دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Mike Guidry M., Y. (Yang) Sun سری: ISBN (شابک) : 1316518612, 9781316518618 ناشر: Cambridge University Press, C.U.P, CUP سال نشر: 2022 تعداد صفحات: 664 زبان: English فرمت فایل : 7Z (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Symmetry, Broken Symmetry, and Topology in Modern Physics: A First Course (the book itself and the solution manual for instructors) (book, solutions) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تقارن، تقارن شکسته و توپولوژی در فیزیک مدرن: دوره اول (خود کتاب و راهنما راه حل برای مدرسان) (کتاب، راه حل ها) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب که برای استفاده در آموزش و خودآموزی نوشته شده است، مقدمه ای جامع و آموزشی برای گروه ها، جبرها، هندسه و توپولوژی ارائه می کند. این برنامه کاربردهای مدرن این مفاهیم را با فرض تنها یک آمادگی پیشرفته در مقطع کارشناسی در فیزیک جذب می کند. این دیدگاهی متعادل از نظریه گروه، جبرهای دروغ و مفاهیم توپولوژیکی ارائه میکند، در حالی که بر طیف وسیعی از کاربردهای مدرن مانند تغییر ناپذیری لورنتس و پوانکره، حالتهای منسجم، انتقال فاز کوانتومی، اثر هال کوانتومی، ماده توپولوژیکی و اعداد Chern تأکید میکند. در میان بسیاری دیگر. یک رویکرد مبتنی بر نمونه از ابتدا اتخاذ شده است، و کتاب شامل نمونه های کار شده و جعبه های اطلاعاتی برای نشان دادن و گسترش مفاهیم کلیدی است. 344 مسئله مشق شب گنجانده شده است، با راهحلهای کامل در دسترس مربیان، و زیرمجموعهای از 172 مورد از این مسائل، راهحلهای کامل را در اختیار دانشآموزان قرار میدهند.
Written for use in teaching and for self-study, this book provides a comprehensive and pedagogical introduction to groups, algebras, geometry, and topology. It assimilates modern applications of these concepts, assuming only an advanced undergraduate preparation in physics. It provides a balanced view of group theory, Lie algebras, and topological concepts, while emphasizing a broad range of modern applications such as Lorentz and Poincaré invariance, coherent states, quantum phase transitions, the quantum Hall effect, topological matter, and Chern numbers, among many others. An example based approach is adopted from the outset, and the book includes worked examples and informational boxes to illustrate and expand on key concepts. 344 homework problems are included, with full solutions available to instructors, and a subset of 172 of these problems have full solutions available to students.
Cover Half-title Title page Copyright information Dedication Brief Contents Contents Preface Part I Symmetry Groups and Algebras 1 Introduction 2 Some Properties of Groups 2.1 Invariance and Conservation Laws 2.2 Definition of a Group 2.3 Examples of Groups 2.3.1 Additive Group of Integers 2.3.2 Rotation and Translation Groups 2.3.3 Parameterization of Continuous Groups 2.3.4 Permutation Groups 2.4 Subgroups 2.5 Homomorphism and Isomorphism 2.6 Matrix Representations 2.6.1 A Matrix Representation of S[sub(3)] 2.6.2 Dimensionality of Matrix Representations 2.6.3 Linear Operators and Matrix Representations 2.7 Reducible and Irreducible Representations 2.8 Degenerate Multiplet Structure 2.9 Some Examples of Matrix Groups 2.9.1 General Linear Groups 2.9.2 Unitary Groups 2.9.3 Orthogonal Groups 2.9.4 Symplectic Groups 2.10 Group Generators 2.11 Conjugate Classes 2.12 Invariant Subgroups 2.13 Simple and Semisimple Groups 2.14 Cosets and Factor Groups 2.14.1 Left and Right Coset Decompositions 2.14.2 Factor Groups 2.15 Direct Product Groups 2.16 Direct Product of Representations 2.17 Characters of Representations 2.17.1 Character Theorems 2.17.2 Character Tables Background and Further Reading Problems 3 Introduction to Lie Groups 3.1 Lie Groups 3.2 Lie Algebras 3.2.1 Invariant Subalgebras 3.2.2 Adjoint Representation of the Algebra 3.3 Angular Momentum and the Group SU(2) 3.3.1 Fundamental Representation of SU(2) 3.3.2 The Cartan–Dynkin Method 3.3.3 Cartan–Dynkin Analysis of SU(2) 3.3.4 The Clebsch–Gordan Series for SU(2) 3.3.5 SU(2) Adjoint Representation 3.4 Isospin 3.4.1 The Neutron–Proton System 3.4.2 Algebraic Structure for Isospin 3.4.3 The U(1) and SU(2) Subgroups of U(2) 3.4.4 Analogy between Angular Momentum and Isospin 3.4.5 The Adjoint Representation of Isospin 3.5 The Importance of Lie Groups in Physics 3.6 Symmetry and Dynamics 3.6.1 Local Gauge Theories 3.6.2 Dynamical Symmetries Background and Further Reading Problems 4 Permutation Groups 4.1 Young Diagrams 4.1.1 Two-Particle Young Diagrams 4.1.2 Many-Particle Young Diagrams 4.1.3 A Compact Notation 4.2 Standard Arrangement of Young Tableaux 4.3 Irreducible Representations 4.3.1 Counting Standard Arrangements 4.3.2 The Hook Rule 4.4 Basis Vectors 4.5 Products of Representations 4.5.1 Direct Products 4.5.2 Outer Products Background and Further Reading Problems 5 Electrons on Periodic Lattices 5.1 The Direct Lattice 5.1.1 Brevais Lattices 5.1.2 Wigner–Seitz Cells 5.2 The Reciprocal Lattice 5.3 Brillouin Zones 5.4 Bloch’s Theorem 5.5 Electronic Band Structure 5.6 Point Groups 5.6.1 Point Group Operations 5.6.2 The Crystallographic Point Groups 5.7 Example: The Ammonia Molecule 5.7.1 Symmetry Operations 5.7.2 A Matrix Representation 5.7.3 Class Structure 5.7.4 Other Irreducible Representations 5.8 General Lattice Symmetry Classifications 5.9 Space Groups 5.9.1 Elements of the Space Group 5.9.2 Symmorphic Space Groups Background and Further Reading Problems 6 The Rotation Group 6.1 Three-Dimensional Rotations 6.2 The SO(2) Group 6.2.1 Generators of SO(2) Rotations 6.2.2 SO(2) Irreducible Representations 6.2.3 Connectedness of the Manifold 6.2.4 Compactness of the Manifold 6.2.5 Invariant Group Integration 6.3 The SO(3) Group 6.3.1 Generators of SO(3) 6.3.2 Matrix Elements of the Rotation Operator 6.3.3 Properties of D-Matrices 6.3.4 Characters for SO(3) 6.3.5 Direct Products of SO(3) Representations 6.3.6 SO(3) Vector-Coupling Coefficients 6.3.7 Properties of SO(3) Clebsch–Gordan Coefficients 6.3.8 3J Symbols 6.3.9 Construction of SO(3) Irreducible Multiplets 6.4 Tensor Operators under Group Transformations 6.5 Tensors for the Rotation Group 6.6 SO(3) Tensor Products 6.7 The Wigner–Eckart Theorem 6.8 The Wigner–Eckart Theorem for SO(3) 6.8.1 Reduced Matrix Elements 6.8.2 Selection Rules 6.9 Relationship of SO(3) and SU(2) 6.9.1 SO(3) and SU(2) Group Manifolds 6.9.2 Universal Covering Group of the SU(2) Algebra Background and Further Reading Problems 7 Classification of Lie Algebras 7.1 Adjoint Representations 7.1.1 The Cartan Subalgebra 7.1.2 Raising and Lowering Operators 7.2 The Cartan–Weyl Basis 7.2.1 Semisimple Algebras 7.2.2 Metric Tensor, Semisimplicity, and Compactness 7.3 Structure of the Root Space 7.3.1 Root Space Restrictions 7.3.2 Lengths and Angles for Root Vectors 7.4 Construction of Root Diagrams 7.4.1 Rank-1 and Rank-2 Compact Lie Algebras 7.4.2 An Ordering Prescription for Weights 7.5 Simple Roots 7.6 Dynkin Diagrams 7.6.1 The Cartan Matrix 7.6.2 Constructing All Roots from Dynkin Diagrams 7.6.3 Constructing the Algebra from the Roots 7.7 Dynkin Diagrams and the Simple Algebras Background and Further Reading Problems 8 Unitary and Special Unitary Groups 8.1 Generators and Commutators for SU(3) 8.2 SU(3) Casimir Operators 8.3 SU(3) Weight Space 8.3.1 SU(3) Raising and Lowering Operators 8.3.2 SU(3) Irreducible Representations 8.3.3 Dimensionality of SU(3) Irreps 8.3.4 Construction of SU(3) Weight Diagrams 8.4 Complex Conjugate Representations 8.5 Real and Complex Representations 8.6 Unitary Symmetry and Young Diagrams 8.7 Young Diagrams for SU(N) 8.7.1 Two Particles in Two States 8.7.2 Two Particles in Three States 8.7.3 Fundamental and Conjugate Representations 8.8 Dimensionality of SU(N) Representations 8.9 Direct Products of SU(N) Representations 8.10 Weights from Young Diagrams 8.11 Graphical Construction of Direct Products Background and Further Reading Problems 9 SU(3) Flavor Symmetry 9.1 Symmetry in Particle Physics 9.1.1 SU(3) Phenomenology and Quarks 9.1.2 Non-Abelian Gauge Symmetries 9.2 Fundamental SU(3) Quark Representations 9.3 SU(3) Flavor Multiplets 9.3.1 Mass Splittings in SU(3) Multiplets 9.3.2 Quark Structure for Mesons and Baryons 9.4 Isospin Subgroups of SU(3) 9.4.1 Subgroup Analysis Using Weight Diagrams 9.4.2 Subgroup Analysis Using Young Diagrams 9.5 Extensions of Flavor SU(3) Symmetry 9.5.1 Higher-Rank Flavor Symmetries 9.5.2 SU(6) Flavor–Spin Symmetry 9.5.3 Baryons and Mesons under SU(6) Symmetry Background and Further Reading Problems 10 Harmonic Oscillators and SU(3) 10.1 The 3D Quantum Oscillator 10.1.1 Eigenvalues 10.1.2 Wavefunctions 10.1.3 Unitary Symmetry 10.1.4 Angular Momentum Subgroup 10.1.5 SO(3) Transformation Properties 10.1.6 Group Structure 10.1.7 Many-Body Operators 10.2 SU(3) and the Nuclear Shell Model 10.3 SU(3) Classification of SD Shell States 10.3.1 Classification Strategy 10.3.2 Orbital and Spin–Isospin Symmetry 10.3.3 Permutation Symmetry 10.3.4 Example: Two Particles in the SD Shell 10.4 SU(2) Subgroups and Intrinsic States 10.4.1 Weight Space Operators and Diagrams 10.4.2 Angular Momentum Content of Multiplets 10.5 Collective Motion in the Nuclear SD Shell 10.5.1 Hamiltonian 10.5.2 Group-Theoretical Solution 10.5.3 The Theoretical Spectrum Background and Further Reading Problems 11 SU(3) Matrix Elements 11.1 Clebsch–Gordan Coefficients for SU(3) 11.2 Constructing SU(3) Clebsch–Gordan Coefficients 11.3 Matrix Elements of Generators 11.4 Isoscalar Factors 11.4.1 Racah Factorization Lemma 11.4.2 Evaluating and Using Isoscalar Factors 11.5 SU(3)⊃SO(3) Tensor Operators 11.6 The SU(3) Wigner–Eckart Theorem 11.7 Structure of SU(3) Matrix Elements 11.8 The Gell-Mann, Okubo Mass Formula 11.9 SU(3) Oscillator Reduced Matrix Elements 11.9.1 Spherical Operators 11.9.2 Matrix Elements for Creation and Annihilation Operators 11.9.3 Electromagnetic Transitions in the SD Shell 11.10 Lie Algebras and Many-Body Systems Background and Further Reading Problems 12 Introduction to Non-Compact Groups 12.1 Review of the Compact Group SU(n) 12.2 The Non-Compact Group SU(l,m) 12.2.1 Signature of the Metric 12.2.2 Parameter Space for SU(1,1) 12.3 The Non-Compact Group SO(l,m) 12.4 Euclidean Groups 12.4.1 The Euclidean Group E[sub(3)] for 3D Space 12.4.2 The Euclidean Group E[sub(2)] for 2D Space 12.4.3 Semidirect Product Groups 12.4.4 Algebraic Properties of E[sub(2)] 12.4.5 Invariant Subgroup of Translations 12.5 Method of Induced Representations for E[sub(2)] 12.5.1 Generating the Representation 12.5.2 Significance of the Abelian Invariant Subgroup Background and Further Reading Problems 13 The Lorentz Group 13.1 Spacetime Tensors 13.1.1 A Covariant Notation 13.1.2 Tensor Transformation Laws 13.2 Lorentz Transformations 13.2.1 Lorentz Boosts as Minkowski Rotations 13.2.2 Generators of Boosts and Rotations 13.2.3 Commutation Algebra for the Lorentz Group 13.3 Classification of Lorentz Transformations 13.3.1 The Four Pieces of the Full Lorentz Group 13.3.2 Improper Lorentz Transformations 13.3.3 Lightcone Classification of Minkowski Vectors 13.4 Properties of the Lorentz Group 13.5 The Lorentz Group and SL(2,C) 13.5.1 A Mapping between 4-Vectors and Matrices 13.5.2 The Universal Covering Group of SO(3,1) 13.6 Spinors and Lorentz Transformations 13.6.1 SU(2)×SU(2) Representations of the Lorentz Group 13.6.2 Two Inequivalent Spinor Representations 13.7 Space Inversion for the Lorentz Group 13.7.1 Action of Parity on Generators and Representations 13.7.2 General and Self-Conjugate Representations 13.8 Parity and 4-Spinors 13.9 Higher-Dimensional Lorentz Representations 13.10 Non-Unitarity of Representations 13.11 Meaning of Non-Unitary Representations Background and Further Reading Problems 14 Lorentz-Covariant Fields 14.1 Lorentz Covariance of Maxwell’s Equations 14.1.1 Scalar and Vector Potentials 14.1.2 Gauge Transformations 14.1.3 Manifestly Covariant Form of the Maxwell Equations 14.2 The Dirac Equation 14.2.1 Lorentz-Boosted Spinors 14.2.2 A Lorentz-Covariant Notation 14.3 Dirac Bilinear Covariants 14.3.1 Covariance of the Dirac Equation 14.3.2 Transformation Properties of Bilinear Products 14.4 Weyl Equations and Massless Fermions 14.5 Chiral Invariance 14.5.1 Helicity States for Fermions 14.5.2 Dirac Equation in Pauli–Dirac Representation 14.5.3 Helicity and Chirality for Dirac Fermions 14.5.4 Projection Operators for Chiral Fermions 14.5.5 Interactions and Chiral Symmetry 14.6 The Majorana Equation 14.6.1 Dirac and Majorana Masses 14.6.2 Neutrinoless Double β-Decay 14.7 Summary: Possible Spinor Types 14.8 Spinor Symmetry in the Weak Interactions 14.8.1 The Left Hand of the Neutrino 14.8.2 Violation of Parity P 14.8.3 C, CP, and T Symmetries 14.8.4 A More Complete Picture Background and Further Reading Problems 15 Poincaré Invariance 15.1 The Poincaré Multiplication Rule 15.2 Generators of Poincaré Transformations 15.2.1 Proper Lorentz Transformations 15.2.2 Four-Dimensional Spacetime Translations 15.2.3 Commutators for Poincaré Generators 15.3 Representation Theory of the Poincaré Group 15.3.1 Casimir Operators for the Poincaré Group 15.3.2 Classification of Poincaré States 15.3.3 Method of Induced Representations 15.4 Massive Representations of the Poincaré Group 15.4.1 Quantum Numbers for Massive States 15.4.2 Action of the Poincaré Group on Massive States 15.4.3 Summary: Representations for Massive States 15.5 Massless Representations 15.5.1 The Standard Lightlike Vector 15.5.2 Lie Algebra of the Little Group 15.5.3 Quantum Numbers for Massless States 15.6 Mass and Spin for Poincaré Representations 15.7 Lorentz and Poincaré Representations 15.7.1 Operators for Relativistic Quantum Fields 15.7.2 Wave Equations for Quantum Fields 15.7.3 Plane-Wave Expansion of the Fields 15.7.4 The Relationship of Fields and Particles 15.7.5 Symmetry and the Wave Equation Background and Further Reading Problems 16 Gauge Invariance 16.1 Relativistic Quantum Field Theory 16.1.1 Quantization of Classical Fields 16.1.2 Symmetries of the Classical Action 16.1.3 Lagrangian Densities for Free Fields 16.1.4 Euler–Lagrange Field Equations 16.2 Conserved Currents and Charges 16.2.1 Noether’s Theorem 16.2.2 Conserved Charges 16.2.3 Symmetries for Interacting Fields 16.2.4 Partially Conserved Currents 16.3 Gauge Invariance in Quantum Mechanics 16.4 Gauge Invariance and the Photon Mass 16.5 Quantum Electrodynamics 16.5.1 Global U(1) Gauge Invariance 16.5.2 Local U(1) Gauge Invariance 16.5.3 Gauging the U(1) Symmetry 16.6 Yang–Mills Fields 16.6.1 Non-Abelian Gauge Invariance 16.6.2 Covariant Derivatives 16.6.3 Non-Abelian Generalization of QED 16.6.4 Properties of Non-Abelian Gauge Fields Background and Further Reading Problems Part II Broken Symmetry 17 Spontaneous Symmetry Breaking 17.1 Modes of Symmetry Breaking 17.2 Explicit Symmetry Breaking 17.3 The Vacuum and Hidden Symmetry 17.4 Spontaneously Broken Discrete Symmetry 17.4.1 Symmetry in the Wigner Mode 17.4.2 Spontaneously Broken Symmetry 17.4.3 Summary of Spontaneously Broken Discrete Symmetry 17.5 Spontaneously Broken Continuous Symmetry 17.5.1 Symmetric Classical Vacuum 17.5.2 Hidden Continuous Symmetry 17.5.3 The Goldstone Theorem 17.5.4 The Stability Subgroup Background and Further Reading Problems 18 The Higgs Mechanism 18.1 Photons and the Higgs Loophole 18.2 The Abelian Higgs Model 18.2.1 Lagrangian Density 18.2.2 Symmetry Breaking 18.2.3 Understanding the Higgs Mechanism 18.3 Vacuum Screening Currents 18.3.1 Gauge Invariance and Mass 18.3.2 Screening Currents and Effective Mass 18.3.3 Atomic Screening Currents 18.3.4 The Meissner Effect and Massive Photons 18.3.5 Gauge Invariance and Longitudinal Polarization 18.4 The Higgs Boson Background and Further Reading Problems 19 The Standard Model 19.1 The Standard Electroweak Model 19.1.1 Guidance from Data 19.1.2 The Gauge Group 19.1.3 Electroweak Lagrangian Density 19.1.4 The Electroweak Higgs Mechanism 19.1.5 Particle Spectrum 19.2 Quantum Chromodynamics 19.2.1 A Color Gauge Theory 19.2.2 The QCD Lagrangian Density 19.2.3 Symmetries of the QCD Lagrangian Density 19.2.4 Asymptotic Freedom and Confinement 19.2.5 Exotic Hadrons and Glueballs 19.3 The Gauge Theory of Fundamental Interactions Background and Further Reading Problems 20 Dynamical Symmetry 20.1 The Microscopic Dynamical Symmetry Method 20.1.1 Solution Algorithm 20.1.2 Validity and Utility of the Approach 20.1.3 Spontaneously Broken Symmetry and Dynamical Symmetry 20.1.4 Kinematics and Dynamics 20.2 Monolayer Graphene in a Strong Magnetic Field 20.2.1 Electronic Dispersion in Monolayer Graphene 20.2.2 Landau Levels for Massless Dirac Electrons 20.2.3 SU(4) Quantum Hall Ferromagnetism 20.2.4 Fermion Dynamical Symmetries for Graphene 20.2.5 Graphene SO(8) Dynamical Symmetries 20.2.6 Generalized Coherent States for Graphene 20.2.7 Physical Interpretation of the Energy Surfaces 20.2.8 Quantum Phase Transitions in Graphene 20.3 Universality of Emergent States 20.3.1 Topological and Algebraic Constraints 20.3.2 Analogy with General Relativity 20.3.3 Analogy with Renormalization Group Flow Background and Further Reading Problems 21 Generalized Coherent States 21.1 Glauber Coherent States 21.2 Symmetry and Coherent Electromagnetic States 21.2.1 Quantum Optics Hamiltonian 21.2.2 Symmetry of the Hamiltonian 21.2.3 Hilbert Space 21.2.4 Stability Subgroup 21.2.5 Coset Space 21.2.6 The Coherent State 21.3 Construction of Generalized Coherent States 21.4 Atoms Interacting with Classical Radiation 21.5 Fermion Coherent States Background and Further Reading Problems 22 Restoring Symmetry by Projection 22.1 Rotational Symmetry in Atomic Nuclei 22.2 The Method of Generator Coordinates 22.2.1 Generator Coordinates and Generating Functions 22.2.2 The Hill–Wheeler Equation 22.3 Angular Momentum Projection 22.3.1 The Rotation Operator and its Representations 22.3.2 The Angular Momentum Projection Operator 22.3.3 Solving the Eigenvalue Equation 22.4 Particle Number Projection 22.4.1 Violation of Particle Number in BCS Theory 22.4.2 Bogoliubov Quasiparticles 22.4.3 The Particle Number Projection Operator 22.5 Parity Projection 22.5.1 The Parity Transformation 22.5.2 Breaking Parity Spontaneously 22.5.3 The Parity Projection Operator 22.6 Spin and Momentum Projection for Electrons 22.6.1 Hartree–Fock Approximation for the Hubbard Model 22.6.2 Spin and Momentum Projection in the Hubbard Model Background and Further Reading Problems 23 Quantum Phase Transitions 23.1 Classical and Quantum Phases 23.1.1 Thermal and Quantum Fluctuations 23.1.2 Quantum Critical Behavior 23.2 Classification of Phase Transitions 23.3 Classical Second-Order Phase Transitions 23.3.1 Critical Exponents 23.3.2 Universality 23.4 Continuous Quantum Phase Transitions 23.4.1 Order Only at Zero Temperature 23.4.2 Order Also at Finite Temperature 23.5 Quantum to Classical Crossover 23.5.1 The Classical–Quantum Mapping 23.5.2 Optimal Dimensionality 23.5.3 Quantum versus Classical Phase Transitions 23.6 Example: Ising Spins in a Transverse Field 23.6.1 Hamiltonian 23.6.2 Ground States and Quasiparticle States for g → 0 23.6.3 Ground States and Quasiparticle States for g → ∞ 23.6.4 Competing Ground States 23.6.5 The Quantum Critical Region 23.6.6 Phase Diagram 23.7 Dynamical Symmetry and Quantum Phases 23.7.1 Quantum Phases in Superconductors 23.7.2 Unique Perspective of Dynamical Symmetries 23.7.3 Quantum Phases and Insights from Symmetry Background and Further Reading Problems Part III Topology and Geometry 24 Topology, Manifolds, and Metrics 24.1 Basic Concepts of Topology 24.1.1 Discrete Categories Distinguished Qualitatively 24.1.2 The Nature of Topological Proofs 24.1.3 Neighborhoods 24.2 Topology and Topological Spaces 24.2.1 Formal Definition of a Topology 24.2.2 Continuity 24.2.3 Compactness 24.2.4 Connectedness 24.2.5 Homeomorphism 24.3 Topological Invariants 24.3.1 Compactness Is a Topological Invariant 24.3.2 Connectedness Is a Topological Invariant 24.3.3 Dimensionality Is a Topological Invariant 24.4 Homotopies 24.4.1 Homotopic Equivalence Classes 24.4.2 Homotopy Classes Are Topological Invariants 24.4.3 The First Homotopy Group 24.4.4 Higher Homotopy Groups 24.5 Manifolds and Metric Spaces 24.5.1 Differentiable Manifolds 24.5.2 Metric Spaces Background and Further Reading Problems 25 Topological Solitons 25.1 Models in (1+1) Dimensions 25.1.1 Equations of Motion 25.1.2 Vacuum States and Boundary Conditions 25.1.3 Topological Charges 25.1.4 Soliton Solutions in (1+1) Dimensions 25.2 Solitons in (2+1) and (3+1) Dimensions 25.2.1 Homotopy Groups 25.2.2 Mapping Spheres to Spheres 25.3 Yang–Mills Fields and Instantons 25.3.1 Solitons in the Euclidean Yang–Mills Field 25.3.2 Boundary Conditions 25.3.3 Topological Classification of Solutions 25.3.4 Physical Interpretation of Instantons Background and Further Reading Problems 26 Geometry and Gauge Theories 26.1 Parallel Transport 26.1.1 Flat and Curved Manifolds 26.1.2 Connections and Covariant Derivatives 26.1.3 Curvature and Parallel Transport 26.2 Absolute Derivatives 26.3 Parallel Transport in Charge Space 26.4 Fiber Bundles and Gauge Manifolds 26.4.1 Tangent Spaces and Tangent Bundles 26.4.2 Fiber Bundles 26.5 Gauge Symmetry on a Spacetime Lattice 26.5.1 Path-Dependent Gauge Representations 26.5.2 Lattice Gauge Symmetries Background and Further Reading Problems 27 Geometrical Phases 27.1 The Aharonov–Bohm Effect 27.1.1 Experimental Setup 27.1.2 Analysis of Magnetic Fields 27.1.3 Phase of the Electron Wavefunction 27.1.4 Topological Origin of the Aharonov–Bohm Effect 27.2 The Berry Phase 27.2.1 Fast and Slow Degrees of Freedom 27.2.2 The Berry Connection 27.2.3 Trading the Connection for a Phase 27.2.4 Berry Phases 27.2.5 Berry Curvature 27.3 An Electron in a Magnetic Field 27.4 Topological Implications of Berry Phases Background and Further Reading Problems 28 Topology of the Quantum Hall Effect 28.1 The Classical Hall Effect 28.1.1 Hall Effect Measurements 28.1.2 Quantization of the Hall Effect 28.2 Landau Levels for Non-Relativistic Electrons 28.2.1 Hamiltonian and Schrödinger Equation 28.2.2 Landau Levels and Density of States 28.3 The Integer Quantum Hall Effect 28.3.1 Understanding the Integer Quantum Hall Effect 28.3.2 Disorder and the Integer Quantum Hall State 28.3.3 Edge States and Conduction 28.4 Topology and Integer Quantum Hall Effects 28.4.1 Berry Phases and Adiabatic Curvature 28.4.2 Chern Numbers 28.5 The Fractional Quantum Hall Effect 28.5.1 Properties of the Fractional Quantum Hall State 28.5.2 Fractionally Charged Quasiparticles 28.5.3 Nature of the Edge States 28.5.4 Topology and Fractional Quantum Hall States Background and Further Reading Problems 29 Topological Matter 29.1 Topology and the Many-Body Paradigm 29.1.1 Adiabatic Continuity 29.1.2 Spontaneous Symmetry Breaking 29.1.3 Beyond the Landau Picture 29.2 Berry Phases and Brillouin Zones 29.3 Topological States and Symmetry 29.4 Topological Insulators 29.4.1 The Quantum Spin Hall Effect 29.4.2 The Z[sub(2)] Topological Index 29.5 Weyl Semimetals 29.5.1 A Topological Conservation Law 29.5.2 Realization of a Weyl Semimetal 29.6 Majorana Modes 29.6.1 The Dirac Equation in Condensed Matter 29.6.2 Quasiparticles and Anti-Quasiparticles 29.7 Topological Superconductors 29.7.1 Topological Majorana Fermions 29.7.2 Fractionalization of Electrons 29.8 Fractional Statistics 29.8.1 Anyon Statistics 29.8.2 The Braid Group 29.8.3 Abelian and Non-Abelian Anyons 29.9 Quantum Computers and Topological Matter 29.9.1 Qubits and Quantum Information 29.9.2 The Problem of Decoherence 29.9.3 Topological Quantum Computation Background and Further Reading Problems Part IV A Variety of Physical Applications 30 Angular Momentum Recoupling 30.1 Recoupling of Three Angular Momenta 30.1.1 6J Coefficients 30.1.2 Racah Coefficients 30.2 Matrix Elements of Tensor Products 30.3 Recoupling of Four Angular Momenta 30.3.1 9J Coefficients 30.3.2 Transformation Between L–S and J–J Coupling 30.3.3 Matrix Element of an Independent Tensor Product 30.3.4 Matrix Element of a Scalar Product Background and Further Reading Problems 31 Nuclear Fermion Dynamical Symmetry 31.1 The Ginocchio Model 31.2 The Fermion Dynamical Symmetry Model 31.2.1 Dynamical Symmetry Generators 31.2.2 The FDSM Dynamical Symmetries 31.2.3 FDSM Irreducible Representations 31.2.4 Quantitative FDSM Calculations 31.3 The Interacting Boson Model Background and Further Reading Problems 32 Superconductivity and Superfluidity 32.1 Conventional Superconductors 32.2 Unconventional Superconductors 32.3 The SU(4) Model of Non-Abelian Superconductors 32.3.1 The SU(4) Algebra 32.3.2 The SU(4) Collective Subspace 32.3.3 The Dynamical Symmetry Hamiltonian 32.3.4 The SU(4) Dynamical Symmetry Limits 32.3.5 The SO(4) Dynamical Symmetry Limit 32.3.6 The SU(2) Dynamical Symmetry Limit 32.3.7 The SO(5) Dynamical Symmetry Limit 32.3.8 Conventional and Unconventional Superconductors 32.4 Some Implications of SU(4) Symmetry 32.4.1 No Double Occupancy 32.4.2 Quantitative Gap and Phase Diagrams 32.4.3 Coherent State Energy Surfaces 32.4.4 Fundamental SU(4) Instabilities 32.4.5 Origin of High Critical Temperatures 32.4.6 Universality of Dynamical Symmetry States Background and Further Reading Problems 33 Current Algebra 33.1 The CVC and PCAC Hypotheses 33.1.1 Current Algebra and Chiral Symmetry 33.1.2 The Partially Conserved Axial Current 33.2 The Linear σ-Model 33.2.1 The Particle Spectrum 33.2.2 Explicit Breaking of Chiral Symmetry Background and Further Reading Problems 34 Grand Unified Theories 34.1 Evolution of Fundamental Coupling Constants 34.2 Minimal Criteria for a Grand Unified Group 34.3 The SU(5) Grand Unified Theory 34.4 Beyond Simple GUTs Background and Further Reading Problems Appendix A Second Quantization A.1 Symmetrized Many-Particle Wavefunctions A.1.1 Bosonic and Fermionic Wavefunctions A.1.2 Slater Determinants A.2 Dirac Notation A.2.1 Bras, Kets, and Bra-Ket Pairs A.2.2 Bras and Kets as Row and Column Vectors A.2.3 Linear Operators Acting on Bras and Kets A.3 Occupation Number Representation A.3.1 Creation and Annihilation Operators A.3.2 Basis Transformations A.3.3 Many-Particle Vector States A.3.4 One-Body and Two-Body Operators Appendix B Natural Units B.1 The Advantage of Natural Units B.2 Natural Units in Quantum Field Theory Appendix C Angular Momentum Tables Appendix D Lie Algebras References Index Student Solutions Manual Front Page Chapter 01 Introduction Chapter 02 Some Properties of Groups Chapter 03 Introduction to Lie Groups Chapter 04 Permutation Groups Chapter 05 Electrons on Periodic Lattices Chapter 06 The Rotation Group Chapter 07 Classification of Lie Groups Chapter 08 Unitary and Special Unitary Groups Chapter 09 SU(3) Flavor Symmetry Chapter 10 Harmonic Oscillators and SU(3) Chapter 11 SU(3) Matrix Elements Chapter 12 Non-Compact Groups Chapter 13 Lorentz Group Chapter 14 Lorentz Covariant Fields Chapter 15 Poincaré Invariance Chapter 16 Gauge Invariance Chapter 17 Spontaneous Symmetry Breaking Chapter 18 The Higgs Mechanism Chapter 19 The Standard Model Chapter 20 Dynamical Symmetry Chapter 21 Generalized Coherent States Chapter 22 Restoring Symmetry by Projection Chapter 23 Quantum Phase Transitions Chapter 24 Topology, Manifolds, and Metrics Chapter 25 Topological Solitons Chapter 26 Geometry and Gauge Theories Chapter 27 Geometrical Phases Chapter 28 Topology of the Quantum Hall Effect Chapter 29 Topological Matter Chapter 30 Angular Momentum Recoupling Chapter 31 Nuclear Fermion Dynamical Symmetry Chapter 32 Superconductivity and Superfluidity Chapter 33 Current Algebra Chapter 34 Grand Unified Theories