دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Eui-Hyeok Yang (editor), Dibakar Datta (editor), Junjun Ding (editor), Grzegorz Hader (editor) سری: Micro and Nano Technologies ISBN (شابک) : 0128184752, 9780128184752 ناشر: Elsevier سال نشر: 2020 تعداد صفحات: 476 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures (Micro and Nano Technologies) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سنتز، مدلسازی و خصوصیات مواد دو بعدی و ساختارهای ناهمسان آنها () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سنتز، مدلسازی و مشخصهسازی مواد دو بعدی و ساختارهای ناهمسان آنها بحث مفصلی را در مورد رویکرد محاسباتی چند مقیاسی پیرامون مدلهای پیوسته اتمی، مولکولی و اتمی ارائه میدهد. این کتاب علاوه بر توضیحات نظری دقیق، مسائل نمونه، کد/اسکریپت نمونه، و بحثی در مورد اینکه چگونه تحلیل نظری بینشی را در مورد طراحی آزمایشی بهینه فراهم میکند، ارائه میکند. علاوه بر این، این کتاب به مکانیسم رشد این مواد دو بعدی، شکلگیری عیوب و عدم تطابق شبکه و برهمکنشهای بین لایهای میپردازد. بخشها شکاف نواری مستقیم، پراکندگی رامان، برهمکنش ماده نوری قوی فوقالعاده، نورتابی وابسته به لایه، و سایر خواص فیزیکی را پوشش میدهند.
Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties.
Cover Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures Copyright Contents Part I Introduction to 2D materials and their heterostructures1 Part II Properties of 2D materials and their heterostructures7 Part III Computational modeling of two-dimensional materials111 Part IV Synthesis and characterization of 2D materials and their heterostructures179 Part V Mechanical, Optical, and Electrical Devices323 Part VI Future Perspectives443 List of contributors About the editors 1 Overview 1.1 Overview of two-dimensional materials and the scope of the book References 2 Mechanical properties of two-dimensional materials: atomistic modeling and future directions 2.1 Introduction 2.2 Current state of research 2.3 Molecular dynamics simulations of two-dimensional materials 2.4 Fracture characteristics of two-dimensional materials 2.4.1 Effect of functionalization and temperature on graphene 2.4.2 Out-of-plane deformation of crack surfaces 2.4.3 Crack–defect interactions 2.4.4 Hybrid two-dimensional materials 2.5 Future directions 2.5.1 Topological design of two-dimensional materials 2.5.2 Piezoelectricity of two-dimensional materials 2.5.3 Application of machine learning methods Acknowledgments References 3 Thermal transport properties of two-dimensional materials 3.1 Introduction to thermal transport 3.2 Thermal transport in two-dimensional materials 3.2.1 Microscopic picture of thermal transport 3.2.2 Thickness effects in two-dimensional materials 3.2.3 Anisotropic effects in the in-plane direction 3.2.4 Anomalous thermal transport effects 3.2.4.1 Hydrodynamic phonon transport 3.2.4.2 Coherent thermal transport 3.2.4.3 Anomalous electronic thermal conductivity 3.3 Simulation methods for thermal transport properties in two-dimensional materials 3.3.1 First principles method 3.3.1.1 Phonon dispersion 3.3.1.2 Phonon scattering rates and thermal conductivity 3.3.2 Molecular dynamics simulations 3.4 Experimental methods for thermal transport property in two-dimensional materials 3.4.1 Optothermal Raman method 3.4.2 Micro-suspended-pad method 3.4.3 Time-domain thermoreflectance method 3.5 Conclusion References 4 Optical properties of semiconducting transition metal dichalcogenide materials 4.1 Introduction 4.2 Photophysics of excitons and other excitonic complexes 4.2.1 Excitons 4.2.2 Charged excitons (trions) 4.2.3 Neutral and charged biexcitons 4.2.4 Spin-forbidden and momentum-forbidden dark excitons 4.2.4.1 Spin-forbidden dark excitons 4.2.4.2 Momentum-forbidden intervalley dark excitons 4.2.5 Interlayer excitons in van der Waals heterostructures 4.3 Quantum emitters in semiconducting transition metal dichalcogenides 4.3.1 Deterministic creation and cavity coupling of quantum emitters in transition metal dichalcogenides References 5 Electronic properties of two-dimensional materials 5.1 Introduction and outline 5.2 Structure and diffraction of two-dimensional materials 5.3 Electronic properties of Dirac and Weyl materials 5.3.1 Dirac materials: graphene 5.3.1.1 Energy spectrum 5.3.1.2 Physical reason for the rise of Dirac cones 5.3.1.3 Low-energy approximation: Dirac equation 5.3.1.4 Disorder effects 5.3.1.5 Beyond the one orbital tight-binding approximation: graphene’s nearly free electron bands 5.3.2 Weyl materials: borophene 5.4 Two-dimensional materials made from group IV, V, and VI elements 5.4.1 Silicene and other group-IV two-dimensional materials 5.4.2 Phosphorene 5.4.3 Transition metal dichalcogenide monolayers 5.5 Multilayered two-dimensional materials 5.5.1 Multilayered graphene Acknowledgments References 6 Atomistic modeling by density functional theory of two-dimensional materials 6.1 Introduction 6.1.1 Overview of density functional theory 6.1.2 Introduction of density functional theory in two-dimensional materials 6.2 Theoretical background 6.2.1 Preliminaries 6.2.2 Basic equations and assumptions of density functional theory 6.2.2.1 Many-body interaction and Kohn–Sham equation 6.2.2.2 Approximations and generalized Kohn–Sham 6.3 Implementation of density functional theory in two-dimensional systems 6.3.1 Theoretical implementation 6.3.2 Practical applications References 7 Molecular dynamics simulations of two-dimensional materials 7.1 Introduction 7.2 Historical background 7.3 Molecular dynamics algorithm 7.3.1 Empirical force fields 7.3.1.1 Nonreactive force fields 7.3.1.2 Reactive force field 7.3.2 Integration schemes 7.3.2.1 Verlet algorithm 7.3.3 Optimizing accuracy and efficiency 7.3.3.1 Periodic boundary condition 7.3.3.2 Cutoff and switching function 7.4 Scope and limitations of molecular dynamics simulations in the context of two-dimensional materials 7.4.1 Thermal properties of two-dimensional materials using molecular dynamics simulations 7.4.2 Interaction of two-dimensional materials with biomolecules 7.5 Summary References 8 Monte Carlo method in two-dimensional materials 8.1 Introduction 8.2 Metropolis Monte Carlo method 8.3 Grand canonical Monte Carlo simulations to study the effect of substrates on lithiation-induced fracture of silicon ele... 8.3.1 Delamination of silicon anodes in lithium ion batteries 8.3.2 Utilizing graphene monolayer to enhance stability of silicon film anodes 8.4 Kinetic Monte Carlo method 8.4.1 Basic kinetic Monte Carlo algorithm 8.4.2 Kinetic Monte Carlo simulation of Langmuir adsorption problem on a periodic lattice 8.4.3 Site-specific adsorption using kinetic Monte Carlo on 2D materials 8.4.3.1 Adsorbent-specific rate of adsorption 8.4.3.2 Site-specific adsorption References 9 Lattice and continuum based modeling of 2D materials 9.1 Introduction 9.2 Mechanical equivalence of atomic bonds 9.3 Equivalent elastic moduli of two-dimensional materials 9.4 Results and discussion 9.5 Summary References 10 Synthesis of graphene 10.1 Early history 10.2 Existence of two-dimensional crystals 10.3 Properties of carbon, graphite, and graphene 10.4 Graphene suppliers 10.5 Raman spectroscopy—graphene fingerprints 10.6 Visibility of graphene 10.7 Automated visualization and identification of two-dimensional layers 10.8 Graphene synthesis 10.8.1 Mechanical exfoliation—“Scotch tape method” 10.8.2 Chemical vapor deposition 10.8.3 Copper substrates 10.8.4 Nickel substrates 10.9 Graphene on SiC 10.10 Liquid-phase exfoliation 10.11 Molecular assembly 10.12 Cold-wall reactor 10.13 Atmospheric pressure chemical vapor deposition 10.13.1 Copper substrates 10.13.2 Platinum substrates 10.14 Summary of graphene synthesis 10.15 Autonomous robotic assembly of van der Waals heterostructure superlattices 10.16 Synthesis methods and reviews 10.17 Applications of graphene and beyond References 11 Synthesis of two-dimensional hexagonal boron nitride 11.1 Introduction 11.1.1 History and discovery 11.1.2 Two-dimensional hexagonal boron nitride properties and applications 11.2 Synthesis of two-dimensional hexagonal boron nitride 11.2.1 Top–down approach 11.2.1.1 Mechanical exfoliation 11.2.1.2 Liquid-phase exfoliation 11.2.2 Bottom–up approach 11.2.2.1 Chemical vapor deposition 11.2.2.1.1 Thickness 11.2.2.1.2 Domain size 11.2.2.1.3 Morphology control 11.2.2.2 Sputtering deposition 11.2.2.3 Other bottom–up approaches 11.3 Summary and outlook Acknowledgment References 12 Synthesis of transition metal dichalcogenides 12.1 Introduction 12.2 Mechanical exfoliation 12.2.1 Scotch-tape method 12.2.2 Metal-assisted method 12.2.3 Layer-resolved splitting method 12.3 Liquid-phase exfoliation 12.3.1 Solvent-based exfoliation method 12.3.2 Ion intercalation method 12.4 Chemical vapor deposition 12.4.1 Thermal chemical vapor deposition 12.4.2 Metalorganic chemical vapor deposition (MOCVD) 12.4.3 Chemical vapor transport method 12.5 Molecular-beam epitaxy 12.6 Doping/alloy of transition metal dichalcogenides 12.6.1 Substitution of cation elements in transition metal dichalcogenides 12.6.2 Substitution of anion elements in transition metal dichalcogenides 12.7 Summary References 13 Synthesis of heterostructures based on two-dimensional materials 13.1 Introduction 13.2 Synthesis of heterostructures 13.2.1 Graphene/hexagonal boron nitride 13.2.1.1 Manufacturing of graphene 13.2.1.2 Manufacturing of hexagonal boron nitride 13.2.1.3 Manufacturing of graphene/hexagonal boron nitride and hexagonal boron nitride/graphene heterostructures 13.2.1.4 Applications 13.2.2 Graphene/transition metal dichalcogenide 13.2.2.1 Manufacturing of transition metal dichalcogenides 13.2.2.2 Manufacturing of graphene/transition metal dichalcogenide heterostructures 13.2.2.3 Applications 13.2.3 Transition metal dichalcogenide/hexagonal boron nitride 13.2.3.1 Manufacturing of transition metal dichalcogenides/hexagonal boron nitride heterostructures 13.2.3.2 Applications 13.2.4 Transition metal dichalcogenide/transition metal dichalcogenide 13.2.4.1 Manufacturing of transition metal dichalcogenide/transition metal dichalcogenide heterostructures 13.2.4.2 Applications 13.2.5 MXenes-based heterostructures 13.2.5.1 Manufacturing of MXenes 13.2.5.2 Manufacturing of MXene-based heterostructures 13.2.5.3 Applications 13.3 Summary References 14 Characterization of two-dimensional materials 14.1 Introduction 14.2 Visualization—microscopy 14.2.1 Transmission electron microscopy 14.2.1.1 Transmission electron microscopy with monolayers 14.2.1.2 MXenes 14.2.1.3 Heterostructures 14.3 X-ray photoelectron spectroscopy 14.3.1 Graphene and graphene oxide 14.3.2 Transition metal dichalcogenides 14.3.3 Transition metal dichalcogenides heterostructures 14.3.4 MXenes 14.3.5 MXene heterostructures 14.4 Raman spectroscopy 14.4.1 Carbon materials 14.4.1.1 Graphene 14.4.1.2 Graphene oxide 14.4.2 Transition metal dichalcogenides 14.5 Why scanning probe microscopy? 14.5.1 Atomic force microscopy 14.5.1.1 Basics of atomic force microscopy 14.5.1.2 Contact, tapping, and peakforce tapping 14.5.1.3 Lateral force microscopy 14.5.2 Electrical scanning probe microscopy techniques 14.5.2.1 Conductive and photoconductive atomic force microscopy 14.5.2.2 Electrostatic force microscopy and Kelvin probe force microscopy 14.5.3 Tunneling scanning probe microscopy techniques 14.5.3.1 Scanning tunneling microscopy and spectroscopy 14.5.3.2 Peakforce tunneling atomic force microscopy 14.5.4 Other scanning probe microscopy methods 14.5.4.1 Piezoresponse force microscopy 14.5.4.2 Scanning electrochemical microscopy 14.5.4.3 Other uses for atomic force microscopy systems References 15 Two-dimensional materials and hybrid systems for photodetection 15.1 Introduction 15.2 Fundamentals of photodetectors 15.2.1 Mechanisms of photodetectors 15.2.1.1 Photovoltaic effect 15.2.1.2 Photoconductive effect 15.2.1.3 Photo-thermoelectric effect 15.2.1.4 Other photoresponse effects 15.2.2 Figure of merits 15.2.2.1 Responsivity 15.2.2.2 Photoconductive gain 15.2.2.3 Noise-equivalent power 15.2.2.4 Detectivity 15.3 Materials in photodetectors 15.3.1 Elemental two-dimensional materials 15.3.1.1 Graphene 15.3.1.2 Other elemental two-dimensional materials 15.3.2 Metal chalcogenides 15.3.3 Other two-dimensional materials 15.4 Classification of photodetectors 15.4.1 Photodetectors without gain 15.4.2 Hybrid photodetectors with gain 15.5 Prospect of two-dimensional photodetectors in flexible electronics and bioelectronics 15.6 Conclusion References 16 Electronic devices based on solution-processed two-dimensional materials 16.1 Introduction 16.2 Preparation of two-dimensional materials via solution process 16.2.1 Wet synthesis of graphene oxide 16.2.2 Liquid-phase exfoliation 16.2.3 Electrochemical approaches 16.2.3.1 Graphene 16.2.3.2 Graphene oxide 16.2.3.3 Transition metal dichalcogenides 16.2.3.4 Black phosphorus 16.2.4 Intercalation and etching 16.2.4.1 Chemical intercalation and exfoliation 16.2.4.1.1 Graphene oxide 16.2.4.1.2 Transition metal dichalcogenides 16.2.4.2 Chemical etching 16.2.4.2.1 MXene 16.3 Device fabrication techniques for two-dimensional material–based inks 16.3.1 Spin coating 16.3.2 Vacuum filtration 16.3.3 Electrophoretic deposition 16.3.4 Dip coating and Langmuir–Blodgett 16.3.5 Printing 16.3.5.1 Inkjet printing 16.3.5.2 Screen printing 16.3.5.3 Three-dimensional printing 16.4 Electronic applications based on two-dimensional nanosheets 16.4.1 Conductor 16.4.2 Energy storage devices 16.4.2.1 Supercapacitors 16.4.2.1.1 Electrical double-layer capacitors 16.4.2.1.2 Pseudocapacitors 16.4.2.2 Lithium-ion batteries 16.4.3 Optoelectronics and photonics 16.4.4 Thin-film transistors 16.4.5 Sensors 16.5 Conclusion References 17 Two-dimensional materials and its heterostructures for energy storage 17.1 Current non two-dimensional material based batteries and their shortcomings 17.2 Two-dimensional material based anodes for Li/Na-based batteries 17.2.1 Graphene and its composites 17.2.2 Transition metal dichalcogenides 17.2.3 Transition metal carbides/nitrides (MXene) 17.2.4 Silicene, germanene, and stanene 17.3 Two-dimensional heterostructures for energy storage 17.4 Progress made in two-dimensional materials as cathode 17.4.1 Graphene and its derivatives 17.4.2 Transition metal oxides, transition metal chalcogenides, and MXenes 17.5 Potential of two-dimensional heterostructures for promising performance References 18 The application of low-dimensional materials in virology and in the study of living organisms 18.1 Viral infectious disease 18.1.1 Structure 18.1.2 Detection 18.2 Nitrogen-doped carbon nanotubes 18.2.1 Materials synthesis 18.2.2 Device integration 18.2.3 Material characterization 18.2.4 Gap size and porosity 18.3 Device performance in virology 18.3.1 Size-based capture 18.3.2 Influenza surveillance 18.3.2.1 Hemagglutination assay 18.3.2.2 On-chip immunofluorescent antibody test 18.3.2.3 Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) 18.3.2.3.1 Virus concentration and enrichment 18.3.2.3.2 Virus isolation 18.3.3 Unknown virus enrichment and detection by next-generation sequencing 18.4 A portable virus capture and detection microplatform 18.4.1 Design and assembly of the virus capture with rapid Raman spectroscopy detection and identification platform 18.4.2 Rapid capture and effective identification of human respiratory viruses 18.4.3 Intercellular communication 18.5 Cellular digestion of transition metal dichalcogenide monolayers 18.6 Future prospects References 19 Machine learning in materials modeling—fundamentals and the opportunities in 2D materials 19.1 The launch platform for machine learning 19.2 Nature-inspired engineering: the birth of artificial intelligence and machine learning 19.3 Data collection and representation 19.3.1 Materials databases 19.3.2 Data representation 19.3.2.1 Adjacency matrix 19.3.2.2 Coulomb matrices and bag of bonds 19.3.2.3 Molecular fingerprinting 19.3.2.4 Radial distribution functions 19.3.2.5 Voronoi tessellations 19.3.2.6 Principle component analysis 19.3.2.7 t-Distributed stochastic neighbor embedding 19.3.2.8 Molecular graph representation 19.3.2.9 Community detection 19.4 Model selection and validation 19.4.1 Regressors 19.4.1.1 Kernel regression 19.4.2 Neural networks 19.4.3 Transfer learning 19.4.4 Natural language processing for materials literature 19.4.5 Machine learning toolkits 19.5 Model optimization and quality assessment 19.6 Opportunities of machine learning for two-dimensional materials 19.6.1 Why do we need machine learning for two-dimensional materials research? 19.6.2 Machine learning to predict the properties and synthesizability of two-dimensional materials 19.6.3 Opportunities of machine learning for two-dimensional materials in energy storage References Index Back Cover