دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: گیاهان: کشاورزی و جنگلداری ویرایش: نویسندگان: Kumkum Mishra, Pramod Kumar Tandon, Sudhakar Srivastava سری: ISBN (شابک) : 9811586357, 9789811586354 ناشر: Springer Singapore سال نشر: 2020 تعداد صفحات: 505 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راه حل های پایدار برای کمبود و مازاد عنصر در گیاهان زراعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foreword Preface Contents Editors and Contributors Part I: General Aspects 1: Elemental Concentrations in Soil, Water and Air 1.1 Introduction 1.2 Soils 1.3 Elemental Concentrations in the Soil 1.4 Reasons of Concentration 1.5 Sources of Soil Pollutant 1.6 Tolerance Limits 1.7 Water 1.8 Elemental Concentrations 1.9 Common Pollutants and Their Source 1.9.1 Sediments 1.9.1.1 Source 1.9.1.2 Effects 1.9.2 Oxygen Demanding (DO) Wastes 1.9.2.1 Source 1.9.2.2 Effects 1.9.3 Industrial Waste 1.9.3.1 Source 1.9.3.2 Effects 1.9.4 Synthetic Organic and Inorganic Compounds 1.9.4.1 Source 1.9.5 Oil and Grease 1.9.5.1 Source 1.9.5.2 Effects 1.10 Air Pollution 1.11 Air Pollutants 1.11.1 Primary Air Pollutants 1.11.2 Secondary Air Pollutants 1.11.2.1 Source (Srivastava et al. 1996; Absar et al. 1996) 1.12 Dust Pollution 1.13 Asbestosis 1.14 Silicosis 1.15 Anthracnosis References 2: Deficiency of Essential Elements in Crop Plants 2.1 Introduction 2.2 Role and Deficiency Symptoms of Essential Nutrients 2.2.1 Nitrogen (N) 2.2.2 Phosphorus (PO42-) 2.2.3 Potassium (K) 2.2.4 Sulphur (S) 2.2.5 Magnesium (Mg) 2.2.6 Zinc (Zn) 2.2.7 Iron (Fe) 2.2.8 Copper (Cu) 2.2.9 Calcium (Ca) 2.2.10 Cobalt (Co) 2.2.11 Boron (B) 2.2.12 Manganese (Mn) 2.2.13 Molybdenum (Mo) 2.2.14 Nickel (Ni) 2.2.15 Sodium 2.2.16 Chloride 2.3 Mitigating Approaches (Nutrient Management) 2.4 Future Prospective References 3: The Toxicity and Accumulation of Metals in Crop Plants 3.1 Introduction 3.2 Accumulation of Toxic Metals in Crop Plants: Present Status 3.3 Metal Phytotoxicity and Stress Responses of Plants 3.4 Conclusions References 4: Effect of Deficiency of Essential Elements and Toxicity of Metals on Human Health 4.1 Introduction 4.2 Functions of Essential Elements 4.2.1 Calcium 4.2.2 Phosphorus 4.2.3 Magnesium 4.2.4 Sodium 4.2.5 Potassium 4.2.6 Chloride 4.2.7 Iron 4.2.8 Zinc 4.2.9 Copper 4.2.10 Iodine 4.2.11 Selenium 4.2.12 Manganese 4.2.13 Molybdenum 4.2.14 Chromium 4.2.15 Fluoride 4.2.16 Iodine Deficiency 4.2.17 Fluoride Deficiency 4.2.18 Fluoride Endemicity in Unnao District, Uttar Pradesh, India 4.2.19 Fluoride Endemicity in Rajasthan, India 4.2.20 Arsenic Toxicity 4.3 Case Study of Bangladesh and West Bengal 4.4 Selenium Deficiency and Toxicity 4.5 Mercury Toxicity 4.6 Radiation Hazards 4.7 Urban Waste Toxicity 4.8 Industrial Waste Toxicity 4.9 Conclusion References Part II: Elemental Nutrition of Crop Plants 5: An Overview of Nitrogen, Phosphorus and Potassium: Key Players of Nutrition Process in Plants 5.1 Introduction 5.2 Elemental Nutrition in Plants-Historical Aspects 5.3 Nitrogen as an Essential Macronutrient Source 5.3.1 Nitrogen Requirement by Agricultural Crops 5.3.2 Nitrogen Deficiency 5.4 Phosphorus as an Essential Macronutrient Source 5.4.1 Phosphorus Requirement by Agricultural Crops 5.4.2 Phosphorus Deficiency 5.5 Potassium as an Essential Macronutrient Source 5.5.1 Potassium Requirement by Agricultural Crops 5.5.2 Potassium Deficiency 5.6 Nitrogen(p), Phosphorus (p) and Potassium-Demand and Supply 5.7 NPK Fertilizer: A Brief Overview 5.8 Conclusive Remarks References 6: The Mechanisms of Trace Element Uptake and Transport Up To Grains of Crop Plants 6.1 Introduction 6.2 Soil as a Medium of Plant Growth and Custodian of Plant Nutrient 6.3 Mechanism of Uptake and Transport of Iron From Roots to Stem 6.4 Mechanism of Uptake and Transport of Zinc from Roots to Stem 6.5 Interactive Effect of Zinc with Iron During Uptake 6.6 Path of Transport of Trace Elements in Roots 6.6.1 Radial Transport 6.6.2 Transport of Trace Elements in Xylem and Phloem 6.7 Mineral Nutrition During Ontogeny of Plants References 7: Biofortification of Crop Plants: A Practical Solution to Tackle Elemental Deficiency 7.1 Why Crop Biofortification Is Necessary? 7.2 Mineral Requirements in Human Nutrition 7.3 Biofortification Approaches 7.3.1 Agronomic Approaches 7.3.2 Conventional Breeding and Genetic Approaches 7.3.3 Plant Growth-Promoting Microorganisms Approaches 7.4 Is Biofortification a Solution to Tackle Elemental Deficiency? References 8: An Overview on Management of Micronutrients Deficiency in Plants Through Biofortification: A Solution of Hidden Hunger 8.1 Introduction 8.2 Uptake and Distribution of Micronutrients in the Plants 8.2.1 Simple Diffusion 8.2.2 Facilitated Diffusion 8.3 Different Ways of Biofortification to Manage Micronutrient Deficiency in Plants 8.3.1 Agronomic Approach 8.3.1.1 Application of Fertilizer in Soil and Irrigation Water Inorganic and Organic Fertilizers Biofertilizers Agronomic Fortification Through Foliar Application 8.3.2 Plant Breeding Technology 8.3.3 Application of Transgenic Method 8.4 Conclusions and Future Prospective References 9: Biological Interventions Towards Management of Essential Elements in Crop Plants 9.1 Introduction 9.2 Essential Macronutrient 9.3 Essential Micronutrient 9.4 Soil and Depletion of Mineral Resources 9.5 Bio-Organic Fertilizer: An Introduction 9.6 Microbiome: A Potential Source of Beneficial Microorganism for Nutritional Management of Plant 9.6.1 Plant Growth Promoting Bacteria 9.6.2 Azolla Blue Green Alga Symbiosis 9.6.3 Arbuscular Mycorrhizal Fungi 9.6.4 Ectomycorrhizal Fungi 9.6.5 Nematodes 9.7 Mechanism of Uptake of Nutrients by Plant Through Beneficial Microorganism 9.7.1 Nitrogen Fixation 9.7.2 Phosphate Solubilization 9.7.3 Sequestering Iron 9.7.4 Mycorrhiza 9.8 Conclusive Remarks References 10: Biotechnological Approaches to Enhance Crop Quality for Iron and Zinc Nutrition 10.1 Introduction 10.2 Biofortification 10.3 Genetic Engineering Studies for Biofortification of Fe and Zn 10.4 Future Prospects References Part III: Toxic Metals in Crop Plants 11: Toxic Metals in Crops: A Burgeoning Problem 11.1 Introduction 11.2 Metals: Nutrients or Contaminants 11.2.1 Cadmium (Cd) 11.2.2 Chromium (Cr) 11.2.3 Arsenic (As) 11.2.4 Lead (Pb) 11.2.5 Mercury (Hg) 11.3 Heavy Metals in Agriculture 11.4 Heavy Metals: Accumulation and Uptake 11.5 Heavy Metals: Effects on Growth and Development 11.6 Heavy Metals: Health Risk Assessment Indices 11.6.1 Bioconcentration Factor (BCF) 11.6.2 Pollution Load Index (PLI) 11.7 Ecological Risk Index (RI) 11.8 Different Health Risk Assessment Indices 11.9 Hazard Quotient 11.10 Daily Dietary Index 11.11 Daily Intake of Metals 11.12 Health Risk Index 11.13 Hazard Index 11.14 Incremental Lifetime Cancer Risk (ILCR) 11.15 Heavy Metals: Management in Agriculture System 11.16 Phytoremediation: A Green Solution 11.16.1 Phytoextraction 11.16.2 Phytostabilization 11.16.3 Rhizofiltration 11.16.4 Phytodegradation 11.16.5 Phytovolatilization 11.17 Source Reduction 11.18 Application of Genetic Engineering 11.19 Application of Nanoparticle Techniques 11.20 Conclusion References 12: Heavy Metal Contamination of Environment and Crop Plants 12.1 Introduction 12.2 Heavy Metals in Environment 12.3 Transport of Heavy Metals in Crop Plants 12.4 Effects of Heavy Metals on Crop Plants 12.4.1 Effect on Growth and Pigments 12.4.2 Effect on Photosynthesis 12.4.3 Effect on Oxidative Stress 12.4.4 Effect on Macromolecule 12.5 Role of ROS as Signalling Molecule 12.6 Molecular Responses Against Heavy Metals 12.7 Conclusion and Future Perspective References 13: Mechanism of Toxic Metal Uptake and Transport in Plants 13.1 Introduction 13.2 Metal Binding to Extracellular Exudates and Cell Wall 13.3 Metal Ions Transport Through Plasma Membrane in the Roots 13.3.1 ZIP Family (Zinc Resistance Transporter and Iron-Resistance Transporter-Like Proteins) 13.3.2 NRAMPs (Natural Resistance-Associated Macrophage Proteins) Family 13.3.3 Ctr/COPT Transporters (Copper Transporter) 13.4 Efflux Pumping at Plasma Membrane and Reduced Metals Uptake 13.4.1 P1B-ATPases 13.5 Movement of Metal Root to Shoot 13.5.1 HMA Family of Transporters 13.5.2 Multidrug and Toxic Compound Extrusion Family (MATE) 13.5.3 Oligopeptide Transporter Family 13.6 Chelation in the Cytosol 13.6.1 Phytochelatins 13.6.2 Metallothioneins (MTs) 13.6.3 Amino Acids and Organic Acids 13.7 Sequestration of Metal into Vacuole by Tonoplast Transporters 13.7.1 ABC Transporters 13.7.2 HMA Transporters References 14: Cadmium: Bioavailability in Soils and Phytotoxicity 14.1 Introduction 14.2 Cd Bioavailability at Soil-Plant Interface 14.2.1 Organic Matter 14.2.2 pH 14.2.3 Presence of Other Ions 14.2.4 Redox Potential 14.2.5 Speciation 14.2.6 Aging 14.2.7 Root Exudations 14.3 Cadmium Toxicity in Plants 14.3.1 Morphology, Growth and Yield Responses 14.3.2 Nodulation and Nitrogen Fixation 14.3.3 Photosynthesis and Carbon Assimilation 14.3.4 Respiration 14.3.5 Plant-Water Relationships and Nutrient Uptake 14.3.6 Cd-Induced Reactive Oxygen Species (ROS): Impact on Membranes, Lipids, Proteins, and Nucleic Acids 14.3.7 Metabolic Antioxidative Defense Mechanisms: Limiting Cd-Induced ROS-Mediated Damage 14.3.7.1 Enzymatic Antioxidative Defense System 14.3.7.2 Non-enzymatic Antioxidative Defense System α-tocopherols, Phenolics, and Flavonoids Ascorbic Acid Glutathione Metallothioneins Phytochelatins Cysteine and Chaperones 14.3.8 Accumulation of Compatible Solutes/Osmolytes 14.4 Conclusions References 15: Cadmium: Uptake in Plants and Its Alleviation Via Crosstalk Between Phytohormones and Sulfur 15.1 Introduction 15.2 Cd Uptake, Translocation, and Accumulation: Role of Transporters 15.2.1 ZIPs 15.2.2 ABCs 15.2.3 NRAMPs 15.2.4 CDFs 15.2.5 P-type ATPases 15.2.6 CAXs 15.2.7 Other Transporters 15.3 Alleviation of Cd Toxicity Via Crosstalk Between Phytohormones and Sulfur 15.3.1 Crosstalk Between Salicylic Acid, Sulfur, and Cd 15.3.2 Crosstalk Between Ethylene, Sulfur, and Cd 15.3.3 Crosstalk Between Brassinosteroids, Sulfur, and Cd 15.3.4 Crosstalk Between Jasmonic Acid, Sulfur, and Cd 15.3.5 Crosstalk Between Nitric Oxide, Sulfur, and Cd 15.4 Conclusions References 16: Agronomic Management Practices to Tackle Toxic Metal Entry into Crop Plants 16.1 Introduction 16.2 Arsenic 16.2.1 Arsenic in Water and Soils 16.2.2 Arsenic in Plants 16.2.3 Arsenic Remediation by Agronomic Management 16.3 Cadmium 16.3.1 Cadmium in Water and Soils 16.3.2 Cadmium in Plants 16.3.3 Cadmium Remediation by Agronomic Management 16.4 Lead 16.4.1 Lead in Water and Soils 16.4.2 Lead in Plants 16.4.3 Lead Remediation by Agronomic Management 16.5 Mercury 16.5.1 Mercury in Water and Soils 16.5.2 Mercury in Plants 16.5.3 Mercury Remediation by Agronomic Management 16.6 Final Considerations and Perspectives References 17: Microbial Inoculation to Alleviate the Metal Toxicity in Crop Plants and Subsequent Growth Promotion 17.1 Introduction 17.2 Microbial Resistance Towards Different Toxic Elements 17.2.1 Tolerance Towards Nutrient Over Richness 17.2.2 Resistance Towards Heavy Metal(loid)s Pollution 17.3 Bacterial Inoculation and Metal Uptake 17.3.1 Application of PGPR Microbes 17.3.2 Application of Non-PGPR Microbes 17.4 Algal and Cyanobacterial Involvement in Metal Accumulation 17.5 Fungal Inoculation and Metal Uptake 17.5.1 Role of Mycorrhizal Fungi in Toxicity Mitigation 17.5.2 Role of Non-mycorrhizal Fungi in Toxicity Mitigation 17.6 Biotransformation of Metals and Microbial Intervention References 18: Genetic Engineering to Reduce Toxicity and Increase Accumulation of Toxic Metals in Plants 18.1 Introduction 18.2 Phytoremediation for Toxic Metals 18.2.1 Phytoextraction 18.2.2 Phytostabilization 18.2.3 Phytovolatilization 18.3 Advancements in Phytoremediation Techniques 18.3.1 Endophyte-Assisted Phytoremediation 18.3.1.1 Natural Endophytes 18.3.2 Engineered Endophytes 18.4 Phytoremediation Potential Enhancement of Plants Through Genetic Engineering Approaches 18.4.1 Genes Overexpression Encoding Metal Transporters 18.4.2 Genes Overexpression Encoding Metal Chelators 18.4.3 Strategies for Upgraded Heavy Metal Tolerance 18.4.3.1 Genes Overexpression Encoding Components of Antioxidant Machinery 18.4.4 Application of Gene Silencing in Plants to Overcome Heavy Metal Toxicity 18.5 Conclusions and Future Prospects References