دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: پزشکی ویرایش: نویسندگان: Wing-Fu Lai سری: Healthy Ageing and Longevity ISBN (شابک) : 9783030544898 ناشر: Springer سال نشر: 2020 تعداد صفحات: 513 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت تبدیل فایل کتاب Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فن آوری های تحویل سیستمیک در پزشکی ضد پیری: روش ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Contributors Part IFundamentals and Experimental Techniques in Systemic Delivery 1 Systemic Delivery in Anti-aging Medicine: An Overview 1.1 Introduction 1.1.1 A Three-Level Strategy for Anti-Aging Approaches 1.2 Translation of Basic Research: From Bench to Clinic 1.2.1 Basic Genetic/Genomic Research 1.2.2 Mechanistic Research on Genetic/Genomic Manipulation 1.3 Importance of Systemic Delivery to Anti-Aging Medicine 1.3.1 Viral Nanoparticles 1.3.2 Inorganic Carriers 1.3.3 Organic Carriers 1.3.4 Hybrid Nanocarriers 1.3.5 Xenobot, a “Futuristic” Drug Delivery System 1.4 Clinical Trials 1.5 Summary and Outlooks References 2 Current Status of Systemic Drug Delivery Research: A Bibliometric Study 2.1 Introduction 2.2 Methodology 2.3 Analysis Results 2.3.1 Analysis of Publication Years 2.3.2 Analysis of Citations 2.3.3 Analysis of Countries 2.3.4 Analysis of Topics 2.3.5 Analysis of Keywords 2.4 Summary and Outlooks References 3 Characterization Techniques for Studying the Properties of Nanocarriers for Systemic Delivery 3.1 Introduction 3.2 Shape and Size Distribution 3.2.1 Transmission Electron Microscopy 3.2.2 Scanning Electron Microscopy 3.2.3 Cryo-TEM 3.2.4 Atomic Force Microscopy 3.2.5 X-ray Diffraction 3.2.6 Small Angle X-ray Scattering 3.2.7 Dynamic Light Scattering 3.2.8 Tuneable Resistive Pulse Sensing (TRPS) 3.2.9 Nanoparticle Tracking Analysis 3.3 Surface Charge 3.3.1 Laser Doppler Anemometry 3.3.2 Single Particle Electrokinetic Measurements 3.4 Porosity 3.5 Viscosity 3.6 Summary and Outlooks References 4 In Vivo Assessment of the Efficiency of Systemic Delivery 4.1 Introduction 4.2 In Vivo Assessment Models 4.2.1 Selection of Animal Models 4.2.2 Zebrafish as an Emerging Model for In Vivo Assessment 4.2.3 Animal Models and In Vivo Research Techniques 4.3 In Vivo Assessment of Systemic Delivery 4.3.1 Based on the Route of Administration 4.3.2 Based on the Specialty of the Molecule Delivered 4.3.3 Based on the Dosage Form 4.4 Summary and Outlooks References Part IISystemic Delivery Techniques Based on Prodrug Design and Synthetic Materials 5 Prodrug Design to Enhance Bioavailability and Systemic Delivery 5.1 Introduction 5.2 General Design Principles of a Prodrug 5.3 Designing Prodrugs for Increasing Oral Bioavailability 5.4 Prolonged Duration of Action 5.5 Decreasing Toxicity of Drugs/Bioactive Compounds 5.6 Targeting Drugs to Specific Tissues/Organs 5.7 Summary and Outlooks References 6 Development of Biodegradable Polymeric Nanoparticles for Systemic Delivery 6.1 Introduction 6.2 Advantages of Biodegradable Polymeric Nanoparticles in Biomedical Use 6.3 Use of Lactide and Glycolide Polymers in Drug Delivery 6.4 Nanoparticle Fabrication from Lactide/Glycolide Polymers 6.4.1 Phase Separation of Polymer 6.4.2 Solvent Evaporation and Extraction Methods 6.4.3 Spray Drying Method 6.4.4 Formation of Microparticles Using Supercritical Fluids 6.5 Potential of Polyanhydride in Systemic Delivery 6.6 Parameters for the Design of Polymeric Particulate Systems 6.6.1 Particle Size 6.6.2 Surface Charge 6.6.3 Hydrophilicity/Hydrophobicity 6.6.4 In Vitro and In Vivo Study 6.7 Summary and Outlooks References 7 Use of Nanoparticulate Systems for Tackling Neurological Aging 7.1 Introduction 7.2 Nanosystems for Neurological Drug Delivery 7.2.1 Nanoliposomes 7.2.2 Nanogels 7.2.3 Carbon Nanotubes (CNTs) 7.2.4 Nanoemulsions 7.3 Dendrimers 7.4 Polymeric Nanoparticles for Neurological Drug Delivery 7.4.1 Natural Polymers 7.4.2 Synthetic Polymers 7.5 Clinical Considerations and Regulatory Requirements 7.6 Other Challenges and Considerations for the Regulatory Requirement 7.7 Summary and Outlooks References Part IIISystemic Delivery Techniques Based on Biological Materials 8 Lipid-Based Nano-delivery of Phytobioactive Compounds in Anti-aging Medicine 8.1 Introduction 8.2 Main Types of Lipid-Based Nano-delivery Systems and Possible Applications 8.2.1 Nanoemulsions 8.2.2 Self-emulsifying Drug Delivery Systems 8.2.3 Solid Lipid NPs 8.2.4 Nanostructured Lipid Carriers 8.3 Nanoformulations of Anti-aging Drugs 8.3.1 Nano-curcumin 8.3.2 Nano-auercetin 8.3.3 Nano-resveratrol 8.3.4 Nano-genistein 8.3.5 Nano-epigallocatechin-3-Gallate 8.3.6 Other Phytocompound-Based Lipid Nanocomposites 8.4 Summary and Outlooks References 9 Albumin-Based Carriers for Systemic Delivery to Tackle Cancer 9.1 Introduction 9.2 Overview of Albumin 9.2.1 Human Serum Albumin (HSA) 9.2.2 Bovine Serum Albumin (BSA) 9.2.3 Egg White Albumin (Ovalbumin) 9.3 Albumin as a Drug Carrier 9.3.1 Albumin as Carrier of Platinum Drugs 9.3.2 Albumin as Carrier of Curcumin 9.3.3 Albumin as Carrier of Doxorubicin 9.3.4 Albumin as Carrier of Paclitaxel 9.3.5 Albumin as Carrier of Methotrexate 9.3.6 Albumin as Carrier of 5-Fluorouracil 9.4 Albumin as Coating Agent 9.5 Summary and Outlooks References 10 Exosomes as Vehicles for Systemic Drug Delivery 10.1 Introduction 10.2 Exosome Biogenesis 10.3 Exosome Recognition 10.4 Exosome Uptake 10.5 Exosome Composition and Functions 10.6 Exosome Isolation 10.7 Exosome Sourcing 10.8 Drug Loading Methods 10.8.1 Pre-loading Methods 10.8.2 Post-loading Methods 10.9 Exosome Delivery 10.10 Use of Exosome in Disease Treatment 10.11 Summary and Outlook References Part IVSystemic Delivery Techniques Based on Physical Means 11 Use of Physical Approaches for Systemic Drug Delivery 11.1 Introduction 11.2 Methods and Applications 11.2.1 Ultrasound-Based Method 11.2.2 Electrical-Based Method 11.2.3 Magnetic Based Delivery Method 11.2.4 Photo-Based Method 11.2.5 Microneedles 11.2.6 Other Permeation Enhancer Based Systems 11.3 Summary and Outlooks References 12 Inhalation as a Means of Systemic Drug Delivery 12.1 Introduction 12.2 Rationale for Delivery of Systemic Drugs via the Respiratory System 12.3 Inhalation Aerosol as a Drug Carrier 12.4 The Significance of Drug Formulation 12.5 The Significance of an Inhalation System 12.6 Current and Future Concepts of Systemic Drug Delivery via Inhalation 12.7 Summary and Outlooks References Part VModification of Carrier Properties for Systemic Delivery 13 Use of Electrospinning to Enhance the Versatility of Drug Delivery 13.1 Introduction 13.2 Methodology for Coupling Between Experiments and Numerical Modeling 13.3 Results of Experimental and Numerical Modeling 13.4 Summary and Outlooks References 14 Surface Modification Strategies in Enhancing Systemic Delivery Performance 14.1 Introduction 14.2 Rationale of Using Particulate System and Concept of Biorecognition 14.2.1 The Mononuclear Phagocyte System 14.2.2 Adsorption of Proteins to Surfaces 14.2.3 Phagocytosis (Opsonization) as a Surface Phenomenon 14.2.4 Biopharmaceutical Factors Affecting the Uptake of Particulate Systems 14.3 Surface Modification or Steric Protection with Polymers 14.3.1 Polyethylene Glycol (PEG) 14.3.2 Block Copolymers of Ethylene Oxide and/or Propylene Oxide 14.4 Surface-Modified Particulates in Sequestering Multidrug Resistance Proteins 14.5 Surface Modification as a Strategy to Target Non-MPS Organs 14.6 Summary and Outlooks References 15 Layer-by-Layer Functionalization for Oral Liposomal Formulations in Anti-aging Medicine 15.1 Introduction 15.2 Preparation of LbL-Functionalized Liposomes 15.3 Principles of Molecular Design of LbL-Functionalized Liposomes 15.4 Engineering LbL Coatings to Enhance Intestinal Absorption 15.5 Summary and Outlook References 16 Use of Cell-Penetrating Peptides to Enhance Delivery Performance 16.1 Introduction 16.2 Experimental Section 16.2.1 Ethical Approval 16.2.2 Recombinant Proteins 16.2.3 Otocystic Inoculation of Recombinant Proteins into Mouse Embryos 16.2.4 Treatment Via the Round Window Membrane in Adult Guinea Pigs 16.2.5 Noise Exposure 16.2.6 Auditory Thresholds 16.3 Results and Discussion 16.3.1 Protein Transduction into Embryonic Inner Ear in Mus musculus 16.3.2 Protein Transduction into Adult Inner Ear in Guinea Pigs 16.4 Summary and Outlooks References Part VIOptimization of Delivery Technologies for Intervention Development 17 Use of Numerical Simulation in Carrier Characterization and Optimization 17.1 Introduction 17.2 Experimental and Numerical Modeling 17.3 Results of Experimental and Numerical Modeling 17.4 Summary and Outlooks References 18 Parameters and Strategies to Overcome Barriers to Systemic Delivery 18.1 Introduction 18.2 Factors that Affect the Developability of Drug Candidates 18.2.1 Solubility 18.2.2 Permeability 18.2.3 Drug Stability 18.2.4 Metabolic Instability 18.3 Barriers to Systemic Drug Delivery 18.3.1 Physiological Barriers 18.3.2 Biochemical Barriers 18.3.3 Chemical Barrier 18.4 pH Responsive Carriers as a Solution to Oral Drug Delivery Challenges 18.5 Barriers to Tumor Drug Delivery 18.5.1 Heterogenous Tumor Vasculature 18.5.2 Hypoxia and Acidic Regions in Tumor 18.5.3 Interstitial Fluid Pressure 18.6 Challenges with Nanotechnology Approach in Tumor Delivery 18.6.1 Renal Clearance 18.6.2 The Concept of “The Enhanced Permeation and Retention Effect” and Its Role in Nanoparticle-Based Drug Delivery 18.6.3 Extra-Cellular Matrix (ECM) of Tumor 18.6.4 Matrix Metalloproteinases 18.7 Challenges Specific to Brain Drug Delivery by Nanotechnology 18.8 Nanotechnology as a Solution to Brain Delivery via BBB 18.9 Summary and Outlooks References 19 Blood Interactions with Nanoparticles During Systemic Delivery 19.1 Introduction 19.2 Roles of Nanoparticulate Systems in Systemic Delivery 19.3 Manipulation of Pharmacokinetics and Biodistribution 19.4 Enhancement of Hematocompatibility for Systemic Delivery 19.5 Other Factors to be Considered for Intervention Execution 19.6 Summary and Outlooks References 20 New Directions for Use of Systemic Drug Delivery in Anti-aging Medicine 20.1 Anti-aging Medicine: A Basic Overview 20.2 Endothelium (Re)programming as a New Concept for Anti-aging Medicine 20.3 Early Measures and Recommendations for Modulating Aging 20.4 Fecal Microbiota Transplantation for Modulating Microbiota 20.5 Cellular Reprogramming for Tissue Regeneration 20.6 Summary and Outlooks References