowledgements References 10 Benthic Biome of the Southern Ocean: Present State of Knowledge and Future Perspectives 10.1 Introduction 10.2 Biogeochemistry of the Southern Ocean 10.2.1 The High-Nutrient Low-Chlorophyll Zone and Productivity 10.2.2 Antarctic Circumpolar Current 10.2.3 Carbon Immobilization and Benthic Carbon Flux 10.2.4 Retreat of Sea Ice and Benthic Blue Carbon 10.3 Benthic Ecoregions and Biodiversity 10.3.1 Meiobenthos 10.3.2 Macrobenthos 10.3.3 Megabenthos 10.3.4 Functional Types 10.4 Evolutionary Setting and Unique Trait Modalities 10.5 Biotic interaction 10.6 Dispersal and Endemism 10.7 Climate Change and Benthos 10.8 Conservation and Future Perspectives 10.9 Conclusions Acknowledgments References 11 Biogeochemistry of the Antarctic Coasts: Implications for Biodiversity and Climate Change 11.1 Introduction 11.2 Biogeochemical Cycles on the Antarctic Coast 11.3 Antarctic Coastal Features in the Context of Biogeochemistry and Climate Change 11.3.1 Sea Ice 11.3.2 Coastal Polynyas 11.3.3 Fast Ice 11.3.4 Ice Shelves 11.3.5 Ice Sheets 11.4 Interlink Between Biogeochemical Cycles and Climate Change 11.5 Floral and microbial diversity of Antarctica: Distribution and Implications for Climate Change 11.5.1 Diversity of Bacteria and Archaea 11.5.2 Diversity of Fungi 11.5.3 Diversity of Lichens 11.5.4 Diversity of Cyanobacteria 11.5.5 Diversity of Seaweeds 11.5.6 Diversity of Snow Algae 11.6 Climate Change and its Effect on Algal Biodiversity 11.7 Summary Acknowledgment References Biome IV Extreme Environments 12 Geomicrobiology at a Physicochemical Limit for Life: Deep-sea Hypersaline Anoxic Basins 12.1. Introduction 12.2. Geographical and Geological Overview of Deep-sea Hypersaline Anoxic Basins 12.3. Deep-sea Hypersaline Anoxic Basins as Physicochemical Limits of the Earth’s Biosphere 12.4. Geomicrobial Dynamics in Deep-sea Hypersaline Anoxic Basins Across the Global Ocean 12.4.1. Deep-sea Hypersaline Anoxic Basins of the Mediterranean Sea 12.4.2. Deep-sea Hypersaline Anoxic Basins of the Red Sea 12.4.3. Deep-sea Hypersaline Anoxic Basins of the Gulf of Mexico 12.4.4. The Solitary Deep-sea Hypersaline Anoxic Basin of the Black Sea 12.5. A Universal Biogeochemical Framework for all Deep-sea Hypersaline Anoxic Basins (and Other High-Entropy O2-Scarce Marine Microbiomes?) 12.6. Astrobiological Implications of Deep-sea Hypersaline Anoxic Basins References 13 Ecology of Cold Seep Habitats 13.1. Introduction 13.2. Distribution and Diversity 13.3. Biogeochemical Cycle of Cold Seep Sediment 13.4. Symbiosis 13.5. Symbionts and Adaptations 13.6. Genetics and Global Connectivity 13.7. Chemosynthesis and Trophic Transfer 13.8. Impact of Cold Seep Habitats on Surrounding Oceans 13.9. Societal Relevance of Cold Seeps 13.10. Anthropogenic Impacts on Global Seep Ecosystems Acknowledgment References 14 Biogeochemical Characteristics of Hydrothermal Systems in the Indian Ocean 14.1. INTRODUCTION 14.1.1. Hydrothermal Circulation: Evolution of Fluids and Associated Chemosynthetic Ecosystem 14.2. GEOLOGICAL AND OCEANOGRAPHIC SETTINGS OF THE INDIAN OCEAN 14.3. HYDROTHERMAL VENT FIELDS IN THE INDIAN OCEAN 14.3.1. Chemical and Microbiological Aspects of Vent Fluids and Plume Waters 14.3.2. Other Active Fields 14.3.3. Inactive Vent Fields 14.3.4. Hydrothermal Plume Signatures in Water Column/Sediments/Ferromanganese Crusts 14.3.5. Vent Fauna Associated with Hydrothermal Vents in the Indian Ocean 14.4. NATURE OF VENT-ASSOCIATED CHEMOAUTOTROPHS: ARE THEY LINKED WITH COLD-SEEP ECOSYSTEMS IN THE INDIAN OCEAN? 14.5. CONCLUSION ACKNOWLEDGMENTS References Index EULA