دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Javaid Iqbal, Faheem Syeed Masoodi, Ishfaq Ahmad Malik, Shozab Khurshid, Iqra Saraf, Alwi M. Bamhdi سری: ISBN (شابک) : 9781032386928, 9781032624983 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 273 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 29 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب System Reliability and Security: Techniques and Methodologies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب قابلیت اطمینان و امنیت سیستم: تکنیک ها و روش ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents List of Contributors 1 GNN Approach for Software Reliability Acronyms With Definitions 1.1 Introduction 1.2 Software Defect Prediction Approaches 1.2.1 Traditional SDP Techniques 1.2.2 Deep Learning in SDP 1.2.3 Summary 1.3 Understanding the Structure of a Software Program as Graph 1.3.1 Abstract Syntax Tree 1.3.2 Function Call Graph 1.3.3 Data Flow Graph 1.4 GNN Approach for Defect Rate Prediction Using Graph Structure of a Program 1.4.1 GNN Architecture 1.4.1.1 Input Layer 1.4.1.2 GNN Layers 1.4.1.3 Output Layer 1.4.2 Applying GNN to AST 1.5 Conclusion References 2 Software Reliability Prediction Using Neural Networks: A Non-Parametric Approach 2.1 Introduction 2.2 Approaches for Software Reliability Modeling 2.2.1 Parametric Software Reliability Growth Models 2.2.1.1 Yamada Delayed S-Shaped Model 2.2.1.2 Goel–Okumoto Model 2.2.1.3 Generalized Goel NHPP Mode 2.2.1.4 Logistic Growth Curve Model 2.2.1.5 MO Model 2.2.1.6 Pham–Nordmann–Zhang (PNZ) Model 2.2.1.7 Pham–Zhang (P-Z) Model 2.2.1.8 Yamada Imperfect Debugging Model 1 2.2.1.9 Yamada Imperfect Debugging Model 2 2.2.2 Non-Parametric Reliability Growth Models 2.3 Software Reliability 2.3.1 Software Reliability Measures 2.3.2 Parameter Estimation Techniques 2.3.3 Failure Data Sets 2.4 ANN Approach for Reliability 2.5 Conclusion References 3 Analysis and Modeling of Software Reliability Using Deep Learning Methods 3.1 Introduction 3.2 Related Work 3.2.1 Novel Deep Learning Solutions for Software Defect Detection and Reliability 3.2.2 Transformers as a Novel Proposed Solution 3.2.2.1 Introduction to Word Embedding and Word2vec 3.2.2.2 Transformer Deep Learning Model 3.3 Conclusion References 4 Fixed-Design Local Polynomial Approach for Estimation and Hypothesis Testing of Reliability Measures 4.1 Introduction 4.2 Popular Component Reliability Measures 4.2.1 Empirical Estimators 4.2.2 Fixed-Design Local Polynomial Estimators 4.2.2.1 Fixed-Design Local Polynomial Estimators: Asymptotic Properties 4.2.2.2 Dealing With a Randomly Censored Dataset 4.2.2.3 Optimal Bin Width and Bandwidth Selection 4.2.3 Performance of Proposed Estimators 4.3 Non-Parametric Hypothesis Tests for Comparing Reliability Functions 4.3.1 Statistical Comparison of Expected Inactivity Time Functions of Two Populations 4.3.1.1 Critical Values of the Test Statistics 4.3.2 Statistical Comparison of Mean Residual Life Functions of Two Populations 4.3.2.1 Critical Values of the Test Statistics 4.3.2.2 Using Bootstrapping to Calculate the Critical Value 4.3.3 Evaluating Efficiency of the Proposed Hypothesis Tests 4.3.4 Practical Performance 4.4 Conclusion References 5 Reliability Analysis of Relation Between Urbanization, Vegetation Health, and Heat Island Through Markov Chain Model 5.1 Introduction 5.2 Materials and Methods 5.2.1 Normalized Difference Vegetation Index (NDVI) 5.2.2 Normalized Difference Built-Up Index (NDBI) 5.2.3 Land Surface Temperature Method 5.2.4 Analytical Hierarchy Process (AHP) 5.2.5 Markov Chain Model 5.2.5.1 Governmental Model 5.2.6 Finding Supportive Policy 5.3 Result and Discussion 5.3.1 Temporal Analysis of Land Use and Land Cover of Kolkata Municipal Area 5.3.2 Temporal Analysis of Normalized Difference Vegetation Index (NDVI) of Kolkata Municipal Area 5.3.3 Temporal Analysis of Normalized Difference Built-Up Index (NDBI) of Kolkata Municipal Area 5.3.4 Scenario of Urban Heat Island of Kolkata Municipal Area From 1999 to 2022 5.3.5 Analytical Hierarchy Process 5.3.6 Markov Chain 5.4 Conclusion References 6 Modeling and IoT (Internet of Things) Analysis for Smart Precision Agriculture 6.1 Introduction 6.1.1 How IoT in Agriculture Has Left Its Mark 6.1.2 Application of IoT in Agriculture 6.1.3 Environmental Factors 6.1.4 Precision Farming 6.1.5 Smart Greenhouses 6.1.6 Data Analytics 6.1.7 Agricultural Drones 6.2 Related Work 6.2.1 User-Centered Design Models 6.2.2 Internet of Things: Protocols and Architectures 6.2.3 Internet of Things Technologies Applied On PA Scenarios 6.2.4 Edge and Fog Computing Paradigms: Evolution of the Internet of Things, Cloud, and Machine Learning 6.2.5 Automated Greenhouse Technologies 6.3 Materials and Methods 6.3.1 User-Centered Analysis and Design 6.3.2 Data Analysis: Configuration of Edge and Fog Computing 6.3.3 Things and Communication 6.3.4 Network Platform: Development and Design 6.3.5 Platform Development 6.4 Conclusions and Future Work References 7 Engineering Challenges in the Development of Artificial Intelligence and Machine Learning Software Systems 7.1 Introduction 7.2 Categories of Challenges in AI/ML Software Systems 7.2.1 Software Testing and Quality Assurance 7.2.2 Model Development 7.2.3 Project Management and Infrastructure 7.2.4 Requirement Engineering 7.2.5 Architecture Design and Integration 7.2.6 Model Deployment 7.2.7 Engineering 7.3 Summary References 8 Study and Analysis of Testing Effort Functions for Software Reliability Modeling 8.1 Introduction 8.2 Summary of Some Famous TEFs Used in the Literature 8.3 Numerical Analysis of 12 TEFs Employed in This Study 8.4 Numerical Analysis 8.5 Conclusion Acknowledgment References 9 Summary of NHPP-Based Software Reliability Modeling With Lindley-Type Distributions 9.1 Introduction 9.2 NHPP-Based Software Reliability Modeling 9.2.1 Finite-Failure (Finite) NHPP-Based SRMs 9.2.2 Infinite-Failure (Infinite) NHPP-Based SRMs 9.3 Lindley-Type Distribution 9.4 Maximum Likelihood Estimation 9.5 Performance Illustration 9.5.1 Goodness-Of-Fit Performance 9.5.2 Predictive Performance 9.5.3 Software Reliability Assessment 9.6 Conclusion References 10 Artificial Intelligence and Machine Learning Problems and Challenges in Software Testing 10.1 Introduction 10.1.1 Overview of Machine Learning and Artificial Intelligence 10.1.2 Impact of AI On Software Testing 10.1.3 Role of AI in Software Testing 10.2 Issues and Challenges of AI 10.2.1 Recognizing Test Data 10.2.2 Algorithmic Uncertainty 10.2.3 Measures of Effectiveness That Are Not Accurate 10.2.4 Data Splitting Into Training and Testing Sets 10.3 Related Work 10.3.1 Artificial Intelligence Overview 10.3.2 Artificial Neural Network 10.3.3 AI Planning 10.3.4 Machine Learning 10.3.5 Natural Language Processing (NLP) 10.3.6 Fuzzy Logic 10.4 Artificial Intelligence in Agriculture 10.4.1 Software Testing in the Area of Artificial Intelligence for Agriculture 10.4.2 Development Spurred By the Internet of Things (IoT) 10.5 Software Testing Overview 10.6 Tools 10.6.1 Testim.io 10.6.2 Appvance 10.6.3 Test.ai 10.6.4 Functioned 10.7 Conclusion 10.8 Future Work References 11 Software Quality Prediction By CatBoost Feed-Forward Neural Network in Software Engineering 11.1 Introduction 11.2 Literature Review 11.2.1 Parameters That Influence Software Quality 11.2.1.1 Software Efficiency 11.2.1.2 Mode of Software Development 11.2.1.3 Developer Or Developer Team 11.2.2 Machine Learning Framework 11.2.3 Analysis With Respect to Existing Work 11.3 Methodology Or Framework 11.3.1 Exploratory Analysis 11.3.2 Data Preprocessing 11.3.3 Feature Engineering 11.3.4 Training and Testing the Model 11.3.5 Evaluation 11.4 Results 11.5 Conclusion References 12 Software Security 12.1 Introduction 12.1.1 Software Security Process 12.2 Challenges and Requirements 12.2.1 Security Requirements Modeling 12.2.2 Validation Requirements Modeling 12.3 Software Security Vulnerabilities 12.3.1 Security Automation in Software-Defined Networks 12.3.2 Security Threat-Oriented Requirements Engineering Methodology 12.4 Environment and System Security 12.4.1 Levels of Security 12.4.2 Level I—Minimal Protection 12.4.3 Level II—Advanced Protection 12.4.4 Level III—Maximal Protection 12.5 Cloud Security 12.5.1 Infrastructure-As-A-Service (IaaS) and Platform-As-A-Service (PaaS) 12.5.2 Software-As-A-Service (SaaS) 12.5.3 Software Testing Metrics 12.6 Conclusion References 13 Definitive Guide to Software Security Metrics 13.1 Introduction 13.2 Related Work 13.3 Software Security Measurement Primer 13.4 Security Metrics Taxonomies 13.5 Conclusion References 14 Real-Time Supervisory Control and Data Acquisition (SCADA) Model for Resourceful Distribution and Use of Public Water 14.1 Introduction 14.2 Stage 1 (Automatic Water Pumping) 14.3 Stage 2 (Automatic Water Distribution in the City) 14.4 Stage 3 (Automatic Water Leakage Detection System) 14.5 Stage 4 (Pressure Or Storage Tank) 14.6 System Simulation Environment 14.7 Programmable Logic Controllers (PLCs) 14.8 Field Instruments 14.9 SCADA Software 14.10 InTouch Application Manager 14.11 Human–Machine Interface (HMI) 14.12 Research Tools and Techniques 14.12.1 A. Automatic Pumping of Water From Well 14.13 Automatic Water Pumping 14.13.1 B. Automatic Water Distribution System in the City 14.14 Automatic Water Distribution 14.14.1 C. Automatic Water Leakage Detection System 14.15 Water Leakage System 14.15.1 D. Automatic Water Pumping System Using SCADA 14.16 Automatic Water Pumping System 14.17 Storage Water Pumping 14.18 Conclusion References Index