ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants

دانلود کتاب راه حل های پایدار برای کمبود و مازاد عنصر در گیاهان زراعی

Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants

مشخصات کتاب

Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants

دسته بندی: گیاهان: کشاورزی و جنگلداری
ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9811586357, 9789811586354 
ناشر: Springer Singapore 
سال نشر: 2020 
تعداد صفحات: 505 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 مگابایت 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب راه حل های پایدار برای کمبود و مازاد عنصر در گیاهان زراعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب راه حل های پایدار برای کمبود و مازاد عنصر در گیاهان زراعی

این کتاب تمام جنبه های کمبود عناصر ضروری و بیش از حد عناصر سمی در گیاهان زراعی را پوشش می دهد. کمبود و سمیت فلزات دو طرف یک مشکل هستند که رشد پایدار کشاورزی را تهدید می کنند. این کتاب راهبردهای آینده نگر برای مدیریت تغذیه عنصری گیاهان زراعی را ارائه می دهد. فصل‌ها به گونه‌ای تنظیم شده‌اند که تصویری شفاف از موضوع از مبانی تا تحقیقات پیشرفته ایجاد کنند. محتوا با نمودارها و نمودارهای جریان تکمیل شده است تا درک کامل مفاهیم را برای خوانندگان راحت کند. این یک ارزش افزوده برای دانشجویان، محققان محقق و متخصصان در درک اصول اولیه و همچنین آخرین پیشرفت‌ها در زمینه کمبود و مازاد فلز در گیاهان زراعی خواهد بود.

توضیحاتی درمورد کتاب به خارجی

This book covers all aspects of deficiency of essential elements and excess of toxic ones in crop plants. The metal deficiency and toxicity are the two sides of same problem that are threatening to sustainable agricultural growth. The book presents prospective strategies for the management of elemental nutrition of crop plants. Chapters are arranged in a manner so as to develop a lucid picture of the topic beginning from basics to advanced research. The content is supplemented with flow charts and figures to make it convenient for readers to holistically grasp the concepts. It will be a value addition for students, research scholars and professionals in understanding the basics as well latest developments in the area of metal deficiency and excess in crop plants.


فهرست مطالب

Foreword
Preface
Contents
Editors and Contributors
Part I: General Aspects
1: Elemental Concentrations in Soil, Water and Air
	1.1 Introduction
	1.2 Soils
	1.3 Elemental Concentrations in the Soil
	1.4 Reasons of Concentration
	1.5 Sources of Soil Pollutant
	1.6 Tolerance Limits
	1.7 Water
	1.8 Elemental Concentrations
	1.9 Common Pollutants and Their Source
		1.9.1 Sediments
			1.9.1.1 Source
			1.9.1.2 Effects
		1.9.2 Oxygen Demanding (DO) Wastes
			1.9.2.1 Source
			1.9.2.2 Effects
		1.9.3 Industrial Waste
			1.9.3.1 Source
			1.9.3.2 Effects
		1.9.4 Synthetic Organic and Inorganic Compounds
			1.9.4.1 Source
		1.9.5 Oil and Grease
			1.9.5.1 Source
			1.9.5.2 Effects
	1.10 Air Pollution
	1.11 Air Pollutants
		1.11.1 Primary Air Pollutants
		1.11.2 Secondary Air Pollutants
			1.11.2.1 Source (Srivastava et al. 1996; Absar et al. 1996)
	1.12 Dust Pollution
	1.13 Asbestosis
	1.14 Silicosis
	1.15 Anthracnosis
	References
2: Deficiency of Essential Elements in Crop Plants
	2.1 Introduction
	2.2 Role and Deficiency Symptoms of Essential Nutrients
		2.2.1 Nitrogen (N)
		2.2.2 Phosphorus (PO42-)
		2.2.3 Potassium (K)
		2.2.4 Sulphur (S)
		2.2.5 Magnesium (Mg)
		2.2.6 Zinc (Zn)
		2.2.7 Iron (Fe)
		2.2.8 Copper (Cu)
		2.2.9 Calcium (Ca)
		2.2.10 Cobalt (Co)
		2.2.11 Boron (B)
		2.2.12 Manganese (Mn)
		2.2.13 Molybdenum (Mo)
		2.2.14 Nickel (Ni)
		2.2.15 Sodium
		2.2.16 Chloride
	2.3 Mitigating Approaches (Nutrient Management)
	2.4 Future Prospective
	References
3: The Toxicity and Accumulation of Metals in Crop Plants
	3.1 Introduction
	3.2 Accumulation of Toxic Metals in Crop Plants: Present Status
	3.3 Metal Phytotoxicity and Stress Responses of Plants
	3.4 Conclusions
	References
4: Effect of Deficiency of Essential Elements and Toxicity of Metals on Human Health
	4.1 Introduction
	4.2 Functions of Essential Elements
		4.2.1 Calcium
		4.2.2 Phosphorus
		4.2.3 Magnesium
		4.2.4 Sodium
		4.2.5 Potassium
		4.2.6 Chloride
		4.2.7 Iron
		4.2.8 Zinc
		4.2.9 Copper
		4.2.10 Iodine
		4.2.11 Selenium
		4.2.12 Manganese
		4.2.13 Molybdenum
		4.2.14 Chromium
		4.2.15 Fluoride
		4.2.16 Iodine Deficiency
		4.2.17 Fluoride Deficiency
		4.2.18 Fluoride Endemicity in Unnao District, Uttar Pradesh, India
		4.2.19 Fluoride Endemicity in Rajasthan, India
		4.2.20 Arsenic Toxicity
	4.3 Case Study of Bangladesh and West Bengal
	4.4 Selenium Deficiency and Toxicity
	4.5 Mercury Toxicity
	4.6 Radiation Hazards
	4.7 Urban Waste Toxicity
	4.8 Industrial Waste Toxicity
	4.9 Conclusion
	References
Part II: Elemental Nutrition of Crop Plants
5: An Overview of Nitrogen, Phosphorus and Potassium: Key Players of Nutrition Process in Plants
	5.1 Introduction
	5.2 Elemental Nutrition in Plants-Historical Aspects
	5.3 Nitrogen as an Essential Macronutrient Source
		5.3.1 Nitrogen Requirement by Agricultural Crops
		5.3.2 Nitrogen Deficiency
	5.4 Phosphorus as an Essential Macronutrient Source
		5.4.1 Phosphorus Requirement by Agricultural Crops
		5.4.2 Phosphorus Deficiency
	5.5 Potassium as an Essential Macronutrient Source
		5.5.1 Potassium Requirement by Agricultural Crops
		5.5.2 Potassium Deficiency
	5.6 Nitrogen(p), Phosphorus (p) and Potassium-Demand and Supply
	5.7 NPK Fertilizer: A Brief Overview
	5.8 Conclusive Remarks
	References
6: The Mechanisms of Trace Element Uptake and Transport Up To Grains of Crop Plants
	6.1 Introduction
	6.2 Soil as a Medium of Plant Growth and Custodian of Plant Nutrient
	6.3 Mechanism of Uptake and Transport of Iron From Roots to Stem
	6.4 Mechanism of Uptake and Transport of Zinc from Roots to Stem
	6.5 Interactive Effect of Zinc with Iron During Uptake
	6.6 Path of Transport of Trace Elements in Roots
		6.6.1 Radial Transport
		6.6.2 Transport of Trace Elements in Xylem and Phloem
	6.7 Mineral Nutrition During Ontogeny of Plants
	References
7: Biofortification of Crop Plants: A Practical Solution to Tackle Elemental Deficiency
	7.1 Why Crop Biofortification Is Necessary?
	7.2 Mineral Requirements in Human Nutrition
	7.3 Biofortification Approaches
		7.3.1 Agronomic Approaches
		7.3.2 Conventional Breeding and Genetic Approaches
		7.3.3 Plant Growth-Promoting Microorganisms Approaches
	7.4 Is Biofortification a Solution to Tackle Elemental Deficiency?
	References
8: An Overview on Management of Micronutrients Deficiency in Plants Through Biofortification: A Solution of Hidden Hunger
	8.1 Introduction
	8.2 Uptake and Distribution of Micronutrients in the Plants
		8.2.1 Simple Diffusion
		8.2.2 Facilitated Diffusion
	8.3 Different Ways of Biofortification to Manage Micronutrient Deficiency in Plants
		8.3.1 Agronomic Approach
			8.3.1.1 Application of Fertilizer in Soil and Irrigation Water
				Inorganic and Organic Fertilizers
				Biofertilizers
				Agronomic Fortification Through Foliar Application
		8.3.2 Plant Breeding Technology
		8.3.3 Application of Transgenic Method
	8.4 Conclusions and Future Prospective
	References
9: Biological Interventions Towards Management of Essential Elements in Crop Plants
	9.1 Introduction
	9.2 Essential Macronutrient
	9.3 Essential Micronutrient
	9.4 Soil and Depletion of Mineral Resources
	9.5 Bio-Organic Fertilizer: An Introduction
	9.6 Microbiome: A Potential Source of Beneficial Microorganism for Nutritional Management of Plant
		9.6.1 Plant Growth Promoting Bacteria
		9.6.2 Azolla Blue Green Alga Symbiosis
		9.6.3 Arbuscular Mycorrhizal Fungi
		9.6.4 Ectomycorrhizal Fungi
		9.6.5 Nematodes
	9.7 Mechanism of Uptake of Nutrients by Plant Through Beneficial Microorganism
		9.7.1 Nitrogen Fixation
		9.7.2 Phosphate Solubilization
		9.7.3 Sequestering Iron
		9.7.4 Mycorrhiza
	9.8 Conclusive Remarks
	References
10: Biotechnological Approaches to Enhance Crop Quality for Iron and Zinc Nutrition
	10.1 Introduction
	10.2 Biofortification
	10.3 Genetic Engineering Studies for Biofortification of Fe and Zn
	10.4 Future Prospects
	References
Part III: Toxic Metals in Crop Plants
11: Toxic Metals in Crops: A Burgeoning Problem
	11.1 Introduction
	11.2 Metals: Nutrients or Contaminants
		11.2.1 Cadmium (Cd)
		11.2.2 Chromium (Cr)
		11.2.3 Arsenic (As)
		11.2.4 Lead (Pb)
		11.2.5 Mercury (Hg)
	11.3 Heavy Metals in Agriculture
	11.4 Heavy Metals: Accumulation and Uptake
	11.5 Heavy Metals: Effects on Growth and Development
	11.6 Heavy Metals: Health Risk Assessment Indices
		11.6.1 Bioconcentration Factor (BCF)
		11.6.2 Pollution Load Index (PLI)
	11.7 Ecological Risk Index (RI)
	11.8 Different Health Risk Assessment Indices
	11.9 Hazard Quotient
	11.10 Daily Dietary Index
	11.11 Daily Intake of Metals
	11.12 Health Risk Index
	11.13 Hazard Index
	11.14 Incremental Lifetime Cancer Risk (ILCR)
	11.15 Heavy Metals: Management in Agriculture System
	11.16 Phytoremediation: A Green Solution
		11.16.1 Phytoextraction
		11.16.2 Phytostabilization
		11.16.3 Rhizofiltration
		11.16.4 Phytodegradation
		11.16.5 Phytovolatilization
	11.17 Source Reduction
	11.18 Application of Genetic Engineering
	11.19 Application of Nanoparticle Techniques
	11.20 Conclusion
	References
12: Heavy Metal Contamination of Environment and Crop Plants
	12.1 Introduction
	12.2 Heavy Metals in Environment
	12.3 Transport of Heavy Metals in Crop Plants
	12.4 Effects of Heavy Metals on Crop Plants
		12.4.1 Effect on Growth and Pigments
		12.4.2 Effect on Photosynthesis
		12.4.3 Effect on Oxidative Stress
		12.4.4 Effect on Macromolecule
	12.5 Role of ROS as Signalling Molecule
	12.6 Molecular Responses Against Heavy Metals
	12.7 Conclusion and Future Perspective
	References
13: Mechanism of Toxic Metal Uptake and Transport in Plants
	13.1 Introduction
	13.2 Metal Binding to Extracellular Exudates and Cell Wall
	13.3 Metal Ions Transport Through Plasma Membrane in the Roots
		13.3.1 ZIP Family (Zinc Resistance Transporter and Iron-Resistance Transporter-Like Proteins)
		13.3.2 NRAMPs (Natural Resistance-Associated Macrophage Proteins) Family
		13.3.3 Ctr/COPT Transporters (Copper Transporter)
	13.4 Efflux Pumping at Plasma Membrane and Reduced Metals Uptake
		13.4.1 P1B-ATPases
	13.5 Movement of Metal Root to Shoot
		13.5.1 HMA Family of Transporters
		13.5.2 Multidrug and Toxic Compound Extrusion Family (MATE)
		13.5.3 Oligopeptide Transporter Family
	13.6 Chelation in the Cytosol
		13.6.1 Phytochelatins
		13.6.2 Metallothioneins (MTs)
		13.6.3 Amino Acids and Organic Acids
	13.7 Sequestration of Metal into Vacuole by Tonoplast Transporters
		13.7.1 ABC Transporters
		13.7.2 HMA Transporters
	References
14: Cadmium: Bioavailability in Soils and Phytotoxicity
	14.1 Introduction
	14.2 Cd Bioavailability at Soil-Plant Interface
		14.2.1 Organic Matter
		14.2.2 pH
		14.2.3 Presence of Other Ions
		14.2.4 Redox Potential
		14.2.5 Speciation
		14.2.6 Aging
		14.2.7 Root Exudations
	14.3 Cadmium Toxicity in Plants
		14.3.1 Morphology, Growth and Yield Responses
		14.3.2 Nodulation and Nitrogen Fixation
		14.3.3 Photosynthesis and Carbon Assimilation
		14.3.4 Respiration
		14.3.5 Plant-Water Relationships and Nutrient Uptake
		14.3.6 Cd-Induced Reactive Oxygen Species (ROS): Impact on Membranes, Lipids, Proteins, and Nucleic Acids
		14.3.7 Metabolic Antioxidative Defense Mechanisms: Limiting Cd-Induced ROS-Mediated Damage
			14.3.7.1 Enzymatic Antioxidative Defense System
			14.3.7.2 Non-enzymatic Antioxidative Defense System
				α-tocopherols, Phenolics, and Flavonoids
				Ascorbic Acid
				Glutathione
				Metallothioneins
				Phytochelatins
				Cysteine and Chaperones
		14.3.8 Accumulation of Compatible Solutes/Osmolytes
	14.4 Conclusions
	References
15: Cadmium: Uptake in Plants and Its Alleviation Via Crosstalk Between Phytohormones and Sulfur
	15.1 Introduction
	15.2 Cd Uptake, Translocation, and Accumulation: Role of Transporters
		15.2.1 ZIPs
		15.2.2 ABCs
		15.2.3 NRAMPs
		15.2.4 CDFs
		15.2.5 P-type ATPases
		15.2.6 CAXs
		15.2.7 Other Transporters
	15.3 Alleviation of Cd Toxicity Via Crosstalk Between Phytohormones and Sulfur
		15.3.1 Crosstalk Between Salicylic Acid, Sulfur, and Cd
		15.3.2 Crosstalk Between Ethylene, Sulfur, and Cd
		15.3.3 Crosstalk Between Brassinosteroids, Sulfur, and Cd
		15.3.4 Crosstalk Between Jasmonic Acid, Sulfur, and Cd
		15.3.5 Crosstalk Between Nitric Oxide, Sulfur, and Cd
	15.4 Conclusions
	References
16: Agronomic Management Practices to Tackle Toxic Metal Entry into Crop Plants
	16.1 Introduction
	16.2 Arsenic
		16.2.1 Arsenic in Water and Soils
		16.2.2 Arsenic in Plants
		16.2.3 Arsenic Remediation by Agronomic Management
	16.3 Cadmium
		16.3.1 Cadmium in Water and Soils
		16.3.2 Cadmium in Plants
		16.3.3 Cadmium Remediation by Agronomic Management
	16.4 Lead
		16.4.1 Lead in Water and Soils
		16.4.2 Lead in Plants
		16.4.3 Lead Remediation by Agronomic Management
	16.5 Mercury
		16.5.1 Mercury in Water and Soils
		16.5.2 Mercury in Plants
		16.5.3 Mercury Remediation by Agronomic Management
	16.6 Final Considerations and Perspectives
	References
17: Microbial Inoculation to Alleviate the Metal Toxicity in Crop Plants and Subsequent Growth Promotion
	17.1 Introduction
	17.2 Microbial Resistance Towards Different Toxic Elements
		17.2.1 Tolerance Towards Nutrient Over Richness
		17.2.2 Resistance Towards Heavy Metal(loid)s Pollution
	17.3 Bacterial Inoculation and Metal Uptake
		17.3.1 Application of PGPR Microbes
		17.3.2 Application of Non-PGPR Microbes
	17.4 Algal and Cyanobacterial Involvement in Metal Accumulation
	17.5 Fungal Inoculation and Metal Uptake
		17.5.1 Role of Mycorrhizal Fungi in Toxicity Mitigation
		17.5.2 Role of Non-mycorrhizal Fungi in Toxicity Mitigation
	17.6 Biotransformation of Metals and Microbial Intervention
	References
18: Genetic Engineering to Reduce Toxicity and Increase Accumulation of Toxic Metals in Plants
	18.1 Introduction
	18.2 Phytoremediation for Toxic Metals
		18.2.1 Phytoextraction
		18.2.2 Phytostabilization
		18.2.3 Phytovolatilization
	18.3 Advancements in Phytoremediation Techniques
		18.3.1 Endophyte-Assisted Phytoremediation
			18.3.1.1 Natural Endophytes
		18.3.2 Engineered Endophytes
	18.4 Phytoremediation Potential Enhancement of Plants Through Genetic Engineering Approaches
		18.4.1 Genes Overexpression Encoding Metal Transporters
		18.4.2 Genes Overexpression Encoding Metal Chelators
		18.4.3 Strategies for Upgraded Heavy Metal Tolerance
			18.4.3.1 Genes Overexpression Encoding Components of Antioxidant Machinery
		18.4.4 Application of Gene Silencing in Plants to Overcome Heavy Metal Toxicity
	18.5 Conclusions and Future Prospects
	References




نظرات کاربران