دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Nour Shafik El-Gendy
سری:
ISBN (شابک) : 1119785359, 9781119785354
ناشر: Wiley-Scrivener
سال نشر: 2021
تعداد صفحات: 510
[512]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 35 Mb
در صورت تبدیل فایل کتاب Sustainable Solutions for Environmental Pollution, Volume 1: Waste Management and Value-Added Products به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راه حل های پایدار برای آلودگی محیط زیست، جلد 1: مدیریت پسماند و محصولات با ارزش افزوده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راه حل های پایدار برای آلودگی محیط زیست این جلد اول در یک مجموعه دو جلدی گسترده و جامع، راه حل های پایدار برای آلودگی محیط زیست، بر نقش مدیریت پسماند در حل مشکلات آلودگی و محصولات با ارزش افزوده ای که می تواند از زباله ایجاد شود، تمرکز دارد. منفی به مثبت زیست محیطی و اقتصادی. آلودگی محیط زیست یکی از بزرگترین مشکلات دنیای امروز ما در هر کشور، منطقه و حتی تا محل دفن زباله های محلی است. نه تنها حل این مشکلات، بلکه تبدیل زباله ها به محصولات، حتی محصولاتی که می توانند پول در بیاورند، یک تغییر بزرگ بازی در دنیای مهندسی محیط زیست است. یافتن راههایی برای تولید سوخت و سایر محصولات از زبالههای جامد، تعیین مسیری برای تولید پالایشگاههای زیستی آینده، و ایجاد فرآیندی پاک برای تولید سوخت و سایر محصولات تنها تعدادی از موضوعاتی است که در جلد اول جدید و پیشگامانه در این دو مورد پوشش داده شده است. مجموعه حجمی، راه حل های پایدار برای آلودگی محیط زیست. ارزش گذاری زباله ها، از جمله ایجاد سوخت های زیستی، تبدیل روغن های آشپزی زباله به مواد شیمیایی سبز، ارائه راه حل های پایدار برای دفن زباله ها، و بسیاری از موضوعات دیگر نیز در این درمان گسترده در مورد وضعیت هنر این منطقه در مهندسی محیط زیست پوشش داده شده است. این جلد جدید پیشگامانه در این مجموعه آیندهنگر، جامعترین پوشش همه این موضوعات است که آخرین پیشرفتها را نشان میدهد و جدیترین نگرانیهای کنونی در زمینه آلودگی محیطزیست را برطرف میکند. چه برای مهندس کهنه کار و چه برای دانشجو، این یکی از موارد ضروری برای هر کتابخانه است. مخاطب مهندسان نفت، شیمی، فرآیند و محیط زیست، سایر دانشمندان و مهندسین شاغل در زمینه آلودگی محیط زیست و دانشجویان دانشگاه و مقاطع تحصیلات تکمیلی که در این زمینه ها تحصیل می کنند.
SUSTAINABLE SOLUTIONS FOR ENVIRONMENTAL POLLUTION This first volume in a broad, comprehensive two-volume set, Sustainable Solutions for Environmental Pollution, concentrates on the role of waste management in solving pollution problems and the value-added products that can be created out of waste, turning a negative into an environmental and economic positive. Environmental pollution is one of the biggest problems facing our world today, in every country, region, and even down to local landfills. Not just solving these problems, but turning waste into products, even products that can make money, is a huge game-changer in the world of environmental engineering. Finding ways to make fuel and other products from solid waste, setting a course for the production of future biorefineries, and creating a clean process for generating fuel and other products are just a few of the topics covered in the groundbreaking new first volume in the two-volume set, Sustainable Solutions for Environmental Pollution. The valorization of waste, including the creation of biofuels, turning waste cooking oil into green chemicals, providing sustainable solutions for landfills, and many other topics are also covered in this extensive treatment on the state of the art of this area in environmental engineering. This groundbreaking new volume in this forward-thinking set is the most comprehensive coverage of all of these issues, laying out the latest advances and addressing the most serious current concerns in environmental pollution. Whether for the veteran engineer or the student, this is a must-have for any library. AUDIENCE Petroleum, chemical, process, and environmental engineers, other scientists and engineers working in the area of environmental pollution, and students at the university and graduate level studying these areas
Cover Half-Title Page Series Page Title Page Copyright Page Contents Preface 1 An Overview of Electro-Fermentation as a Platform for Future Biorefineries 1.1 Introduction 1.2 Fundamental Mechanisms 1.3 Value-Added Products from Electro-Fermentation 1.3.1 Carboxylates 1.3.1.1 Short-Chain Carboxylates 1.3.1.2 Medium-Chain Carboxylates 1.3.2 Bioethanol 1.3.3 Bio-Butanol 1.3.4 Microalgae Derived Lipids 1.3.5 Acetoin 1.3.6 Biopolymer 1.3.7 L-lysine 1.3.8 1,3-propanediol 1.4 Challenges and Future Outlook 1.5 Acknowledgements References 2 Biodiesel Sustainability: Challenges and Perspectives Abbreviations 2.1 Introduction 2.2 Biodiesel Production 2.3 Factors Affecting Biodiesel Production Process 2.3.1 The Type of Feedstock 2.3.2 The Type of Alcohol 2.3.3 Effect of Alcohol to Oil Molar Ratio 2.3.4 Catalyst Concentration 2.3.5 Catalysts Type 2.3.5.1 Lipases 2.3.5.2 Acid Catalysts 2.3.5.3 Alkaline Catalysts 2.3.6 Effect of Reaction Temperature 2.3.7 Effect of Reaction Time 2.3.8 Mixing Efficiency 2.3.9 Effect of pH 2.4 Transesterification Mechanisms 2.4.1 Homogeneous Acid-Catalyzed Transesterification Reaction 2.4.2 Lipase-Catalyzed Transesterification Reaction 2.4.3 CaO-Catalyzed Transesterification Reaction 2.4.4 Other Calcium Derived-Catalyzed Transesterification Reaction 2.5 Production of Biodiesel Using Heterogeneous Catalyst Prepared from Natural Sources 2.6 Challenges and Perspectives References 3 Multidisciplinary Sides of Environmental Engineering and Sustainability 3.1 Introduction 3.2 System Theory and Integrated System Approach 3.2.1 System Theory 3.2.2 The State of the System and State Variables 3.2.3 Input Variables (Parameters) 3.2.4 Design Variables (Parameters) 3.2.5 Physico-Chemical Variables (Parameters) 3.2.6 Boundaries of System 3.2.6.1 Isolated System 3.2.6.2 Closed System 3.2.6.3 Open System 3.2.7 Steady, Unsteady States and Thermodynamic Equilibrium of Systems 3.3 Sustainable Development, Sustainable Development Engineering and Environmental Engineering 3.3.1 Bio-Fuels and Integrated Bio-Refineries 3.3.2 Integrated System Approach 3.4 Advanced Multi-Disciplinary Sustainable Engineering Education 3.4.1 Bio-Fuels 3.4.1.1 Bio-Hydrogen 3.4.1.2 Bio-Diesel 3.4.1.3 Bio-Ethanol 3.4.2 Bio-Products 3.4.3 Integrated Bio-Refineries 3.4.4 Development of Novel Technologies 3.4.5 Economics of Bio-Fuels and Bio-Products 3.4.6 Nano-Technology (NT) 3.4.7 Non-Linear Dynamics (NLDs), Bifurcation (B), Chaos (C) and Complexity (COMP) 3.4.8 Sustainable Development (SD), Sustainable Development Engineering (SDE), System Theory (ST) and Integrated System Approach 3.4.9 Novel Education 3.4.10 New Journal 3.5 Novel Designs for Auto-Thermal Behavior Towards Sustainability 3.5.1 Integrated System Approach Classification 3.6 Conclusions References 4 Biofuels 4.1 Introduction 4.2 Composition 4.3 Classification of Biofuels 4.3.1 First-Generation Biofuels 4.3.1.1 Sugars and Starch 4.3.1.2 Cellulose 4.3.1.3 Lignin 4.3.2 Second-Generation Biofuels 4.3.3 Third-Generation Biofuels 4.4 Examples of Biofuels 4.4.1 Biodiesel 4.4.2 Bio-Alcohols 4.4.3 Bioethers 4.4.4 Biogas 4.4.5 Bio-Oil 4.4.6 Synthesis Gas 4.5 Property Variations with Source 4.6 Properties Compared to Fuels from Crude Oil Tar Sand Bitumen, Coal and Oil Shale 4.7 Fuel Specifications and Performance 4.8 Conclusion References 5 Sustainable Valorization of Waste Cooking Oil into Biofuels and Green Chemicals: Recent Trends, Opportunities and Challenges 5.1 Introduction 5.2 Waste Cooking Oil (WCO) 5.3 Biofuels from WCO 5.3.1 Biodiesel 5.3.2 Biojet Fuel 5.3.2.1 Hydro-Treatment Process 5.3.2.2 Cracking and Isomerisation Processes 5.4 Green Chemicals from WCO 5.4.1 Asphalt Rejuvenator 5.4.2 Plasticizers 5.4.3 Polyurethane Foam 5.4.4 Bio-Lubricants 5.4.5 Surfactants 5.5 Challenges and Future Work 5.6 Conclusion References 6 Waste Valorization: Physical, Chemical, and Biological Routes 6.1 Background 6.2 Land Biomass vs. Oceanic Biomass 6.3 Waste Management 6.4 Waste Valorization for Adsorbents Development 6.5 Waste Valorization for Catalysts Preparations 6.6 Bio-Based Waste Valorization for Bio-Fuel and Bio-Fertilizer Production 6.6.1 Biomass Briquetting: (Bio-Fuel) 6.6.2 Composting: (Bio-Fertilizer) 6.6.3 Anaerobic Digestion: (Bio-Fuel) 6.7 Biochemical Mechanism Involved in Anaerobic Digestion System 6.7.1 Hydrolysis 6.7.2 Acidogenesis 6.7.3 Acetogenesis 6.7.4 Methanogenesis 6.8 Challenges and Recent Advances in Anaerobic Digestion 6.9 Bio-Based Waste and Bioeconomy Perspective 6.10 Conclusion References 7 Electrocoagulation Process in the Treatment of Landfill Leachate 7.1 Introduction 7.2 Decomposition of Solid Waste 7.3 Landfill Leachate Properties 7.3.1 Organic Matter 7.3.2 Inorganic Substances 7.3.3 Heavy Metals 7.3.4 Xenobiotic Organics 7.4 Characteristics of Landfill Leachate 7.5 Electrocoagulation Process 7.5.1 Fundamentals of Electrocoagulation Process 7.5.2 Mechanism of Electrocoagulation Process 7.5.3 Advantages and Disadvantages 7.6 Key Parameters of Electrocoagulation Process 7.6.1 Electrodes Material 7.6.2 Electrodes Arrangement 7.6.3 Electrode Spacing 7.6.4 Current Density 7.6.5 Electrolysis Time 7.6.6 Initial pH 7.6.7 Agitation Speed 7.6.8 Electrolyte Conductivity 7.7 Operating Mode 7.8 Economic Analysis 7.9 Case Study: Removal of the Organic Pollutant of Colour in Natural Saline Leachate from Pulau Burung Landfill Site 7.9.1 Pulau Burung Landfill Site 7.9.2 Experimental Design 7.9.3 Results and Discussion 7.10 Gaps in Current Knowledge 7.11 Conclusion and Future Prospect References 8 Sustainable Solutions for Environmental Pollutants from Solid Waste Landfills 8.1 Introduction 8.2 Domestic Solid Waste and Its Critical Environmental Issues 8.3 Landfill Leachate Characterization and Its Impact on the Environment 8.4 Effect of Landfills on Air Quality 8.5 Effect of Unsuitable Location of Landfill on Environment and Community 8.6 Recent Sustainable Technologies for Leachate Treatment 8.6.1 Effects of AOPs on Leachate Biodegradability 8.6.2 Case Study and Proposed Data for Leachate Treatment Plant Using AOPs 8.7 Sustainable Solutions for Gas Emission 8.8 Consideration for Selection of Sustainable Locations for Landfills 8.9 Conclusion References 9 Progress on Ionic Liquid Pre-Treatment for Lignocellulosic Biomass Valorization into Biofuels and Bio-Products 9.1 Introduction 9.2 Lignocellulosic Biomass for Biofuels and Bio-Products 9.2.1 Cellulose 9.2.2 Hemicellulose 9.2.3 Lignin 9.3 Pre-Treatment Technologies for Lignocellulosic Biomass 9.4 Ionic Liquids for Lignocellulosic Biomass Pre-Treatment: Characteristics and Properties 9.5 Insights into Pre-Treatment Performance of Ionic Liquids 9.5.1 Interactions of Ionic Liquids with Lignocellulose 9.5.2 Effect of the Ionic Liquid Pre-Treatment on the Recovered Biomass 9.5.3 Impact of Ionic Liquids on the Biological Tools 9.6 Concluding Remarks: Challenges Facing the Development of Ionic Liquids Use at Large Scale and Future Directions References 10 Septage Characterization and Sustainable Fecal Sludge Management in Rural Nablus – Palestine List of Abbreviations 10.1 Introduction 10.1.1 Background 10.1.2 What is Fecal Sludge? 10.1.3 Legal Considerations 10.1.4 Study Area 10.2 Septage Characteristics 10.2.1 Introduction 10.2.2 General Background of Septage Characterization 10.2.3 General Treatment of Fecal Sludge 10.3 Study Methodology 10.3.1 General 10.3.2 Research Methodology and Methods of Laboratory Analysis 10.3.2.1 Data Collection 10.3.2.2 Sampling and Storage 10.3.2.3 Sampling of Septage 10.3.2.4 Sampling of Stools and Urine 10.3.2.5 Storage of Samples 10.3.3 Characterization of Fecal Sludge (FS) 10.3.4 Statistical Analysis of Data on Characterization of FS 10.4 Septage Pre-Treatment Process 10.4.1 General Treatment Options 10.4.2 Selection of Treatment Options 10.4.3 Septage Quality Determination 10.4.4 Software Selection 10.4.4.1 Modeling by GPS-X 7.0 10.4.5 End-Use and Disposal 10.5 Results and Discussion 10.5.1 Measured Parameters for Fecal Sludge 10.5.1.1 Septage Characteristics 10.5.2 Stools Characteristics 10.5.3 Urine Characteristics 10.5.4 Specific Parameters in Details 10.5.4.1 pH and EC 10.5.4.2 Turbidity 10.5.4.3 COD/BOD5 10.5.4.4 Total Nitrogen and Ammonia 10.5.4.5 TS, TDS, and TSS 10.5.4.6 VS, VDS, and VSS 10.5.4.7 PO -P and PO -T 10.5.4.8 Fat and Grease 10.5.4.9 Alkalinity 10.5.4.10 TC and FC 10.6 Pre-Treatment of the Fecal Sludge – Results and Discussions 10.6.1 Quantification of Domestic Septage 10.6.2 Design Septage Characteristics 10.6.2.1 Untreated Septage Characteristics 10.6.2.2 Treated Septage Characteristics 10.6.3 Software Design 10.6.3.1 Treatment Plant Modeling 10.6.3.2 Optimizing the Appropriate Model 10.7 Treatment Plant Estimated Cost Breakdown 10.8 Conclusion 10.9 Recommendations References 11 Lipase Catalyzed Reactions: A Promising Approach for Clean Synthesis of Oleochemicals 11.1 Introduction to Oleochemicals Industry 11.2 Sources of Lipases 11.2.1 Bacterial Lipases 11.2.2 Fungal Lipases 11.2.3 Plant Lipases 11.2.4 Animal Lipases 11.3 Application of Lipases 11.3.1 Monoglycerides Production 11.3.2 Oil/Fats Glycerolysis (Chemically Catalyzed) 11.3.3 Oil/Fats Glycerolysis (Enzymatically Catalyzed) 11.3.4 Biodiesel Production 11.4 Lipase Catalyzed Production of Biodiesel 11.4.1 Production of Biodiesel from Oil Extracted from Spent Bleaching Earth (SBE) 11.5 Esterification of Fatty Acids with Glycerol 11.5.1 Chemically Catalyzed Esterification 11.5.2 Lipase Catalyzed Production of Monoglycerides 11.6 Interesterification 11.6.1 Chemical Interesterification 11.6.2 Enzymatic Interesterification 11.7 Environmental Benefits of Enzymatic Process Against Chemical Process 11.8 Conclusion References 12 Seaweeds for Sustainable Development 12.1 Introduction 12.2 Types of Seaweeds 12.2.1 Green Algae 12.2.2 Red Algae 12.2.3 Brown Algae 12.3 Bioremediation 12.3.1 Pollution 12.3.2 Bioremediation of Polluted Water 12.3.3 Algal Bioremediation of Eutrophic Water 12.4 Seaweeds in Nutrition 12.4.1 Human Nutrition 12.4.2 Animal Feed and Feed Additive 12.5 Seaweeds as a Source of Pharmaceutics 12.5.1 Pharmaceutics from Green Algae 12.5.2 Pharamaceutics from Brown Algae 12.5.3 Pharmaceutics from Red Algae 12.6 Seaweeds Hydrocolloids and Biopolymers 12.6.1 Agar 12.6.2 Carrageenans 12.6.3 Alginates (Alginic Acid) 12.7 Seaweeds and Bioenergy 12.8 Seaweeds as Biofertilizers 12.9 Seaweeds as Ecological Player in Sulfur Geocycle 12.10 Culturing Seaweeds in the Marine Habitat (Algal Maricultures) 12.10.1 Mariculture Establishment 12.10.1.1 Single Culture 12.10.1.2 Repeated Culture 12.10.1.3 Multiple Cultures 12.10.2 Cultured Seaweed Harvest 12.10.3 Processes Following the Algae Harvest 12.11 Conclusion 12.12 Recommendations References Websites About the Editor Index Also of Interest EULA