ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures (Micro and Nano Technologies)

دانلود کتاب سنتز، مدلسازی و خصوصیات مواد دو بعدی و ساختارهای ناهمسان آنها ()

Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures (Micro and Nano Technologies)

مشخصات کتاب

Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures (Micro and Nano Technologies)

ویرایش: 1 
نویسندگان: , , ,   
سری: Micro and Nano Technologies 
ISBN (شابک) : 0128184752, 9780128184752 
ناشر: Elsevier 
سال نشر: 2020 
تعداد صفحات: 476 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 33,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures (Micro and Nano Technologies) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سنتز، مدلسازی و خصوصیات مواد دو بعدی و ساختارهای ناهمسان آنها () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب سنتز، مدلسازی و خصوصیات مواد دو بعدی و ساختارهای ناهمسان آنها ()



سنتز، مدل‌سازی و مشخصه‌سازی مواد دو بعدی و ساختارهای ناهمسان آنها بحث مفصلی را در مورد رویکرد محاسباتی چند مقیاسی پیرامون مدل‌های پیوسته اتمی، مولکولی و اتمی ارائه می‌دهد. این کتاب علاوه بر توضیحات نظری دقیق، مسائل نمونه، کد/اسکریپت نمونه، و بحثی در مورد اینکه چگونه تحلیل نظری بینشی را در مورد طراحی آزمایشی بهینه فراهم می‌کند، ارائه می‌کند. علاوه بر این، این کتاب به مکانیسم رشد این مواد دو بعدی، شکل‌گیری عیوب و عدم تطابق شبکه و برهمکنش‌های بین لایه‌ای می‌پردازد. بخش‌ها شکاف نواری مستقیم، پراکندگی رامان، برهم‌کنش ماده نوری قوی فوق‌العاده، نورتابی وابسته به لایه، و سایر خواص فیزیکی را پوشش می‌دهند.


توضیحاتی درمورد کتاب به خارجی

Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties.



فهرست مطالب

Cover
Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures
Copyright
Contents
	Part I Introduction to 2D materials and their heterostructures1
	Part II Properties of 2D materials and their heterostructures7
	Part III Computational modeling of two-dimensional materials111
	Part IV Synthesis and characterization of 2D materials and their heterostructures179
	Part V Mechanical, Optical, and Electrical Devices323
	Part VI Future Perspectives443
List of contributors
About the editors
1 Overview
	1.1 Overview of two-dimensional materials and the scope of the book
	References
2 Mechanical properties of two-dimensional materials: atomistic modeling and future directions
	2.1 Introduction
	2.2 Current state of research
	2.3 Molecular dynamics simulations of two-dimensional materials
	2.4 Fracture characteristics of two-dimensional materials
		2.4.1 Effect of functionalization and temperature on graphene
		2.4.2 Out-of-plane deformation of crack surfaces
		2.4.3 Crack–defect interactions
		2.4.4 Hybrid two-dimensional materials
	2.5 Future directions
		2.5.1 Topological design of two-dimensional materials
		2.5.2 Piezoelectricity of two-dimensional materials
		2.5.3 Application of machine learning methods
	Acknowledgments
	References
3 Thermal transport properties of two-dimensional materials
	3.1 Introduction to thermal transport
	3.2 Thermal transport in two-dimensional materials
		3.2.1 Microscopic picture of thermal transport
		3.2.2 Thickness effects in two-dimensional materials
		3.2.3 Anisotropic effects in the in-plane direction
		3.2.4 Anomalous thermal transport effects
			3.2.4.1 Hydrodynamic phonon transport
			3.2.4.2 Coherent thermal transport
			3.2.4.3 Anomalous electronic thermal conductivity
	3.3 Simulation methods for thermal transport properties in two-dimensional materials
		3.3.1 First principles method
			3.3.1.1 Phonon dispersion
			3.3.1.2 Phonon scattering rates and thermal conductivity
		3.3.2 Molecular dynamics simulations
	3.4 Experimental methods for thermal transport property in two-dimensional materials
		3.4.1 Optothermal Raman method
		3.4.2 Micro-suspended-pad method
		3.4.3 Time-domain thermoreflectance method
	3.5 Conclusion
	References
4 Optical properties of semiconducting transition metal dichalcogenide materials
	4.1 Introduction
	4.2 Photophysics of excitons and other excitonic complexes
		4.2.1 Excitons
		4.2.2 Charged excitons (trions)
		4.2.3 Neutral and charged biexcitons
		4.2.4 Spin-forbidden and momentum-forbidden dark excitons
			4.2.4.1 Spin-forbidden dark excitons
			4.2.4.2 Momentum-forbidden intervalley dark excitons
		4.2.5 Interlayer excitons in van der Waals heterostructures
	4.3 Quantum emitters in semiconducting transition metal dichalcogenides
		4.3.1 Deterministic creation and cavity coupling of quantum emitters in transition metal dichalcogenides
	References
5 Electronic properties of two-dimensional materials
	5.1 Introduction and outline
	5.2 Structure and diffraction of two-dimensional materials
	5.3 Electronic properties of Dirac and Weyl materials
		5.3.1 Dirac materials: graphene
			5.3.1.1 Energy spectrum
			5.3.1.2 Physical reason for the rise of Dirac cones
			5.3.1.3 Low-energy approximation: Dirac equation
			5.3.1.4 Disorder effects
			5.3.1.5 Beyond the one orbital tight-binding approximation: graphene’s nearly free electron bands
		5.3.2 Weyl materials: borophene
	5.4 Two-dimensional materials made from group IV, V, and VI elements
		5.4.1 Silicene and other group-IV two-dimensional materials
		5.4.2 Phosphorene
		5.4.3 Transition metal dichalcogenide monolayers
	5.5 Multilayered two-dimensional materials
		5.5.1 Multilayered graphene
	Acknowledgments
	References
6 Atomistic modeling by density functional theory of two-dimensional materials
	6.1 Introduction
		6.1.1 Overview of density functional theory
		6.1.2 Introduction of density functional theory in two-dimensional materials
	6.2 Theoretical background
		6.2.1 Preliminaries
		6.2.2 Basic equations and assumptions of density functional theory
			6.2.2.1 Many-body interaction and Kohn–Sham equation
			6.2.2.2 Approximations and generalized Kohn–Sham
	6.3 Implementation of density functional theory in two-dimensional systems
		6.3.1 Theoretical implementation
		6.3.2 Practical applications
	References
7 Molecular dynamics simulations of two-dimensional materials
	7.1 Introduction
	7.2 Historical background
	7.3 Molecular dynamics algorithm
		7.3.1 Empirical force fields
			7.3.1.1 Nonreactive force fields
			7.3.1.2 Reactive force field
		7.3.2 Integration schemes
			7.3.2.1 Verlet algorithm
		7.3.3 Optimizing accuracy and efficiency
			7.3.3.1 Periodic boundary condition
			7.3.3.2 Cutoff and switching function
	7.4 Scope and limitations of molecular dynamics simulations in the context of two-dimensional materials
		7.4.1 Thermal properties of two-dimensional materials using molecular dynamics simulations
		7.4.2 Interaction of two-dimensional materials with biomolecules
	7.5 Summary
	References
8 Monte Carlo method in two-dimensional materials
	8.1 Introduction
	8.2 Metropolis Monte Carlo method
	8.3 Grand canonical Monte Carlo simulations to study the effect of substrates on lithiation-induced fracture of silicon ele...
		8.3.1 Delamination of silicon anodes in lithium ion batteries
		8.3.2 Utilizing graphene monolayer to enhance stability of silicon film anodes
	8.4 Kinetic Monte Carlo method
		8.4.1 Basic kinetic Monte Carlo algorithm
		8.4.2 Kinetic Monte Carlo simulation of Langmuir adsorption problem on a periodic lattice
		8.4.3 Site-specific adsorption using kinetic Monte Carlo on 2D materials
			8.4.3.1 Adsorbent-specific rate of adsorption
			8.4.3.2 Site-specific adsorption
	References
9 Lattice and continuum based modeling of 2D materials
	9.1 Introduction
	9.2 Mechanical equivalence of atomic bonds
	9.3 Equivalent elastic moduli of two-dimensional materials
	9.4 Results and discussion
	9.5 Summary
	References
10 Synthesis of graphene
	10.1 Early history
	10.2 Existence of two-dimensional crystals
	10.3 Properties of carbon, graphite, and graphene
	10.4 Graphene suppliers
	10.5 Raman spectroscopy—graphene fingerprints
	10.6 Visibility of graphene
	10.7 Automated visualization and identification of two-dimensional layers
	10.8 Graphene synthesis
		10.8.1 Mechanical exfoliation—“Scotch tape method”
		10.8.2 Chemical vapor deposition
		10.8.3 Copper substrates
		10.8.4 Nickel substrates
	10.9 Graphene on SiC
	10.10 Liquid-phase exfoliation
	10.11 Molecular assembly
	10.12 Cold-wall reactor
	10.13 Atmospheric pressure chemical vapor deposition
		10.13.1 Copper substrates
		10.13.2 Platinum substrates
	10.14 Summary of graphene synthesis
	10.15 Autonomous robotic assembly of van der Waals heterostructure superlattices
	10.16 Synthesis methods and reviews
	10.17 Applications of graphene and beyond
	References
11 Synthesis of two-dimensional hexagonal boron nitride
	11.1 Introduction
		11.1.1 History and discovery
		11.1.2 Two-dimensional hexagonal boron nitride properties and applications
	11.2 Synthesis of two-dimensional hexagonal boron nitride
		11.2.1 Top–down approach
			11.2.1.1 Mechanical exfoliation
			11.2.1.2 Liquid-phase exfoliation
		11.2.2 Bottom–up approach
			11.2.2.1 Chemical vapor deposition
				11.2.2.1.1 Thickness
				11.2.2.1.2 Domain size
				11.2.2.1.3 Morphology control
			11.2.2.2 Sputtering deposition
			11.2.2.3 Other bottom–up approaches
	11.3 Summary and outlook
	Acknowledgment
	References
12 Synthesis of transition metal dichalcogenides
	12.1 Introduction
	12.2 Mechanical exfoliation
		12.2.1 Scotch-tape method
		12.2.2 Metal-assisted method
		12.2.3 Layer-resolved splitting method
	12.3 Liquid-phase exfoliation
		12.3.1 Solvent-based exfoliation method
		12.3.2 Ion intercalation method
	12.4 Chemical vapor deposition
		12.4.1 Thermal chemical vapor deposition
		12.4.2 Metalorganic chemical vapor deposition (MOCVD)
		12.4.3 Chemical vapor transport method
	12.5 Molecular-beam epitaxy
	12.6 Doping/alloy of transition metal dichalcogenides
		12.6.1 Substitution of cation elements in transition metal dichalcogenides
		12.6.2 Substitution of anion elements in transition metal dichalcogenides
	12.7 Summary
	References
13 Synthesis of heterostructures based on two-dimensional materials
	13.1 Introduction
	13.2 Synthesis of heterostructures
		13.2.1 Graphene/hexagonal boron nitride
			13.2.1.1 Manufacturing of graphene
			13.2.1.2 Manufacturing of hexagonal boron nitride
			13.2.1.3 Manufacturing of graphene/hexagonal boron nitride and hexagonal boron nitride/graphene heterostructures
			13.2.1.4 Applications
		13.2.2 Graphene/transition metal dichalcogenide
			13.2.2.1 Manufacturing of transition metal dichalcogenides
			13.2.2.2 Manufacturing of graphene/transition metal dichalcogenide heterostructures
			13.2.2.3 Applications
		13.2.3 Transition metal dichalcogenide/hexagonal boron nitride
			13.2.3.1 Manufacturing of transition metal dichalcogenides/hexagonal boron nitride heterostructures
			13.2.3.2 Applications
		13.2.4 Transition metal dichalcogenide/transition metal dichalcogenide
			13.2.4.1 Manufacturing of transition metal dichalcogenide/transition metal dichalcogenide heterostructures
			13.2.4.2 Applications
		13.2.5 MXenes-based heterostructures
			13.2.5.1 Manufacturing of MXenes
			13.2.5.2 Manufacturing of MXene-based heterostructures
			13.2.5.3 Applications
	13.3 Summary
	References
14 Characterization of two-dimensional materials
	14.1 Introduction
	14.2 Visualization—microscopy
		14.2.1 Transmission electron microscopy
			14.2.1.1 Transmission electron microscopy with monolayers
			14.2.1.2 MXenes
			14.2.1.3 Heterostructures
	14.3 X-ray photoelectron spectroscopy
		14.3.1 Graphene and graphene oxide
		14.3.2 Transition metal dichalcogenides
		14.3.3 Transition metal dichalcogenides heterostructures
		14.3.4 MXenes
		14.3.5 MXene heterostructures
	14.4 Raman spectroscopy
		14.4.1 Carbon materials
			14.4.1.1 Graphene
			14.4.1.2 Graphene oxide
		14.4.2 Transition metal dichalcogenides
	14.5 Why scanning probe microscopy?
		14.5.1 Atomic force microscopy
			14.5.1.1 Basics of atomic force microscopy
			14.5.1.2 Contact, tapping, and peakforce tapping
			14.5.1.3 Lateral force microscopy
		14.5.2 Electrical scanning probe microscopy techniques
			14.5.2.1 Conductive and photoconductive atomic force microscopy
			14.5.2.2 Electrostatic force microscopy and Kelvin probe force microscopy
		14.5.3 Tunneling scanning probe microscopy techniques
			14.5.3.1 Scanning tunneling microscopy and spectroscopy
			14.5.3.2 Peakforce tunneling atomic force microscopy
		14.5.4 Other scanning probe microscopy methods
			14.5.4.1 Piezoresponse force microscopy
			14.5.4.2 Scanning electrochemical microscopy
			14.5.4.3 Other uses for atomic force microscopy systems
	References
15 Two-dimensional materials and hybrid systems for photodetection
	15.1 Introduction
	15.2 Fundamentals of photodetectors
		15.2.1 Mechanisms of photodetectors
			15.2.1.1 Photovoltaic effect
			15.2.1.2 Photoconductive effect
			15.2.1.3 Photo-thermoelectric effect
			15.2.1.4 Other photoresponse effects
		15.2.2 Figure of merits
			15.2.2.1 Responsivity
			15.2.2.2 Photoconductive gain
			15.2.2.3 Noise-equivalent power
			15.2.2.4 Detectivity
	15.3 Materials in photodetectors
		15.3.1 Elemental two-dimensional materials
			15.3.1.1 Graphene
			15.3.1.2 Other elemental two-dimensional materials
		15.3.2 Metal chalcogenides
		15.3.3 Other two-dimensional materials
	15.4 Classification of photodetectors
		15.4.1 Photodetectors without gain
		15.4.2 Hybrid photodetectors with gain
	15.5 Prospect of two-dimensional photodetectors in flexible electronics and bioelectronics
	15.6 Conclusion
	References
16 Electronic devices based on solution-processed two-dimensional materials
	16.1 Introduction
	16.2 Preparation of two-dimensional materials via solution process
		16.2.1 Wet synthesis of graphene oxide
		16.2.2 Liquid-phase exfoliation
		16.2.3 Electrochemical approaches
			16.2.3.1 Graphene
			16.2.3.2 Graphene oxide
			16.2.3.3 Transition metal dichalcogenides
			16.2.3.4 Black phosphorus
		16.2.4 Intercalation and etching
			16.2.4.1 Chemical intercalation and exfoliation
				16.2.4.1.1 Graphene oxide
				16.2.4.1.2 Transition metal dichalcogenides
			16.2.4.2 Chemical etching
				16.2.4.2.1 MXene
	16.3 Device fabrication techniques for two-dimensional material–based inks
		16.3.1 Spin coating
		16.3.2 Vacuum filtration
		16.3.3 Electrophoretic deposition
		16.3.4 Dip coating and Langmuir–Blodgett
		16.3.5 Printing
			16.3.5.1 Inkjet printing
			16.3.5.2 Screen printing
			16.3.5.3 Three-dimensional printing
	16.4 Electronic applications based on two-dimensional nanosheets
		16.4.1 Conductor
		16.4.2 Energy storage devices
			16.4.2.1 Supercapacitors
				16.4.2.1.1 Electrical double-layer capacitors
				16.4.2.1.2 Pseudocapacitors
			16.4.2.2 Lithium-ion batteries
		16.4.3 Optoelectronics and photonics
		16.4.4 Thin-film transistors
		16.4.5 Sensors
	16.5 Conclusion
	References
17 Two-dimensional materials and its heterostructures for energy storage
	17.1 Current non two-dimensional material based batteries and their shortcomings
	17.2 Two-dimensional material based anodes for Li/Na-based batteries
		17.2.1 Graphene and its composites
		17.2.2 Transition metal dichalcogenides
		17.2.3 Transition metal carbides/nitrides (MXene)
		17.2.4 Silicene, germanene, and stanene
	17.3 Two-dimensional heterostructures for energy storage
	17.4 Progress made in two-dimensional materials as cathode
		17.4.1 Graphene and its derivatives
		17.4.2 Transition metal oxides, transition metal chalcogenides, and MXenes
	17.5 Potential of two-dimensional heterostructures for promising performance
	References
18 The application of low-dimensional materials in virology and in the study of living organisms
	18.1 Viral infectious disease
		18.1.1 Structure
		18.1.2 Detection
	18.2 Nitrogen-doped carbon nanotubes
		18.2.1 Materials synthesis
		18.2.2 Device integration
		18.2.3 Material characterization
		18.2.4 Gap size and porosity
	18.3 Device performance in virology
		18.3.1 Size-based capture
		18.3.2 Influenza surveillance
			18.3.2.1 Hemagglutination assay
			18.3.2.2 On-chip immunofluorescent antibody test
			18.3.2.3 Reverse-transcription quantitative polymerase chain reaction (RT-qPCR)
				18.3.2.3.1 Virus concentration and enrichment
				18.3.2.3.2 Virus isolation
		18.3.3 Unknown virus enrichment and detection by next-generation sequencing
	18.4 A portable virus capture and detection microplatform
		18.4.1 Design and assembly of the virus capture with rapid Raman spectroscopy detection and identification platform
		18.4.2 Rapid capture and effective identification of human respiratory viruses
		18.4.3 Intercellular communication
	18.5 Cellular digestion of transition metal dichalcogenide monolayers
	18.6 Future prospects
	References
19 Machine learning in materials modeling—fundamentals and the opportunities in 2D materials
	19.1 The launch platform for machine learning
	19.2 Nature-inspired engineering: the birth of artificial intelligence and machine learning
	19.3 Data collection and representation
		19.3.1 Materials databases
		19.3.2 Data representation
			19.3.2.1 Adjacency matrix
			19.3.2.2 Coulomb matrices and bag of bonds
			19.3.2.3 Molecular fingerprinting
			19.3.2.4 Radial distribution functions
			19.3.2.5 Voronoi tessellations
			19.3.2.6 Principle component analysis
			19.3.2.7 t-Distributed stochastic neighbor embedding
			19.3.2.8 Molecular graph representation
			19.3.2.9 Community detection
	19.4 Model selection and validation
		19.4.1 Regressors
			19.4.1.1 Kernel regression
		19.4.2 Neural networks
		19.4.3 Transfer learning
		19.4.4 Natural language processing for materials literature
		19.4.5 Machine learning toolkits
	19.5 Model optimization and quality assessment
	19.6 Opportunities of machine learning for two-dimensional materials
		19.6.1 Why do we need machine learning for two-dimensional materials research?
		19.6.2 Machine learning to predict the properties and synthesizability of two-dimensional materials
		19.6.3 Opportunities of machine learning for two-dimensional materials in energy storage
	References
Index
Back Cover




نظرات کاربران