دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Maria Dolores Torres (editor), Stefan Kraan (editor), Herminia Dominguez (editor) سری: Advances in Green Chemistry ISBN (شابک) : 0128179430, 9780128179437 ناشر: Elsevier سال نشر: 2020 تعداد صفحات: 715 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 20 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Sustainable Seaweed Technologies: Cultivation, Biorefinery, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فن آوری های جلبک دریایی پایدار: کشت، تصفیه زیستی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تکنولوژی های جلبک دریایی پایدار: کشت، پالایش زیستی، و کاربردها اطلاعات پس زمینه کلیدی در مورد کشت کارآمد و تصفیه زیستی جلبک های دریایی را گردآوری می کند و شیمی و روش شناسی اساسی را با تجربه صنعت ترکیب می کند. این کتاب با مروری بر فرصتهای پالایشگاه زیستی جلبک دریایی و اجزای مختلف و خواص ماکروجلبکها آغاز میشود، سپس تمام مراحل کلیدی مورد نیاز برای کاربردهای صنعتی، از کشت، جمعآوری و فرآوری آن، تا تکنیکهای استخراج، غلظت و خالصسازی را مرور میکند. سپس طیف وسیعی از کاربردهای مهم، از جمله تولید انرژی و مواد جدید از جلبک دریایی، قبل از اینکه مجموعه ای از مطالعات موردی گویا نشان دهد که چگونه این مراحل مختلف در عمل کار می کنند، مورد بحث قرار می گیرد.
با تکیه بر دانش تخصصی یک تیم جهانی ویراستاران و نویسندگان، این کتاب یک منبع عملی برای محققان و کسبوکارهایی است که در حال حاضر با جلبکهای کلان کار میکنند.
Sustainable Seaweed Technologies: Cultivation, Biorefinery, and Applications collates key background information on efficient cultivation and biorefinery of seaweeds, combining underlying chemistry and methodology with industry experience. Beginning with a review of the opportunities for seaweed biorefinery and the varied components and properties of macroalgae, the book then reviews all the key steps needed for industrial applications, from its cultivation, collection and processing, to extraction techniques, concentration and purification. A range of important applications are then discussed, including the production of energy and novel materials from seaweed, before a set of illustrative case studies shows how these various stages work in practice.
Drawing on the expert knowledge of a global team of editors and authors, this book is a practical resource for both researchers and businesses who currently work with macroalgae.
Front Matter Copyright Contributors Opportunities for seaweed biorefinery Seaweed and the blue biorefinery Seaweed cultivation and harvesting from natural stocks Climate and environmental benefits of seaweed cultivation Seaweed biorefining, technologies, and products Biocatalytic refining of seaweed carbohydrates The mature seaweed biorefinery Seaweed as a basis for tasty and health-promoting food ingredients Seaweed as a basis for health-promoting feed ingredients Seaweed biorefinery value chains for skin care Seaweed biorefinery value chains, valorizing nonedible biomass Seaweed biorefinery, polymer-based value chains Polysaccharides from brown, red, and green seaweed Proteins from seaweeds New opportunities from mixed feedstocks and integrated processing Geographical hot spots for valorizing seaweed biomass Future global perspectives for seaweed biorefinery References Further reading Seaweed components, properties, and applications Introduction Nutritional composition of seaweed Carbohydrates Proteins Lipids and fatty acids Minerals and vitamins Bioactive properties of seaweeds Modulation and prevention of metabolic syndrome Antimicrobial, antifungal, and antagonistic properties Immunomodulatory and antiinflammatory properties Anticancer and antitumor properties Potential prebiotics and promotion of gut health Physicochemical properties and strength of seaweed-derived phycocolloids Food and nonfood application of seaweeds Seaweed as food products and functional food ingredients Conversion of seaweed into bioenergy and biofuels Livestock feed ingredients and agrichemicals Bioremediation and contaminant absorber Other applications Challenges and conclusion Acknowledgments References Further reading Seaweed resources, collection, and cultivation with respect to sustainability Seaweed resource overview Sustainable socioeconomic benefits for coastal communities Sustainable harvesting and management of wild resources Effect of global change on seaweed resources and sustainability Ecosystem services Wild stocks Aquaculture Sustainable biofuel options Sustainable aquaculture of seaweeds Conclusion and outlook References Further reading Time for applications of biostimulants in phyconomy: Seaweed Extracts for Enhanced Cultivation of Seaweeds (SEECS) Introduction Seaweed extract applications in seaweed cultivation Micropropagation In vitro effects of temperature on growth Cultivation Tank cultivation and applications of biostimulants Field treatments Mitigation of ice-ice, epi-endophytes, and epibionts Integrated multitrophic aquaculture and biostimulants Effects of biostimulant applications on production of phycocolloids Concluding thoughts of the authors Disclaimer References Drying of edible seaweeds Introduction Drying methods Solar drying Convective air drying Modeling of drying kinetics of seaweeds Initiation period Constant drying rate period Falling drying rate period Freeze drying Vacuum drying Microwave drying Effect of drying methods on dried seaweeds properties Antioxidant activity Color Main uses of dried seaweeds Food ingredient Source of hydrocolloids Current state and future trends References Storage of seaweed for biofuel production: Ensilage Introduction Ensiling Ensiling algae Reducing pH during ensilage of algae Energy and dry matter losses in ensiling algae Effect of moisture content on ensiling algae Effect of size reduction on ensiling algae Effect of enzyme and lactic acid bacteria addition on ensiling algae Acknowledgments References Further reading Conventional extraction techniques: Solvent extraction Introduction Distillation Principles of distillation Applications of steam distillation Maceration Principles of maceration Applications of maceration Soxhlet extraction Principles of Soxhlet extraction Applications of Soxhlet extraction Prospects and future trends of conventional technologies Acknowledgments References Further reading Emerging extraction techniques: Hydrothermal processing Introduction Hydrothermal liquefaction Advantages of hydrothermal liquefaction Disadvantages of hydrothermal liquefaction Hydrothermal gasification Advantages of hydrothermal gasification Disadvantages of hydrothermal gasification Hydrothermal carbonization Conclusion Acknowledgments References Further reading Emerging extraction techniques: Microwave-assisted extraction Introduction Principles, equipment, and advantages of microwave-assisted extraction Principles of microwave technology Microwave equipment Advantages and disadvantages of MAE Microwave-assisted extraction of bioactive compounds from macroalgae MAE of polysaccharides MAE of other compounds Other uses of microwave technologies Future trends in microwave-assisted extraction Acknowledgments References Further reading Emerging seaweed extraction techniques: Enzyme-assisted extraction a key step of seaweed biorefinery? Introduction Description of seaweed cell walls and storage polysaccharides In brown seaweeds In red seaweeds In green seaweeds Enzyme-assisted extraction Innovative associated processes Ultrasound-assisted extraction (UAE) and EAE Pressurized liquid extraction (PLE) and EAE Microwave-assisted extraction (MAE) and EAE To the biorefinery concept Seaweed sourcing Bioenergy Biorefineries: Toward the ``blue economy´´ concept Conclusion References Emerging seaweed extraction techniques: Supercritical fluid extraction Introduction Macroalgae bioactive compounds Polysaccharides Proteins Lipids Antioxidants Sub- and supercritical fluids extraction processes Supercritical carbon dioxide Subcritical water Sub- and supercritical fluid extraction of bioactive compounds Future perspective and challenge Acknowledgments References Emerging seaweed extraction techniques using ionic liquids Introduction Ionic liquids: Alternative solvents in extraction techniques Extraction of biomolecules from seaweed Hydrolyses of carbohydrates and biomass dissolution using ILs Purification approaches Conclusions and critical analysis Future perspectives Acknowledgments References Concentration and purification of seaweed components by chromatography methods Characteristics of seaweed Therapeutic benefits of seaweeds Chromatography Reverse-phase high-performance liquid chromatography (RP-HPLC) Dye-ligand affinity chromatography Size-exclusion chromatography Fast protein liquid chromatography High-speed countercurrent chromatography Centrifugal partition chromatography (CPC) Gas chromatography Thin-layer chromatography Ion exchange chromatography Liquid chromatography Hydrophilic interaction chromatography Ultra performance liquid chromatography (UPLC) Conclusion References Concentration and purification of seaweed extracts using membrane technologies Membrane technology Membrane characteristics Transport characteristics Membrane morphology Membrane material Membrane operation Operation mode Concentration polarization and fouling Influence of operational parameters Membrane modules Concentration and purification of seaweed extracts by membrane technology References Biofuels production of third generation biorefinery from macroalgal biomass in the Mexican context: An overview Introduction Algae Chemical composition of macroalgae biomass Biofuels production from macroalgae Bioethanol Biogas Bio-oil production Biodiesel Biohydrogen Biobutanol Situation and perspectives of macroalgae biomass for 3G bioenergy in Mexico Future trends and conclusions Acknowledgment References Biocatalytic refining of polysaccharides from brown seaweeds Introduction Brown seaweed production A European perspective Biorefining of brown algae Composition of brown seaweed Biocatalytic refining of brown seaweed carbohydrates-Targets and challenges Enzymatic refining of the individual polysaccharides Enzymatic refining of the brown seaweed polymers alginate, laminaran, and fucoidan Alginate and alginate-modifying enzymes Alginate Modification of alginate by mannuronan C-5 epimerases Depolymerization of alginates by alginate lyases Laminaran and its enzymatic conversion β-Glucans in brown seaweed Depolymerization of laminaran Synthesis reactions by retaining glycoside hydrolases Potential health-promoting effects of laminaran/laminari-oligosaccharides Fucoidans and fucoidan-modifying enzymes Structures of fucoidans Bioactivity of fucoidans and the effect of sulfate content Fucoidanases and fucosidases Sulfatases Microbial refining of brown algal polysaccharides Brown algae as carbon source for fermentation Native microbes converting brown algae glucans to fuel alcohols, platform, and specialty chemicals Engineered microbes utilizing alginate and simultaneous utilization of the constituent carbohydrates from brown algae Concluding remarks Acknowledgments References Further reading Seaweeds: A promising bionanofactory for ecofriendly synthesis of gold and silver nanoparticles Introduction to nanotechnology Algae Classification Composition Applications Synthesis of gold and silver nanoparticles Revision on classical methods Green methods Factors controlling the biosynthesis of nanoparticles led by seaweeds Characterization of biogenic nanoparticles Mechanism of synthesis of nanoparticles from algae Conclusions and future perspectives References Seaweed polysaccharides as sustainable building blocks for biomaterials in tissue engineering Introduction Seaweeds: A sustainable source of natural biopolymers Fucoidan Carrageenan Ulvan Alginate Agarose Biomaterials and properties: Multiple combination with other natural polymers Processing methodologies Natural/chemical crosslinking and physiological degradation Bioactive polymer enabling functional biomaterials Tissue engineering applications Conclusions and future perspectives Conflict of interest References Agricultural uses of seaweed Seaweed as an agricultural resource Agronomic interest of seaweed Seaweed as organic fertilizer Seaweed as a soil quality improver Seaweed as a plant biostimulant Seaweed as an agricultural input References Utilization of seaweed waste: Biosorption of toxic compounds onto invasive seaweed and seaweed wastes Introduction Invasive and waste algal biosorbents Data analysis Conclusions and outlook Acknowledgments References Sustainable technologies for seaweed conversion to biofuels and bioproducts Introduction Seaweed as a sustainable bioenergy feedstock Global seaweed production potential Harvesting and processing logistics Seaweed composition Conversion technologies to maximize the delivery of a sustainable bioenergy platform Historical energy production Acetone-butanol-ethanol fermentation Anaerobic digestion Microbial degradation of structural polymers High-value product extraction Conclusions and outlook Acknowledgments References Life cycle assessment of macroalgal ecoindustrial systems Global societal challenges-a call for designing a regenerative circular seaweed bioeconomy SDGs framework Ecosystem services Key aspects in designing a LCA: A decision support tool for developing and regulating the seaweed bioeconomy Brief introduction to LCA methodology and key terminology FU definition and the choice of LCI modeling framework FU definition Attributional LCA or consequential LCA? Climate-neutral seaweed ecoindustrial systems and associated restorative services Case studies: A demonstration of climate-neutral macroalgal ecoindustrial systems System-level LCA for documenting the carbon neutrality of industrial ecology systems Macroalgal ecoindustrial system I Macroalgal ecoindustrial system II Upscaling circular seaweed bioeconomy to address global societal challenges The balance between the assimilated and avoided emissions (negative) and the process emissions (positive) The balance of the assimilated, avoided, and reduced emissions (negative) and the process emissions (positive) Future perspectives: A need for an integrated ecosystem-based assessment framework quantifying the progress toward SDGs Uncertainties in LCA results and limitations of the LCA methodology The need for integrating impact pathway modeling to LCA The need for a triple-helix management framework References Further reading Index A B C D E F G H I J K L M N O P R S T U V W X Y Z