دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Neeraj Shrivastava, Shubhangi Mahajan, Ajit Varma سری: Soil Biology ISBN (شابک) : 9783030519155, 9783030519162 ناشر: Springer سال نشر: 2020 تعداد صفحات: 482 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Symbiotic Soil Microorganisms: Biology and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب میکروارگانیسم های خاک سمبیوتیک: زیست شناسی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به بررسی همزیستی میکروبی با تمرکز ویژه بر میکروارگانیسم های خاک می پردازد و کاربرد آنها را در افزایش رشد و عملکرد گیاه برجسته می کند. این به انواع مختلفی از میکروب های باکتریایی و قارچی مرتبط با پدیده های همزیستی، از جمله همزیستی ریزوبیوم، همزیستی میکوریزای آربوسکولار، همزیستی اکتومیکوریزی، همزیستی جلبکی/گلسنگ، و همزیستی آرکئال اشاره می کند. با ارائه راهبردهایی برای به کارگیری طیف متنوعی از همزیستیهای باکتریایی و قارچی در تقویت مواد مغذی، سازگاری گیاهان در خاکهای آلوده و کاهش پاتوژنز، راههای یکپارچهسازی رویکردهای متنوع برای افزایش تولید محصول تحت اکوسیستم کشاورزی مرسوم فعلی را بررسی میکند. این کتاب با ارائه بینش هایی در مورد همزیست های میکروبی و چالش های اتخاذ یک رویکرد هم افزایی میکروب گیاهی به سمت سلامت گیاه، منبع ارزشمندی برای محققان، دانشجویان فارغ التحصیل و هر کسی در صنعت است که روی کودهای زیستی و کاربردهای کشاورزی آنها کار می کند.
This book explores microbial symbiosis, with a particular focus on soil microorganisms, highlighting their application in enhancing plant growth and yield. It addresses various types of bacterial and fungal microbes associated with symbiotic phenomena, including rhizobium symbiosis, arbuscular mycorrhizal symbiosis, ectomycorrhizal symbiosis, algal/lichen symbiosis, and Archeal symbiosis. Presenting strategies for employing a diverse range of bacterial and fungal symbioses in nutrient fortification, adaptation of plants in contaminated soils, and mitigating pathogenesis, it investigates ways of integrating diverse approaches to increase crop production under the current conventional agroecosystem. Providing insights into microbial symbioses and the challenges of adopting a plant-microbe synergistic approach towards plant health, this book is a valuable resource for researchers, graduate students and anyone in industry working on bio-fertilizers and their agricultural applications.
Contents Part I: Fungal Symbiosis Chapter 1: Current Status-Enlightens in Its Biology and Omics Approach on Arbuscular Mycorrhizal Community 1.1 Introduction 1.2 Goal for Studying Its Biology and Omics Approaches 1.3 Phylogeny of New Speices of AMF 1.4 Genomics 1.5 Fungal Metabolism During Symbiotic Life 1.6 Proteomics 1.7 Symbiotic Root-Microbe Interactions 1.8 Enzymes 1.9 Biology of AMF on Different Crops: Insight and Impact 1.10 AMF Applications in Different Crops Under Varied Agro-Ecology 1.11 Opportunities and Challenges: AMF 1.12 Conclusion References Chapter 2: An Insight through Root-Endophytic-Mutualistic Association in Improving Crop Productivity and Sustainability 2.1 Introduction 2.2 Endophyte Distribution Pattern, Grouping, and Transmission Mode 2.3 The Beneficial Endophytic Secretions: Bioactive Natural Products 2.3.1 The Antimicrobial Bioactive Metabolites 2.3.2 Anti-Insect Bioactive Potential 2.4 The Quadra-Brigade of Endophytic Microbes: The Components of EPH´s 2.4.1 Rhizobiaceae 2.4.2 Piriformaspora indica 2.4.3 Trichodermal strains 2.4.4 AMF: Arbuscular Mycorrhizal Fungi 2.5 EPHs: A Mutualistic Boon for Sustainable Agriculture 2.5.1 Promoting Plant Growth and Increasing Market Value 2.5.2 Integrated Pest and Disease Management 2.6 Successful Trials: Integrating Crop Management Practices with Endophytic Symbionts 2.6.1 The SRI Trial: System of Rice Intensification 2.7 Improved Agricultural Prospective of EPHs 2.7.1 Developing Tolerance to Stress by Optimizing the Redox Environment 2.7.2 Sequestering the Future Agricultural Stress 2.8 Conclusion References Chapter 3: Interaction Between Root Endophytes and Plants: Their Bioactive Products and Significant Functions 3.1 Introduction 3.2 Lifestyle of Root Endophytes 3.3 Plant-Endophyte Relationship 3.4 Bioactive Product Synthesized by Endophytes 3.4.1 Ambuic Acid 3.4.2 Cryptocin 3.4.3 Colutellin A 3.4.4 Pesatcin 3.4.5 Torreyanic Acid 3.5 Influence of Endophytes on Genetic and Phenotypic Expression of Plants 3.6 Significant Role of Root Endophytes 3.6.1 Endophytes Are Saprobic Decomposers 3.6.2 Endophytes as Producer of Antibiotics 3.6.3 Antiviral Compounds 3.6.4 Endophytic Fungal Products as Anticancer Agents 3.6.5 Antidiabetic Agents from Endophytes 3.7 Conclusion and Future Insights References Chapter 4: Unravelling the Role of Endophytes in Micronutrient Uptake and Enhanced Crop Productivity 4.1 Introduction 4.2 Major Groups of Endophytic Microbes 4.2.1 Fungal Endophytes 4.2.2 Class 1 Clavicipitaceous Endophytes 4.2.3 Class 2 Endophytes 4.2.4 Class 3 Endophytes 4.2.5 Class 4 Endophytes 4.2.6 Bacterial Endophytes 4.2.7 The Ecology of Competent Endophytes 4.2.8 Host Range 4.2.9 Physiological Role 4.2.10 Ecological Role 4.3 Micronutrients and their Role in Plant Growth 4.3.1 Boron (B) 4.3.2 Zinc (Zn) 4.3.3 Manganese (Mn) 4.3.4 Iron (Fe) 4.3.5 Copper (Cu) 4.3.6 Molybdenum (Mo) 4.3.7 Chlorine (Cl) 4.4 Mechanism of Micronutrient Uptake by Endophytes 4.5 Role of Endophytes in Plant Growth Promotion 4.5.1 Phytostimulation 4.5.2 Biofertilization 4.5.3 Biocontrol 4.6 Conclusion and Future Prospects References Chapter 5: Dual and Tripartite Symbiosis of Invasive Woody Plants 5.1 Introduction 5.1.1 Mutualistic Symbiotic Relationship of Tree Species 5.2 Role of Mutualistic Associations in the Invasion of Alien Tree Species 5.3 Benefits of the Dual and Tripartite Mutualistic Relationship 5.3.1 Facultative Mutualistic Relationship 5.4 Distribution of Invasive Tree Species in the Time of Global Climate Changes 5.5 Conclusion References Chapter 6: Eco-friendly Association of Plants and Actinomycetes 6.1 Introduction 6.2 Actinomyces as Soil Dwellers 6.2.1 Rhizospheric Actinobacteria 6.2.2 Endophytic Actinobacteria 6.3 Plant Growth-Promoting Rhizobacteria (PGPR) 6.3.1 Machinery Involved in Plant-Growth Promoting Rhizobacteria 6.3.1.1 Production of Plant Growth Regulators (PGRs) 6.3.1.2 Production of Siderophores 6.3.1.3 Non-Symbiotic Nitrogen Fixation 6.3.1.4 Chitinase Production 6.3.1.5 Antagonistic Activity Against Phytopathogenic Fungi (Franco-Correa and Chavarro-Anzola 2016) 6.3.1.6 Mycorrhiza (MA) Helper Bacteria (Franco-Correa and Chavarro-Anzola 2016) 6.4 Ecological Contributions of Actinomycetes 6.4.1 Handling of Abiotic Stresses 6.4.1.1 Salinity 6.4.1.2 pH 6.4.2 Auxiliary Metabolite Generation 6.4.3 Fertility 6.4.4 Phytoremediation 6.4.5 Miscellaneous Contributions 6.5 Conclusion References Chapter 7: The Arbuscular Mycorrhizal Symbiosis of Trees: Structure, Function, and Regulating Factors 7.1 Types of Mycorrhiza 7.2 Evolution of Mycorrhizal Symbiosis 7.3 Classification of Arbuscular Fungi 7.4 Structure of Arbuscular Mycorrhizae 7.5 Global Distribution of Arbuscular Mycorrhizal Trees 7.6 Factors Impacting Trees and Their Fungal Symbionts References Chapter 8: Effectiveness of Arbuscular Mycorrhizas in Improving Carob Culture in the Mediterranean Regions 8.1 Introduction 8.2 Carob Origins and Cultivation 8.3 Economic Potential of Carob Tree 8.4 Agroecological Potential of Carob Tree 8.5 Importance of Mycorrhiza in Improving Carob Cultivation 8.5.1 Occurrence of Mycorrhizal Symbiosis in Carob Tree 8.5.2 Importance of AMF in Improving Carob Propagation 8.5.3 Importance of AMF in Enhancing Carob Tolerance to Drought 8.5.4 Importance of AMF in Improving Carob Tolerance to P Deficiency 8.5.5 Importance of AMF in Improving Field Establishment of Carob Tree 8.6 Conclusion References Chapter 9: Leaf Endophytes and Their Bioactive Compounds 9.1 Introduction 9.2 Leaf Endophytes 9.3 Endophytic Secondary Metabolites and Their Biological Activities 9.3.1 Phenolic Compounds 9.3.2 Terpenoids and Steroids 9.3.3 Alkaloids 9.3.4 Lipids 9.4 Conclusion References Chapter 10: Role of Endophytic Fungus Piriformospora indica in Nutrient Acquisition and Plant Health 10.1 Introduction 10.2 Role of P. indica in Plant Growth Promotion 10.3 Role of P. indica in Nutrient Transport 10.4 Role of P. indica in Phytohormones Regulation 10.5 P. indica as a Biocontrol Agent in Disease Resistance 10.6 Role of P. indica in Stress Response 10.7 Interaction of P. indica with Model Plants Arabidopsis thaliana and Nicotiana attenuate 10.8 Effect of P. indica on Transgenic Plants 10.9 Conclusion and Discussion References Chapter 11: The Role of Symbiotic Fungi in Nutri-Farms 11.1 Introduction 11.2 AMF as Bio-Fertilizer 11.3 AMF and Mineral Nutrition 11.4 AMF and Anti-Nutrients 11.5 AMF and Abiotic Stresses 11.5.1 Heavy Metals 11.5.2 Drought 11.5.3 Salinity 11.5.4 Temperature 11.5.5 Biotic Stress 11.6 AMF and Secondary Metabolites 11.7 Conclusion and Future Prospects References Part II: Bacterial Symbiosis Chapter 12: Understanding the Evolution of Plant Growth-Promoting Rhizobacteria 12.1 Introduction 12.2 Biology of PGPR 12.2.1 Symbiosis 12.2.2 Growth Promotion 12.3 Role of PGPR as Biocontrol Agents 12.4 Application of PGPR in Agriculture 12.5 Commercialization 12.6 Conclusion References Chapter 13: Rhizobia-Legume Symbiosis During Environmental Stress 13.1 Introduction 13.2 Diversity of Rhizobia in Soil 13.3 Interaction Between Legume and Rhizobia 13.4 Role of Exopolysaccharides in Legume-Rhizobia Interaction 13.5 Role of ROS in Nodulation 13.6 Environmental Stresses and Their Regulation 13.6.1 Temperature Stress 13.6.2 Salt Stress 13.6.3 Drought Stress 13.6.4 Agrochemical Based Stress 13.6.5 pH Stress 13.6.6 Waterlogging Stress 13.7 Conclusion References Chapter 14: Archaeal Symbiosis for Plant Health and Soil Fertility 14.1 Introduction 14.2 Distribution of Archaea in Soil 14.3 Plant Archaeal Microbiome 14.4 Role of Archaea in Biogeochemical Cycling 14.4.1 Carbon Cycling 14.4.2 Nitrogen Cycle 14.4.3 Sulphur Cycle 14.4.4 Phosphorous Cycle 14.5 Archaea in Plant Health Improvement 14.6 Conclusion References Chapter 15: Microbial Symbionts of Aquatic Plants 15.1 Introduction 15.2 Uses of Aquatic Plants 15.3 Microbial Symbionts 15.4 Benefits of Microbial Symbiosis in Aquatic Plants 15.4.1 Biofiltration 15.4.1.1 Removal of Nutrients from Eutrophic Wastewater 15.4.1.2 Removal of Heavy Metals 15.4.1.3 Removal of Organic Xenobiotic 15.4.2 Nitrogen Fixation 15.4.3 Production of Phytohormones 15.4.4 Bioenergy Production 15.5 Conclusion References Chapter 16: Rhizobium Presence and Functions in Microbiomes of Non-leguminous Plants 16.1 The Genus Rhizobium at a Glance 16.2 The Study of Rhizobium in the Era of the Omics 16.2.1 Classical Techniques: Culturomics 16.2.2 Genomics 16.2.3 Proteomics 16.2.4 Metabolomics 16.3 Rhizobium and co.: Interactions with Non-leguminous Plants 16.4 Finding Rhizobium in the Microbiomes associated with nonlegumes 16.5 Concluding Remarks References Part III: Insect-Fungus Mutualism Chapter 17: Symbiotic Harmony Between Insects and Fungi: A Mutualistic Approach 17.1 Introduction 17.2 Fungi and the Ecosystem 17.3 The Evolutionary Antiquity of Fungus-Farming Insects 17.4 Mutualism Between Leaf-Cutter Ants and Fungi 17.5 Adaptation of the Ant Genome 17.6 Fungus Cultivating Termite Species 17.7 Mutualistic Association of Beetle With Fungi 17.8 Fungi and Insect Mutualistic Association 17.9 Services Offered and Benefits Gained 17.10 Conclusion References Chapter 18: Panorama of Metarhizium: Host Interaction and Its Uses in Biocontrol and Plant Growth Promotion 18.1 Introduction 18.2 Hosts 18.3 Structure and Mechanism 18.3.1 Host Structure 18.3.1.1 Hemolymph 18.3.1.2 Hemocoel 18.3.1.3 Hemocytes 18.3.1.4 Fat Bodies 18.3.2 Fungal Spores 18.3.2.1 Appressorium as a Structure 18.3.3 Pathogenesis 18.3.3.1 Adhesion 18.3.3.2 Germination 18.3.3.3 Formation of Appressorium 18.3.3.4 Penetration 18.3.3.5 Colonization 18.3.3.6 Sporulation 18.4 Metarhizium Application Methods in Vector Control: A Superfluity 18.4.1 Experimental Huts 18.4.2 Using Paper Substrates as a Resting Material for Fungal Spores 18.4.3 Water Storage Pots as a Carrier Material for Metarhizium 18.4.4 Combination of Metarhizium with Insecticide-Treated Nets 18.4.5 Metarhizium in Odor Bait Stations (OBS) 18.4.6 Oil as a Carrier Material 18.4.6.1 Mineral Oil 18.4.6.2 Vegetable Oil 18.4.7 Mosquito Landing Boxes (MLBs) for Metarhizium 18.4.8 Metarhizium in Combination with Phytochemicals 18.4.9 Metarhizium for Chemical Resistant Vector Hosts 18.4.10 Delivery System in Agriculture Fields 18.4.10.1 Kaolin Based 18.4.10.2 Patty Blend Formulation 18.4.11 Molecular Approaches 18.5 Plant Growth Promotion 18.5.1 Exchange of Nutrients and Endophytic Nature 18.5.2 Improved Iron Absorption on Calcareous Substrates 18.5.3 Auxin Formation for Plant Growth 18.5.4 Proliferation of Plant Cells and Disease Suppression 18.6 Conclusion: In the Light of Recent Advances References Chapter 19: Arbuscular Mycorrhizal Fungi: Potential Plant Protective Agent Against Herbivorous Insect and Its Importance in Su... 19.1 Introduction 19.2 AMF Primed Plant Defense 19.3 AMF-Mediated Direct and Indirect Defense Mechanisms of Plants Against Herbivorous Insect 19.4 Direct Defense 19.4.1 AMF Induced Changes in Morphological Characteristics of Plant Against Herbivorous Insect 19.4.2 AMF-Induced Plant Defense by Improving the Nutrient Content 19.4.3 The Antioxidant Activity of Plants Infested with AMF and Herbivore 19.4.4 AMF Alters Primary Metabolite Production and Allocation of It as Defense Response Against Insect Damage 19.4.5 Herbivore Induced Synthesis of Secondary Metabolites in AMF Associated Plants 19.4.6 The AMF Associated Plant Produced Anti-Nutritional/Digestive Proteins Involved in Defense Against Herbivore Performance 19.5 Indirect Plant Defense Against herbivorous Insect Modulated by AM Fungi Association 19.6 Conclusion and Future Thrust References Chapter 20: Eradication of Malaria by the Mutualistic Interaction Between Wickerhamomyces anomalus and Anopheles sp. 20.1 Introduction 20.2 Malaria and Its Mechanisms 20.2.1 The Causative Agent: Plasmodium 20.2.2 Lifecycle of Plasmodium 20.2.3 The Vector: Anopheles Mosquito 20.3 Wickerhamomyces anomalus 20.3.1 Basic Characteristics and Morphology 20.3.1.1 Niche 20.3.1.2 Abiding Environment 20.3.1.3 Compounds Secreted and Its Uses 20.3.2 Killer Toxin 20.3.2.1 Conditions for Secretion 20.3.2.2 Mechanism of Action 20.3.2.3 Validation of the Mechanism of Action 20.3.3 The Mutualism of W. anomalus and Anopheles Mosquito 20.3.4 Competition 20.3.4.1 In Vivo 20.3.4.2 In Vitro 20.3.4.3 Impact 20.4 Malaria Eradication 20.4.1 Symbiotic Control of Malaria by Mutualism Between W. anomalus and Anopheles sp. 20.4.2 Symbiotic Control of Malaria by Other Mutualistic Examples 20.5 Conclusion References Part IV: Microbial Symbiosis in Disease and Stress Management Chapter 21: Halophyte-Endophyte Interactions: Linking Microbiome Community Distribution and Functionality to Salinity 21.1 Introduction 21.2 Salicornia a Potential Halophytic Crop Plant 21.3 Biodiversity of Endophytic Microbiome in S. europaea 21.3.1 Salicornia Bacterial Diversity 21.3.2 Salicornia Fungal Diversity 21.4 Factors Shaping S. europaea-Endophyte Association 21.5 S. europaea as a Reservoir of Specialized Endophytic Diversity 21.6 Conclusions References Chapter 22: Root Endophytic Microbes and Their Potential Applications in Crop Disease Management 22.1 Introduction 22.2 Concerns of Economically Important Plants 22.3 Crop Pathogens 22.4 Endophytes and Their Mechanism of Action 22.4.1 Phytohormone Production 22.4.2 Nitrogen Fixation 22.4.3 Phosphate Solubilization 22.4.4 Siderophore Production 22.4.5 ACC Deaminase Production 22.5 Importance in Sustainable Agriculture 22.5.1 Cereals 22.5.2 Pulses 22.5.3 Vegetables 22.5.4 Fruits 22.5.5 Sugar and Starches 22.5.6 Spices and Condiments 22.6 Conclusion References Chapter 23: Do Mycorrhizal Fungi Enable Plants to Cope with Abiotic Stresses by Overcoming the Detrimental Effects of Salinity... 23.1 Introduction 23.2 Effects of Mycorrhizal Inoculation on Salt and Drought Tolerance 23.3 Effects of Salinity and Water Stress on Soil Properties and Plant Growth 23.3.1 Mycorrhizal Fungi: Role in Soil Property Improvement Under Stress Conditions 23.3.2 Effects of Salt and Drought Condition on Arbuscular Mycorrhiza Development 23.3.3 Mycorrhizal Fungi for Salinity Stress Remediation 23.4 Mycorrhizal Inoculation: Effects on Plant Shoot and Root Growth Under Salt Conditions 23.5 Mycorrhizal Symbiosis and Mineral Uptake Under Salt and Drought Stress Factors 23.5.1 Phosphate Uptake Assisted by the AM Symbiosis Under Salt Stress Conditions 23.5.2 Nitrogen Uptake and Transfer at the Mycorrhizal Interface Under Salt Stress Conditions 23.5.3 Water and Potassium Relationship in AM Colonized Plant Under Salt and Drought Conditions 23.5.4 Mycorrhizal Fungi: Effects on Macro and Micronutrients Uptake Under Salt and Drought Stress Conditions 23.6 Effects of Mycorrhizal Inoculation and Biochar Application to Reduce the Salt Effects on Nutrient Uptake and Plant Growth 23.7 Effects of Mycorrhizal Inoculation on Water Uptake 23.8 Mechanisms of Mycorrhizae on Salt Tolerance in Soil and Inside the Host Plant 23.8.1 Mycorrhizal Effectiveness for Hormonal Process and Signaling Under Salt Stress 23.9 Alleviation of Salt and Drought Stresses by Arbuscular Mycorrhizal (AM) Fungi 23.9.1 Arbuscular Mycorrhizal Fungi Increase Tolerance to Salinity in Plant Species 23.9.2 Crop Tolerance to Salinity and Drought and Relation with Mycorrhizal Dependency 23.9.2.1 Selective Interactions Between Different Species of Mycorrhizal Fungi and Plant for Salt and Drought Tolerance 23.9.3 Effects of AMF-Colonization on Survival Rate of Horticultural Plants After Transplantation to the Field Conditions 23.9.4 Effect of Biochar and Mycorrhizae on Alleviation of Salt and Drought 23.10 Conclusion References Chapter 24: Combined Use of Beneficial Bacteria and Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant Cryptogamic Disea... 24.1 Introduction 24.2 Beneficial Microorganisms in Plant Health 24.2.1 Arbuscular Mycorrhizal Fungi (AMF) 24.2.1.1 Main Beneficial Effects of AMF on Plants 24.2.1.2 Underlying Mechanisms in Plant Protection by AMF 24.2.1.2.1 Direct Modes of Action Involved in Reducing Pathogen Development 24.2.1.2.2 Indirect Modes of Action Involved in Reducing Pathogen Development 24.2.2 Beneficial Bacteria: Definition Boundaries and Modes of Action 24.2.2.1 How to Define a Beneficial Bacteria? 24.2.2.2 Underlying Mechanisms in Plant Protection by Beneficial Bacteria 24.2.2.2.1 Direct Modes of Action Involved in Reducing Pathogen Development 24.2.2.2.2 Indirect Modes of Action Involved in Reducing Pathogen Development 24.3 Plant Protection Against Fungal Diseases Using AMF and Bacteria Co-Inoculation: Several Scenarios and Possible Mechanisms 24.3.1 Common Base Grounds Between Studies 24.3.2 ``Full-Gain´´ Scenario 24.3.2.1 Evidence for Protection Gain with a Dual Inoculation 24.3.2.2 Possible Mechanisms Explaining a ``Full-Gain´´ Scenario 24.3.3 ``Partial-Loss´´ Scenario 24.3.3.1 Evidence for a Partial Protection Loss with a Dual Inoculation 24.3.3.2 Possible Mechanisms Explaining a ``Partial-Loss´´ Scenario 24.3.4 ``No-Gain, No-Loss´´ Scenario 24.3.4.1 Evidence for No Protection Gain with a Dual Inoculation 24.3.4.2 Possible Mechanisms Explaining a ``No-Gain, No-Loss´´ Scenario 24.4 Methodological Guide: How to Start Working on Tripartite Interactions ? 24.4.1 Microbial Inoculation Methods 24.4.2 Choosing the ``Mock-Inoculum´´ 24.4.3 Colonization or Bacterial Viability Assessment Methods 24.5 Future Challenges Regarding Current Limits for Practical Use References Chapter 25: Remediation of Toxic Metal-Contaminated Soil and Its Revitalisation with Arbuscular Mycorrhizal Fungi 25.1 Introduction 25.2 Soil Remediation Using EDTA (Ethylenediamine Tetraacetate) Soil Washing 25.3 Arbuscular Mycorrhizal Fungi in Metal Contaminated Soil 25.3.1 Arbuscular Mycorrhiza 25.3.2 Use of Molecular Methods in Community Ecology of Arbuscular Mycorrhizal Fungi 25.3.3 Arbuscular Mycorrhizal Fungal Diversity in Toxic Metal Contaminated Soil 25.4 Microbial Communities in Soils After Soil Remediation with EDTA 25.4.1 Importance of Soil Biodiversity for Ecosystem Stability 25.4.2 Diversity of Arbuscular Mycorrhizal Fungal Communities in Remediated Soil 25.5 Future Prospects 25.6 Conclusion References