ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Sustainable Solutions for Environmental Pollution, Volume 1: Waste Management and Value-Added Products

دانلود کتاب راه حل های پایدار برای آلودگی محیط زیست، جلد 1: مدیریت پسماند و محصولات با ارزش افزوده

Sustainable Solutions for Environmental Pollution, Volume 1: Waste Management and Value-Added Products

مشخصات کتاب

Sustainable Solutions for Environmental Pollution, Volume 1: Waste Management and Value-Added Products

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 1119785359, 9781119785354 
ناشر: Wiley-Scrivener 
سال نشر: 2021 
تعداد صفحات: 510
[512] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 35 Mb 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Sustainable Solutions for Environmental Pollution, Volume 1: Waste Management and Value-Added Products به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب راه حل های پایدار برای آلودگی محیط زیست، جلد 1: مدیریت پسماند و محصولات با ارزش افزوده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب راه حل های پایدار برای آلودگی محیط زیست، جلد 1: مدیریت پسماند و محصولات با ارزش افزوده

راه حل های پایدار برای آلودگی محیط زیست این جلد اول در یک مجموعه دو جلدی گسترده و جامع، راه حل های پایدار برای آلودگی محیط زیست، بر نقش مدیریت پسماند در حل مشکلات آلودگی و محصولات با ارزش افزوده ای که می تواند از زباله ایجاد شود، تمرکز دارد. منفی به مثبت زیست محیطی و اقتصادی. آلودگی محیط زیست یکی از بزرگترین مشکلات دنیای امروز ما در هر کشور، منطقه و حتی تا محل دفن زباله های محلی است. نه تنها حل این مشکلات، بلکه تبدیل زباله ها به محصولات، حتی محصولاتی که می توانند پول در بیاورند، یک تغییر بزرگ بازی در دنیای مهندسی محیط زیست است. یافتن راه‌هایی برای تولید سوخت و سایر محصولات از زباله‌های جامد، تعیین مسیری برای تولید پالایشگاه‌های زیستی آینده، و ایجاد فرآیندی پاک برای تولید سوخت و سایر محصولات تنها تعدادی از موضوعاتی است که در جلد اول جدید و پیشگامانه در این دو مورد پوشش داده شده است. مجموعه حجمی، راه حل های پایدار برای آلودگی محیط زیست. ارزش گذاری زباله ها، از جمله ایجاد سوخت های زیستی، تبدیل روغن های آشپزی زباله به مواد شیمیایی سبز، ارائه راه حل های پایدار برای دفن زباله ها، و بسیاری از موضوعات دیگر نیز در این درمان گسترده در مورد وضعیت هنر این منطقه در مهندسی محیط زیست پوشش داده شده است. این جلد جدید پیشگامانه در این مجموعه آینده‌نگر، جامع‌ترین پوشش همه این موضوعات است که آخرین پیشرفت‌ها را نشان می‌دهد و جدی‌ترین نگرانی‌های کنونی در زمینه آلودگی محیط‌زیست را برطرف می‌کند. چه برای مهندس کهنه کار و چه برای دانشجو، این یکی از موارد ضروری برای هر کتابخانه است. مخاطب مهندسان نفت، شیمی، فرآیند و محیط زیست، سایر دانشمندان و مهندسین شاغل در زمینه آلودگی محیط زیست و دانشجویان دانشگاه و مقاطع تحصیلات تکمیلی که در این زمینه ها تحصیل می کنند.


توضیحاتی درمورد کتاب به خارجی

SUSTAINABLE SOLUTIONS FOR ENVIRONMENTAL POLLUTION This first volume in a broad, comprehensive two-volume set, Sustainable Solutions for Environmental Pollution, concentrates on the role of waste management in solving pollution problems and the value-added products that can be created out of waste, turning a negative into an environmental and economic positive. Environmental pollution is one of the biggest problems facing our world today, in every country, region, and even down to local landfills. Not just solving these problems, but turning waste into products, even products that can make money, is a huge game-changer in the world of environmental engineering. Finding ways to make fuel and other products from solid waste, setting a course for the production of future biorefineries, and creating a clean process for generating fuel and other products are just a few of the topics covered in the groundbreaking new first volume in the two-volume set, Sustainable Solutions for Environmental Pollution. The valorization of waste, including the creation of biofuels, turning waste cooking oil into green chemicals, providing sustainable solutions for landfills, and many other topics are also covered in this extensive treatment on the state of the art of this area in environmental engineering. This groundbreaking new volume in this forward-thinking set is the most comprehensive coverage of all of these issues, laying out the latest advances and addressing the most serious current concerns in environmental pollution. Whether for the veteran engineer or the student, this is a must-have for any library. AUDIENCE Petroleum, chemical, process, and environmental engineers, other scientists and engineers working in the area of environmental pollution, and students at the university and graduate level studying these areas



فهرست مطالب

Cover
Half-Title Page
Series Page
Title Page
Copyright Page
Contents
Preface
1 An Overview of Electro-Fermentation as a Platform for Future Biorefineries
	1.1 Introduction
	1.2 Fundamental Mechanisms
	1.3 Value-Added Products from Electro-Fermentation
		1.3.1 Carboxylates
			1.3.1.1 Short-Chain Carboxylates
			1.3.1.2 Medium-Chain Carboxylates
		1.3.2 Bioethanol
		1.3.3 Bio-Butanol
		1.3.4 Microalgae Derived Lipids
		1.3.5 Acetoin
		1.3.6 Biopolymer
		1.3.7 L-lysine
		1.3.8 1,3-propanediol
	1.4 Challenges and Future Outlook
	1.5 Acknowledgements
	References
2 Biodiesel Sustainability: Challenges and Perspectives
	Abbreviations
	2.1 Introduction
	2.2 Biodiesel Production
	2.3 Factors Affecting Biodiesel Production Process
		2.3.1 The Type of Feedstock
		2.3.2 The Type of Alcohol
		2.3.3 Effect of Alcohol to Oil Molar Ratio
		2.3.4 Catalyst Concentration
		2.3.5 Catalysts Type
			2.3.5.1 Lipases
			2.3.5.2 Acid Catalysts
			2.3.5.3 Alkaline Catalysts
		2.3.6 Effect of Reaction Temperature
		2.3.7 Effect of Reaction Time
		2.3.8 Mixing Efficiency
		2.3.9 Effect of pH
	2.4 Transesterification Mechanisms
		2.4.1 Homogeneous Acid-Catalyzed Transesterification Reaction
		2.4.2 Lipase-Catalyzed Transesterification Reaction
		2.4.3 CaO-Catalyzed Transesterification Reaction
		2.4.4 Other Calcium Derived-Catalyzed Transesterification Reaction
	2.5 Production of Biodiesel Using Heterogeneous Catalyst Prepared from Natural Sources
	2.6 Challenges and Perspectives
	References
3 Multidisciplinary Sides of Environmental Engineering and Sustainability
	3.1 Introduction
	3.2 System Theory and Integrated System Approach
		3.2.1 System Theory
		3.2.2 The State of the System and State Variables
		3.2.3 Input Variables (Parameters)
		3.2.4 Design Variables (Parameters)
		3.2.5 Physico-Chemical Variables (Parameters)
		3.2.6 Boundaries of System
			3.2.6.1 Isolated System
			3.2.6.2 Closed System
			3.2.6.3 Open System
		3.2.7 Steady, Unsteady States and Thermodynamic Equilibrium of Systems
	3.3 Sustainable Development, Sustainable Development Engineering and Environmental Engineering
		3.3.1 Bio-Fuels and Integrated Bio-Refineries
		3.3.2 Integrated System Approach
	3.4 Advanced Multi-Disciplinary Sustainable Engineering Education
		3.4.1 Bio-Fuels
			3.4.1.1 Bio-Hydrogen
			3.4.1.2 Bio-Diesel
			3.4.1.3 Bio-Ethanol
		3.4.2 Bio-Products
		3.4.3 Integrated Bio-Refineries
		3.4.4 Development of Novel Technologies
		3.4.5 Economics of Bio-Fuels and Bio-Products
		3.4.6 Nano-Technology (NT)
		3.4.7 Non-Linear Dynamics (NLDs), Bifurcation (B), Chaos (C) and Complexity (COMP)
		3.4.8 Sustainable Development (SD), Sustainable Development Engineering (SDE), System Theory (ST) and Integrated System Approach
		3.4.9 Novel Education
		3.4.10 New Journal
	3.5 Novel Designs for Auto-Thermal Behavior Towards Sustainability
		3.5.1 Integrated System Approach Classification
	3.6 Conclusions
	References
4 Biofuels
	4.1 Introduction
	4.2 Composition
	4.3 Classification of Biofuels
		4.3.1 First-Generation Biofuels
			4.3.1.1 Sugars and Starch
			4.3.1.2 Cellulose
			4.3.1.3 Lignin
		4.3.2 Second-Generation Biofuels
		4.3.3 Third-Generation Biofuels
	4.4 Examples of Biofuels
		4.4.1 Biodiesel
		4.4.2 Bio-Alcohols
		4.4.3 Bioethers
		4.4.4 Biogas
		4.4.5 Bio-Oil
		4.4.6 Synthesis Gas
	4.5 Property Variations with Source
	4.6 Properties Compared to Fuels from Crude Oil Tar Sand Bitumen, Coal and Oil Shale
	4.7 Fuel Specifications and Performance
	4.8 Conclusion
	References
5 Sustainable Valorization of Waste Cooking Oil into Biofuels and Green Chemicals: Recent Trends, Opportunities and Challenges
	5.1 Introduction
	5.2 Waste Cooking Oil (WCO)
	5.3 Biofuels from WCO
		5.3.1 Biodiesel
		5.3.2 Biojet Fuel
			5.3.2.1 Hydro-Treatment Process
			5.3.2.2 Cracking and Isomerisation Processes
	5.4 Green Chemicals from WCO
		5.4.1 Asphalt Rejuvenator
		5.4.2 Plasticizers
		5.4.3 Polyurethane Foam
		5.4.4 Bio-Lubricants
		5.4.5 Surfactants
	5.5 Challenges and Future Work
	5.6 Conclusion
	References
6 Waste Valorization: Physical, Chemical, and Biological Routes
	6.1 Background
	6.2 Land Biomass vs. Oceanic Biomass
	6.3 Waste Management
	6.4 Waste Valorization for Adsorbents Development
	6.5 Waste Valorization for Catalysts Preparations
	6.6 Bio-Based Waste Valorization for Bio-Fuel and Bio-Fertilizer Production
		6.6.1 Biomass Briquetting: (Bio-Fuel)
		6.6.2 Composting: (Bio-Fertilizer)
		6.6.3 Anaerobic Digestion: (Bio-Fuel)
	6.7 Biochemical Mechanism Involved in Anaerobic Digestion System
		6.7.1 Hydrolysis
		6.7.2 Acidogenesis
		6.7.3 Acetogenesis
		6.7.4 Methanogenesis
	6.8 Challenges and Recent Advances in Anaerobic Digestion
	6.9 Bio-Based Waste and Bioeconomy Perspective
	6.10 Conclusion
	References
7 Electrocoagulation Process in the Treatment of Landfill Leachate
	7.1 Introduction
	7.2 Decomposition of Solid Waste
	7.3 Landfill Leachate Properties
		7.3.1 Organic Matter
		7.3.2 Inorganic Substances
		7.3.3 Heavy Metals
		7.3.4 Xenobiotic Organics
	7.4 Characteristics of Landfill Leachate
	7.5 Electrocoagulation Process
		7.5.1 Fundamentals of Electrocoagulation Process
		7.5.2 Mechanism of Electrocoagulation Process
		7.5.3 Advantages and Disadvantages
	7.6 Key Parameters of Electrocoagulation Process
		7.6.1 Electrodes Material
		7.6.2 Electrodes Arrangement
		7.6.3 Electrode Spacing
		7.6.4 Current Density
		7.6.5 Electrolysis Time
		7.6.6 Initial pH
		7.6.7 Agitation Speed
		7.6.8 Electrolyte Conductivity
	7.7 Operating Mode
	7.8 Economic Analysis
	7.9 Case Study: Removal of the Organic Pollutant of Colour in Natural Saline Leachate from Pulau Burung Landfill Site
		7.9.1 Pulau Burung Landfill Site
		7.9.2 Experimental Design
		7.9.3 Results and Discussion
	7.10 Gaps in Current Knowledge
	7.11 Conclusion and Future Prospect
	References
8 Sustainable Solutions for Environmental Pollutants from Solid Waste Landfills
	8.1 Introduction
	8.2 Domestic Solid Waste and Its Critical Environmental Issues
	8.3 Landfill Leachate Characterization and Its Impact on the Environment
	8.4 Effect of Landfills on Air Quality
	8.5 Effect of Unsuitable Location of Landfill on Environment and Community
	8.6 Recent Sustainable Technologies for Leachate Treatment
		8.6.1 Effects of AOPs on Leachate Biodegradability
		8.6.2 Case Study and Proposed Data for Leachate Treatment Plant Using AOPs
	8.7 Sustainable Solutions for Gas Emission
	8.8 Consideration for Selection of Sustainable Locations for Landfills
	8.9 Conclusion
	References
9 Progress on Ionic Liquid Pre-Treatment for Lignocellulosic Biomass Valorization into Biofuels and Bio-Products
	9.1 Introduction
	9.2 Lignocellulosic Biomass for Biofuels and Bio-Products
		9.2.1 Cellulose
		9.2.2 Hemicellulose
		9.2.3 Lignin
	9.3 Pre-Treatment Technologies for Lignocellulosic Biomass
	9.4 Ionic Liquids for Lignocellulosic Biomass Pre-Treatment: Characteristics and Properties
	9.5 Insights into Pre-Treatment Performance of Ionic Liquids
		9.5.1 Interactions of Ionic Liquids with Lignocellulose
		9.5.2 Effect of the Ionic Liquid Pre-Treatment on the Recovered Biomass
		9.5.3 Impact of Ionic Liquids on the Biological Tools
	9.6 Concluding Remarks: Challenges Facing the Development of Ionic Liquids Use at Large Scale and Future Directions
	References
10 Septage Characterization and Sustainable Fecal Sludge Management in Rural Nablus – Palestine
	List of Abbreviations
	10.1 Introduction
		10.1.1 Background
		10.1.2 What is Fecal Sludge?
		10.1.3 Legal Considerations
		10.1.4 Study Area
	10.2 Septage Characteristics
		10.2.1 Introduction
		10.2.2 General Background of Septage Characterization
		10.2.3 General Treatment of Fecal Sludge
	10.3 Study Methodology
		10.3.1 General
		10.3.2 Research Methodology and Methods of Laboratory Analysis
			10.3.2.1 Data Collection
			10.3.2.2 Sampling and Storage
			10.3.2.3 Sampling of Septage
			10.3.2.4 Sampling of Stools and Urine
			10.3.2.5 Storage of Samples
		10.3.3 Characterization of Fecal Sludge (FS)
		10.3.4 Statistical Analysis of Data on Characterization of FS
	10.4 Septage Pre-Treatment Process
		10.4.1 General Treatment Options
		10.4.2 Selection of Treatment Options
		10.4.3 Septage Quality Determination
		10.4.4 Software Selection
			10.4.4.1 Modeling by GPS-X 7.0
		10.4.5 End-Use and Disposal
	10.5 Results and Discussion
		10.5.1 Measured Parameters for Fecal Sludge
			10.5.1.1 Septage Characteristics
		10.5.2 Stools Characteristics
		10.5.3 Urine Characteristics
		10.5.4 Specific Parameters in Details
			10.5.4.1 pH and EC
			10.5.4.2 Turbidity
			10.5.4.3 COD/BOD5
			10.5.4.4 Total Nitrogen and Ammonia
			10.5.4.5 TS, TDS, and TSS
			10.5.4.6 VS, VDS, and VSS
			10.5.4.7 PO
			-P and PO
			-T
			10.5.4.8 Fat and Grease
			10.5.4.9 Alkalinity
			10.5.4.10 TC and FC
	10.6 Pre-Treatment of the Fecal Sludge – Results and Discussions
		10.6.1 Quantification of Domestic Septage
		10.6.2 Design Septage Characteristics
			10.6.2.1 Untreated Septage Characteristics
			10.6.2.2 Treated Septage Characteristics
		10.6.3 Software Design
			10.6.3.1 Treatment Plant Modeling
			10.6.3.2 Optimizing the Appropriate Model
	10.7 Treatment Plant Estimated Cost Breakdown
	10.8 Conclusion
	10.9 Recommendations
	References
11 Lipase Catalyzed Reactions: A Promising Approach for Clean Synthesis of Oleochemicals
	11.1 Introduction to Oleochemicals Industry
	11.2 Sources of Lipases
		11.2.1 Bacterial Lipases
		11.2.2 Fungal Lipases
		11.2.3 Plant Lipases
		11.2.4 Animal Lipases
	11.3 Application of Lipases
		11.3.1 Monoglycerides Production
		11.3.2 Oil/Fats Glycerolysis (Chemically Catalyzed)
		11.3.3 Oil/Fats Glycerolysis (Enzymatically Catalyzed)
		11.3.4 Biodiesel Production
	11.4 Lipase Catalyzed Production of Biodiesel
		11.4.1 Production of Biodiesel from Oil Extracted from Spent Bleaching Earth (SBE)
	11.5 Esterification of Fatty Acids with Glycerol
		11.5.1 Chemically Catalyzed Esterification
		11.5.2 Lipase Catalyzed Production of Monoglycerides
	11.6 Interesterification
		11.6.1 Chemical Interesterification
		11.6.2 Enzymatic Interesterification
	11.7 Environmental Benefits of Enzymatic Process Against Chemical Process
	11.8 Conclusion
	References
12 Seaweeds for Sustainable Development
	12.1 Introduction
	12.2 Types of Seaweeds
		12.2.1 Green Algae
		12.2.2 Red Algae
		12.2.3 Brown Algae
	12.3 Bioremediation
		12.3.1 Pollution
		12.3.2 Bioremediation of Polluted Water
		12.3.3 Algal Bioremediation of Eutrophic Water
	12.4 Seaweeds in Nutrition
		12.4.1 Human Nutrition
		12.4.2 Animal Feed and Feed Additive
	12.5 Seaweeds as a Source of Pharmaceutics
		12.5.1 Pharmaceutics from Green Algae
		12.5.2 Pharamaceutics from Brown Algae
		12.5.3 Pharmaceutics from Red Algae
	12.6 Seaweeds Hydrocolloids and Biopolymers
		12.6.1 Agar
		12.6.2 Carrageenans
		12.6.3 Alginates (Alginic Acid)
	12.7 Seaweeds and Bioenergy
	12.8 Seaweeds as Biofertilizers
	12.9 Seaweeds as Ecological Player in Sulfur Geocycle
	12.10 Culturing Seaweeds in the Marine Habitat (Algal Maricultures)
		12.10.1 Mariculture Establishment
			12.10.1.1 Single Culture
			12.10.1.2 Repeated Culture
			12.10.1.3 Multiple Cultures
		12.10.2 Cultured Seaweed Harvest
		12.10.3 Processes Following the Algae Harvest
	12.11 Conclusion
	12.12 Recommendations
	References
	Websites
About the Editor
Index
Also of Interest
EULA




نظرات کاربران