دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Jiřina Vejnarová (editor). Nic Wilson (editor)
سری:
ISBN (شابک) : 3030867714, 9783030867713
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 708
[695]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Symbolic and Quantitative Approaches to Reasoning with Uncertainty: 16th European Conference, ECSQARU 2021, Prague, Czech Republic, September 21–24, ... (Lecture Notes in Artificial Intelligence) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رویکردهای نمادین و کمی به استدلال با عدم قطعیت: شانزدهمین کنفرانس اروپایی، ECSQARU 2021، پراگ، جمهوری چک، 21 تا 24 سپتامبر، ... (یادداشت های سخنرانی در هوش مصنوعی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعه مقالات داوری شانزدهمین کنفرانس اروپایی رویکردهای نمادین و کمی به استدلال با عدم قطعیت، ECSQARU 2021، برگزار شده در پراگ، جمهوری چک، در سپتامبر 2021 است. 48 مقاله کامل ارائه شده در این جلد با دقت بررسی و از 63 مقاله انتخاب شدند. ارسالی ها مقالات در بخشهای موضوعی درباره استدلال و استدلال قیاسی، شبکههای بیزی و مدلهای گرافیکی، توابع باور، احتمال نادرست، مدیریت ناسازگاری و ترجیحات، نظریه امکان و رویکردهای فازی، و منطق احتمال سازماندهی شدهاند.
This book constitutes the refereed proceedings of the 16th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2021, held in Prague, Czech Republic, in September 2021. The 48 full papers presented in this volume were carefully reviewed and selected from 63 submissions. The papers are organized in topical sections about argumentation and analogical reasoning, Bayesian networks and graphical models, belief functions, imprecise probability, inconsistency handling and preferences, possibility theory and fuzzy approaches, and probability logic.
Preface Organization Contents Argumentation and Analogical Reasoning Analogies Between Sentences: Theoretical Aspects - Preliminary Experiments 1 Introduction 2 Related Work 3 Formal Framework 3.1 Strong Analogical Proportions 3.2 Weak Analogical Proportions 3.3 Analogical Proportions and Implication 3.4 Analogical Proportions and Sentences 4 Experimental Context - Evaluation Metrics 4.1 Datasets 4.2 Embedding Techniques 4.3 Classifiers 5 Results 5.1 CNN and RF Results for Generated Sentences 5.2 CNN and RF Results for PDTB Dataset 6 Candidate Applications 7 Conclusion References Non-monotonic Explanation Functions 1 Introduction 2 Classification Problem 3 Abductive Explanation Functions 4 Properties of Explanation Functions 5 Argument-Based Explanation Function 6 Related Work 7 Conclusion References Similarity Measures Based on Compiled Arguments 1 Introduction 2 Background 2.1 Logical Concepts 2.2 Similarity Measures 3 Compilation of Arguments 4 Extended Similarity Measures 5 Extended Principles 6 Conclusion References Necessary and Sufficient Explanations for Argumentation-Based Conclusions 1 Introduction 2 Related Work 3 Preliminaries 3.1 ASPIC+ 3.2 Basic Explanations 4 Necessity and Sufficiency 4.1 Necessity and Sufficiency for Acceptance 4.2 Necessity and Sufficiency for Non-acceptance 4.3 Necessity, Sufficiency and Minimality 5 Applying Necessity and Sufficiency 6 Conclusion References Addressing Popular Concerns Regarding COVID-19 Vaccination with Natural Language Argumentation Dialogues 1 Introduction 2 Conceptualising Argumentation 2.1 Using Arguments and Concerns for a Persuasive Chatbot 2.2 Using an Argument Graph as Chatbot Knowledge Base 3 Hypotheses 4 Chatbot Design 4.1 Knowledge Base Construction 4.2 Understanding the User Input 5 Experiments 6 Evaluation of the Chatbot 7 Discussion and Conclusion References Argument Strength in Probabilistic Argumentation Using Confirmation Theory 1 Introduction 2 Defeasible Logic 3 Probabilistic Argumentation 4 Modelling Normality 5 Argument Strength 6 Confirmation Theory 7 Multiple Defeasible Rules 8 Discussion References The Degrees of Monotony-Dilemma in Abstract Argumentation 1 Introduction 2 Theoretical Preliminaries 3 Degrees of Monotony 4 The ``Degrees of Monotony''-Dilemma 5 Discussion 6 Conclusion References Constrained Incomplete Argumentation Frameworks 1 Introduction 2 Background 2.1 Dung's Abstract Argumentation 2.2 Incomplete AFs 3 Constrained IAFs 3.1 Constraints on Completions 3.2 Definition and Expressivity of CIAFs 3.3 Complexity Issues 4 CIAFs and Extension Enforcement 4.1 Expansion-Based Enforcement 4.2 Enforcement as Credulous Acceptability in CIAFs 5 Related Work 6 Conclusion References Complexity of Nonemptiness in Control Argumentation Frameworks 1 Introduction 2 Preliminaries 2.1 Abstract Argumentation Frameworks 2.2 Control Argumentation Frameworks 2.3 Some Background on Complexity Theory 3 Complexity of Nonemptiness in CAFs 4 Conclusion References Generalizing Complete Semantics to Bipolar Argumentation Frameworks 1 Introduction 2 Background 3 Bi-Complete Semantics 3.1 Expressiveness 3.2 Refinements 4 Related Work 5 Discussion References Philosophical Reflections on Argument Strength and Gradual Acceptability 1 Introduction 2 Background 2.1 Arguments as Statement or as Inferential Structures 2.2 Basic Concepts of Argument Structure and Relations 3 Logical, Dialectical and Rhetorical Argument Strength 4 Evaluating Semantics and Principles 4.1 Be Explicit About Which Aspects of Argument Strength Are Modelled 4.2 Be Explicit About the Interpretation of Arguments and Their Relations 5 Conclusion References An Abstract Argumentation and Logic Programming Comparison Based on 5-Valued Labellings 1 Introduction 2 Preliminaries 2.1 Abstract Argumentation 2.2 Logic Programs and Semantics 3 From Logic Programs to Argumentation Frameworks 3.1 Step 1: AF Instantiation 3.2 Step 2: Applying Argumentation Semantics 3.3 Step 3: Computing Conclusion Labellings 4 Semantic Correspondences 5 The L-Stable Semantics for Abstract Argumentation Frameworks 6 On the Role of Sink Arguments 7 Conclusion References Assumption-Based Argumentation Is Logic Programming with Projection 1 Introduction 2 Formal Preliminaries 2.1 Normal Logic Programs 2.2 Assumption-Based Argumentation 3 From ABA to LP 4 From LP to ABA 5 Summary and Main Result 6 Conclusion References A Paraconsistent Approach to Deal with Epistemic Inconsistencies in Argumentation 1 Introduction 2 The ASPIC? Framework 2.1 Attacks and Defeats 2.2 Abstract Argumentation Frameworks with Two Kinds of Defeats 3 Rationality Postulates 4 Related Work and Discussion 5 Conclusion and Future Works References Gradual Semantics for Weighted Bipolar SETAFs 1 Introduction 2 Formal Setting 3 Desirable Properties 4 Links Between Properties 5 Gradual Semantics 6 Discussion References Bayesian Networks and Graphical Models Multi-task Transfer Learning for Bayesian Network Structures 1 Introduction 2 Bayesian Network Multi-task Structure Learning 3 The MT-MMHC Algorithm 3.1 Overall Process of MT-MMHC 3.2 The Combined Association Measure 3.3 MT Greedy Search with CPC Constraints 4 Experiments 4.1 Experimental Protocol 4.2 Empirical Results 5 Conclusion References Persuasive Contrastive Explanations for Bayesian Networks 1 Introduction 2 Persuasive Contrastive Explanations 3 Explanation Lattice 4 Computing Sufficient and Counterfactual Explanations 4.1 Searching the Lattice for Sufficient Explanations 4.2 Searching the Lattice for Counterfactual Explanations 4.3 Combining the Search for Explanations 4.4 Complexity and Further Optimisations 5 Related Work 6 Conclusions and Further Research References Explainable AI Using MAP-Independence 1 Introduction 2 Preliminaries and Notation 3 MAP-Independence 3.1 MAP-independence for Justification and Decision Support 4 Formal Problem Definition and Results 4.1 Computational Complexity 4.2 Algorithm and Algorithmic Complexity 5 Conclusion and Future Work References Bayesian Networks for the Test Score Prediction: A Case Study on a Math Graduation Exam 1 Introduction 2 Models 3 Probabilistic Inference 4 Efficient Inference Method for the Score Computation 5 Experimental Model Comparisons 6 Discussion References Fine-Tuning the Odds in Bayesian Networks 1 Introduction 2 Parametric Bayesian Networks 3 Parametric Markov Chains 4 Analysing Parametric BNs Using pMC Techniques 5 Experiments 6 Conclusion References Cautious Classification with Data Missing Not at Random Using Generative Random Forests 1 Introduction 2 Probabilistic Circuits and Generative Random Forests 3 Tractable Conservative Inference 4 Non-ignorable Training Data 5 Experiments 6 Conclusion References Belief Functions Scoring Rules for Belief Functions and Imprecise Probabilities: A Comparison 1 Introduction 2 Dutch Books and Proper Scoring Rules 3 Background on Uncertainty Measures and Their Geometric Interpretation 4 Coherence for Belief Functions 5 Comparing Scoring Rules for Belief Functions and Imprecise Probabilities 5.1 Scoring Rule for Imprecise Probabilities 5.2 Distinguishing Belief Functions and Imprecise Probabilities Through Scoring Rules 6 Conclusion References Comparison of Shades and Hiddenness of Conflict 1 Introduction 2 Basic Notions 3 Hidden Conflict 4 Shades of Conflict 5 Comparison of both Approaches 5.1 Comparison by Examples 5.2 A Theoretic Comparison 6 Conclusion References Games of Incomplete Information: A Framework Based on Belief Functions 1 Introduction 2 Background and Motivations 2.1 Dempster-Shafer's Theory of Evidence 2.2 Decision Making with Belief Functions 2.3 Game Theory 3 Credal Games 4 From Credal Games to Complete Games 4.1 The Direct Transform 4.2 The Conditioned Transform 5 Conclusion References Uncertainty-Aware Resampling Method for Imbalanced Classification Using Evidence Theory 1 Introduction 2 Related Work 3 Theory of Evidence 4 Uncertainty-Aware Hybrid Re-Sampling Method (UAHS) 4.1 Creating Soft Labels 4.2 Cleaning the Majority Class 4.3 Applying Selective Minority Oversampling 5 Experimental Study 5.1 Setup 5.2 Results Discussion 6 Conclusion References Approximations of Belief Functions Using Compositional Models 1 Motivation 2 Belief Functions 3 Compositional Models 4 Entropy 5 Example 6 Comparison of Heuristics on Random Models 7 Conclusions References Dempster-Shafer Approximations and Probabilistic Bounds in Statistical Matching 1 Introduction 2 Preliminaries 3 Statistical Matching 4 Dempster-Shafer Inner and Outer Approximations 4.1 Inner Approximating Conditional Belief Functions 4.2 Outer Approximating Conditional Belief Functions 4.3 -Contamination Models 5 Dempster-Shafer Approximation and Inference 6 Conclusions and Future Works References The Vehicle Routing Problem with Time Windows and Evidential Service and Travel Times: A Recourse Model 1 Introduction 2 Definitions and Notations 2.1 Problem Formulation 2.2 Belief Function Theory 3 A Recourse Model for the VRPTW with Evidential Times 3.1 Formalization 3.2 Evidential Failures 3.3 Particular Cases 4 Experimental Results 5 Conclusions References Imprecise Probability A New Score for Adaptive Tests in Bayesian and Credal Networks 1 Introduction 2 Related Work 3 Background on Bayesian and Credal Networks 3.1 Bayesian Networks 3.2 Credal Sets and Credal Networks 4 Testing Algorithms 5 Adaptive Testing in Bayesian and Credal Networks 6 A New Score for Testing Algorithms 7 Experiments 7.1 Single-Skill Experiments on Synthetic Data 7.2 Multi-skill Experiments on Real Data 8 Outlooks and Conclusions References Multi-label Chaining with Imprecise Probabilities 1 Problem Setting 1.1 Notions About Imprecise Probabilities 2 Multilabel Chaining with Imprecise Probabilities 2.1 Precise Probabilistic Chaining 2.2 Imprecise Probabilistic Chaining 3 Imprecise Chaining with NCC 3.1 Imprecise Branching 3.2 Marginalization 4 Experiments 4.1 Experimental Results 5 Conclusions References Centroids of Credal Sets: A Comparative Study 1 Introduction 2 Preliminary Concepts 3 Center Points of a Credal Set 3.1 The Shapley Value 3.2 Vertex Centroid 3.3 Incenter 3.4 Contraction Centroid 4 Relationships Between the Centroids 4.1 Probability Intervals 4.2 Connections Between the Incenter and the Contraction Centroid 5 Properties of the Centroids 6 Centrality Measures 7 Conclusions References The Smallest Probability Interval a Sequence Is Random for: A Study for Six Types of Randomness 1 Introduction 2 Forecasting Systems and Randomness 3 A Martingale-Theoretic Approach—Betting Strategies 4 Several Notions of (Imprecise) Randomness 5 Smallest Interval Forecasts and Randomness 6 What Do Smallest Interval Forecasts Look Like? 7 When Do These Smallest Interval Forecasts Coincide? 8 Conclusions and Future Work References Inconsistency Handling and Preferences Merging Epistemic States and Manipulation 1 Introduction 2 Preliminaries 3 Epistemic State Merging Operators 4 On Manipulability for ES Merging Operators 5 Concrete Examples of Merging Operators 6 Concluding Remarks References Explanation with the Winter Value: Efficient Computation for Hierarchical Choquet Integrals 1 Introduction 2 Background 2.1 Multi-attribute Preference Model 2.2 Aggregation Models 2.3 Shapley and Winter Values 2.4 Explanation of Hierarchical MCDA 3 Computation of the Explanation for Hierarchical Choquet Integrals 3.1 Pruning and Recursive Properties 3.2 Algorithm for Hierarchical Choquet Integrals 4 Experimental Analysis of the Computation Time 5 Related Works 6 Conclusion References Inducing Inference Relations from Inconsistency Measures 1 Introduction 2 Inference Relations from Inconsistency Measures 3 Structural Properties Checking 4 KLM Properties Checking 5 Paraconsistency Checking 6 Dependencies and Incompatibilities 7 Conclusion and Future Work References The Degree of Conflict Between Formulas in an Inconsistent Knowledge Base 1 Introduction 2 Preliminaries 3 Degree of Conflict Between Formulas 4 The Causality-Based Explanation 5 Conclusion References Possibility Theory and Fuzzy Approaches Representation of Explanations of Possibilistic Inference Decisions 1 Introduction 2 Background 3 Justifying Inference Results 3.1 Justifying the Possibility Degree b(x)(u) = 4 Justification and Unexpectedness 4.1 Extracting Justifications: R and Rn Functions 4.2 Extracting Unexpectedness: C and Cn Functions 4.3 Justification and Unexpectedness of b(x)(u) 5 Representing Explanations of Possibilistic Inference Decisions 5.1 Explanation Query 5.2 Vocabulary Construction 5.3 Possibilistic Conceptual Graphs 5.4 Conceptual Graphs Based on the Vocabulary VE 5.5 Representation of Explanations 6 Conclusion References Towards a Tesseract of Sugeno Integrals 1 Introduction 2 Structures of Opposition 2.1 Logical View of the Classical Square 2.2 Modern Square of Opposition 2.3 Classical and Modern Cubes of Opposition 2.4 The Tesseract 3 Cube of Sugeno Integral 3.1 Sugeno Integrals and Related Integrals 3.2 In Search of a Modern Cube of Sugeno Integrals 4 Concluding Remarks References Canonical Extension of Possibility Measures to Boolean Algebras of Conditionals 1 Introduction 2 Possibility and Conditional Possibility Measures 3 A Brief Recap on Boolean Algebras of Conditionals 4 The Strong Conditional Event Problem for Possibility Measures 5 Conclusions and Future Work References On the KLM Properties of a Fuzzy DL with Typicality 1 Introduction 2 The Description Logic ALC and Fuzzy ALC 3 Fuzzy ALC with Typicality: ALCFT 4 KLM Properties of ALCFT 5 Strengthening ALCFT: A Closure Construction 6 Conclusions References Probability Logics Trust Evidence Logic 1 Introduction 2 Background and Motivations 3 Syntax and Semantics of TEL 4 Modeling Trust in TEL 5 Soundness and Completeness 5.1 Soundness 5.2 Completeness 6 Conclusion and Future Works References Generalized Rules of Probabilistic Independence 1 Introduction 2 Preliminaries 2.1 Semi-graphoid Independence Relations 2.2 Multiinformation and Rules of Independence 2.3 Structural Semi-graphoid Independence Relations 3 Generalizing Inference Rules 4 Conclusions and Future Research References Algebras of Sets and Coherent Sets of Gambles 1 Introduction and Overview 2 Desirability 3 Stucture of Questions and Possibilities 4 Information Algebra of Coherent Sets of Gambles 5 Atoms and Maximal Coherent Sets of Gambles 6 Information Algebras Homomorphisms 7 Set Algebras 8 Conclusions References A Probabilistic Deontic Logic 1 Introduction 2 Syntax and Semantics 3 Axiomatization 4 Soundness and Completeness 5 Decidability 6 Conclusion References Iterated Conditionals and Characterization of P-Entailment 1 Introduction 2 Preliminary Notions and Results 3 A General Notion of Iterated Conditional 4 Characterization of P-Entailment in Terms of Iterated Conditionals 5 Conclusions References A Triple Uniqueness of the Maximum Entropy Approach 1 Introduction 2 The Maximum Entropy Approach and Two Modifications 3 Maximal (Modified) Entropy 4 Modification Number 3 5 Conclusions References A Logic and Computation for Popper's Conditional Probabilities 1 Introduction 2 Popper Functions 3 Definability 3.1 Many-Sorted Monadic Second-Order Logic for Popper Functions 3.2 Definability in Second-Order Logic 4 Decidability 4.1 Translation 1 4.2 Translation 2 4.3 Translation 3 5 Computing Algorithms 5.1 Algorithms 5.2 Complexity of Quantifier Elimination in the Algorithms 6 Conclusion and Future Work 6.1 Conclusion 6.2 Future Work References Interpreting Connexive Principles in Coherence-Based Probability Logic 1 Introduction 2 Preliminary Notions and Results 3 Approach 1: Connexive Principles and Default Reasoning 4 Approach 2: Connexive Principles and Compounds of Conditionals 5 Concluding Remarks References Correction to: Persuasive Contrastive Explanations for Bayesian Networks Correction to: Chapter “Persuasive Contrastive Explanations for Bayesian Networks” in: J. Vejnarová and N. Wilson (Eds.): Symbolic and Quantitative Approaches to Reasoning with Uncertainty, LNAI 12897, https://doi.org/10.1007/978-3-030-86772-0_17 Author Index