دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Deyi Hou (editor)
سری:
ISBN (شابک) : 0128179821, 9780128179826
ناشر: Butterworth-Heinemann
سال نشر: 2019
تعداد صفحات: 457
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 23 مگابایت
در صورت تبدیل فایل کتاب Sustainable Remediation of Contaminated Soil and Groundwater: Materials, Processes, and Assessment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصلاح پایدار خاک آلوده و آبهای زیرزمینی: مواد ، فرایندها و ارزیابی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بهسازی پایدار خاک و آب های زیرزمینی آلوده: مواد، فرآیندها و ارزیابی ابزارها و تکنیک های اصلاحی لازم برای صرفه جویی همزمان در زمان و هزینه و به حداکثر رساندن محیط زیست، اجتماعی و مزایای اقتصادی. این کتاب مواد سبز، فرآیندهای پاکتر و روشهای ارزیابی پایداری را برای برنامهریزی، طراحی و اجرای یک فرآیند اصلاح موثرتر برای پروژههای خاک و آب زیرزمینی ادغام میکند. با در دست داشتن این کتاب، مهندسان راهنمای ارزشمندی برای مواد اصلاحی سبزتر که ردپای محیطی کوچکتری دارند، فرآیندهای پاکتر که اثرات ثانویه زیستمحیطی را به حداقل میرسانند، و روشهای ارزیابی پایداری که میتواند برای هدایت توسعه مواد و فرآیندها مورد استفاده قرار گیرد، پیدا خواهند کرد.
Sustainable Remediation of Contaminated Soil and Groundwater: Materials, Processes, and Assessment provides the remediation tools and techniques necessary for simultaneously saving time and money and maximizing environmental, social and economic benefits. The book integrates green materials, cleaner processes, and sustainability assessment methods for planning, designing and implementing a more effective remediation process for both soil and groundwater projects. With this book in hand, engineers will find a valuable guide to greener remediation materials that render smaller environmental footprint, cleaner processes that minimize secondary environmental impact, and sustainability assessment methods that can be used to guide the development of materials and processes.
Sustainable Remediation of Contaminated Soil and Groundwater Copyright Contributors 1. Green and sustainable remediation: concepts, principles, and pertaining research 1. Background 2. Concepts 2.1 Definition of sustainable remediation 2.2 Pertaining concepts 2.2.1 Green remediation 2.2.2 Green and sustainable remediation 2.2.3 Green materials 2.2.4 Primary impacts 2.2.5 Secondary impacts 2.2.6 Tertiary impacts 3. General principles 3.1 Going beyond the site boundary 3.2 Looking beyond the contemporary time horizon 3.3 Expanding to social and economic sustainability 3.4 Fostering resilience to environmental and social changes 3.5 Embracing nature-based solutions 4. Pertaining research on green and sustainable remediation 4.1 Sustainability assessment and sustainable behavior 4.1.1 Life-cycle assessment and sustainability assessment 4.1.2 Best management practices (BMPs) 4.1.3 Norm, rules, and motivational values 4.1.4 Socioeconomic benefits 4.2 Green remediation materials 4.2.1 Waste-based stabilization materials 4.2.2 Biochar for soil remediation 4.2.3 Slow-release materials for groundwater remediation 4.3 Sustainable remediation processes 4.3.1 Phytoremediation 4.3.2 In-situ bioremediation 4.3.3 Self-sustaining treatment for active remediation 4.3.4 In-situ solidification/stabilization 4.3.5 Remedial process optimization 4.3.6 Landscape architecture References 2. Green and sustainable remediation: past, present, and future developments 1. Introduction 2. The past of sustainable remediation (1990s–2010) 2.1 Sustainable management of contaminated land in Europe 2.2 Green remediation in the United States 3. The present state of green and sustainable remediation (2010–20) 3.1 Quantitative assessment and minimization of life-cycle environmental impacts 3.2 Social and economic impact of remediation and brownfield regeneration 3.3 Barriers and promoting forces 3.4 Green and sustainable remediation in developing countries: China as a case study 4. The future of sustainable remediation (2020–40) 4.1 Challenge in research 4.2 Obstacles and promoting forces in practice 4.3 Path forward References 3. Sustainability assessment for remediation decision-making 1. Introduction 2. Important concepts for sustainability assessment 2.1 Functional units 2.2 Project metrics 2.3 Boundaries 3. Sustainability assessment tools 3.1 Multicriteria analysis tools 3.2 Life-cycle assessment tools 4. Life-cycle assessment approach 4.1 Goal and scope 4.2 Inventory 4.3 Impact assessment 4.4 Interpretation 5. Advanced sustainability assessment methods 5.1 Estimating primary, secondary, and tertiary impacts: using greenhouse gas as an example 5.2 Economic input–output–based LCA 5.3 Hybrid LCA 6. Suggested path forward for sustainability assessment References 4. Best management practices for sustainable remediation 1. Introduction 2. What is a sustainable remediation best management practice? 3. Selecting sustainable remediation best management practices 3.1 Stepwise approach for selecting and implementing sustainable BMPs 3.1.1 Step 1: Identify potentially applicable BMPs 3.1.2 Step 2: Evaluate BMPs 3.1.3 Step 3: Select a practicable set of BMPs 3.1.4 Step 4: Implement BMPs 3.1.5 Step 5: Quantify BMP results (optional) 3.1.6 Step 6: Documentation 4. Green product resources 4.1 Environmental product declaration 4.2 Green products accreditation and labeling 5. SURF green products and sustainable remediation services technical initiative 6. Case study for sustainable remediation best management practices 6.1 Environmental BMPs 6.2 Social BMPs 6.3 Economic BMPs 7 Conclusion References 5. Green remediation by using low-carbon cement-based stabilization/solidification approaches 1. Introduction 2. Ordinary portland cement-based S/S 2.1 Mechanisms 2.2 Supplementary cementitious materials 2.2.1 Pulverized fly ash 2.2.2 Silica fumes 2.2.3 Ground granulated blast-furnace slag 2.2.4 Incinerated sewage sludge ash 2.2.5 Calcium carbide residue 2.3 CO2 curing 2.4 Benefits and challenges 3. Alkali-activated cement-based S/S 3.1 Mechanisms 3.2 State-of-the-art of AAC S/S 3.2.1 Blast furnace slag-based AAC 3.2.2 Pulverized fuel ash-based AAC 3.2.3 Metakaolin-based AAC 3.3 Benefits and challenges 3.3.1 Stabilization/solidification of radioactive materials in contaminated soils 3.3.2 Anticorrosion 4. Magnesium-rich cement-based S/S 4.1 Reactive magnesium oxide cement 4.1.1 CO2 curing in MC-based system 4.2 Magnesium phosphate cement 4.3 Magnesium oxychloride cement and magnesium oxysulfate cement 4.4 Benefits and challenges 5. Special cement-based S/S 5.1 Calcium sulfoaluminate cements 5.2 Calcined clay limestone cement 5.3 Alternative cement clinkers 5.4 Benefits and challenges 6. Conclusion References 6. The use of biochar for sustainable treatment of contaminated soils 1. Introduction 2. Sustainable biochar technology 3. Biochar production, properties, and its influencing factors 3.1 Biochar production 3.2 Biochar properties and its influencing factors 3.2.1 Biochar properties 3.2.2 Influence of feedstock and production temperature on biochar properties 4. Interactions between biochar and contaminants 4.1 Interactions between biochar and heavy metals 4.1.1 Physical adsorption 4.1.2 Cation exchange 4.1.3 Cation–π interactions 4.1.4 Surface precipitation 4.1.5 Surface complexation 4.2 Interactions between biochar and organic contaminants 4.2.1 Partitioning 4.2.2 Pore filling 4.2.3 π–π interactions 4.2.4 Hydrophobic effects 4.2.5 Hydrogen bonding 5. Applications of biochar in soil remediation 5.1 Application of biochar in in situ immobilization 5.1.1 In situ amendment concept 5.1.2 Performance and influencing factors of biochar in in situ amendment 5.1.2.1 Influence of soil texture 5.1.2.2 Short-term and long-term performances 5.1.2.3 Influence of biochar and compost 5.2 Application of biochar in permeable reactive barrier 5.2.1 Permeable reactive barrier concept 5.2.2 Application of biochar as a reactive medium 5.3 Application of biochar in phytoremediation 5.3.1 Phytoremediation concept 5.3.2 Combination of biochar application and phytoremediation 6. Conclusions and implications for sustainable remediation References 7. Application of slow-release materials for in situ and passive remediation of contaminated groundwater 1. Background 1.1 Groundwater contamination and plume control 1.2 Nonaqueous-phase liquids 1.3 Remediation technologies 1.3.1 Pump and treat technology 1.3.2 Soil vapor extraction and air sparging 1.3.3 Chemical oxidation 1.3.4 Bioremediation 1.4 Application of slow-release materials for a long-term remediation of NAPL-contaminated sites 1.4.1 Passive permeable reactive barrier system 1.4.2 Biobarrier system 1.4.3 Slow-release liquid substrates 2. Controlled-release materials for groundwater remediation 2.1 Release of chemical oxidants 2.2 Release of dissolved oxygen 2.3 Release of carbon substrates for chlorinated-solvent-contaminated groundwater remediation 2.4 Release of carbon substrates and sulfate for heavy-metal-contaminated groundwater remediation 3. Practical application References 8. Controlling secondary pollution impacts during enhanced in situ anaerobic bioremediation 1. Introduction 2. Anaerobic enhanced bioremediation overview 3. Potential secondary impacts and optimization strategies 4. Groundwater mounding, daylighting, and poor distribution 4.1 Recirculation 4.2 Soil fracturing 4.3 Chemical oxidant injection 4.4 Air sparging 5. Unintended impacts on downgradient secondary groundwater quality 5.1 Air sparge permeable reactive barrier 5.2 Chemical oxidation 6. Inadequate pH control 7. Soil gas emissions 8. Conclusions References 9. Star: a uniquely sustainable in situ and ex situ remediation process 1. Introduction 2. Scientific principles 3. Energy efficiency 4. Contaminants treated and process limits 5. Field applications 5.1 In situ STAR 5.2 Ex situ STAR 6. Sustainability 6.1 General considerations 6.2 Taiwan case study 6.3 United States case study 7. Summary References 10. Long-term effectiveness of in situ solidification/stabilization 1. Introduction 2. In situ solidification/stabilization 3. Immobilization and leaching mechanisms of contaminants in S/S materials 3.1 Immobilization mechanism 3.2 Methods of studying immobilization mechanism 3.3 Leaching mechanism 4. Evolution of the S/S materials over time and its degradation mechanisms under environmental stresses 4.1 Continuing hydration of OPC and pozzolanic reaction 4.2 Binder–soil–contaminant interactions 4.3 Environmental stresses 4.3.1 Acid attack 4.3.2 Wet–dry and freeze–thaw cycles 4.3.3 Sulfate attack 4.3.4 Carbonation 4.3.5 Biological degradation 5. Long-term case studies on the effectiveness of in situ S/S 6. Conclusions and future prospects References 11. Remedial process optimization and sustainability benefits 1. Introduction 2. Remedial process optimization 2.1 RPO phased approach 2.2 Long-term monitoring optimization 2.2.1 Descriptive and statistic tools 2.2.2 Deterministic tools 2.3 RPO applications 3. Green and sustainable remediation 3.1 GSR metrics and tools 3.2 GSR application in RPO 4. Case studies 4.1 Petroleum hydrocarbons site, California, USA 4.2 Four groundwater pump and treat sites, California, USA 4.3 Petroleum hydrocarbons site, California, USA 4.3.1 RPO evaluation 4.3.2 RPO recommendation 4.3.3 RPO implementation 4.4 Chlorinated solvent site, California, USA 4.5 Petroleum hydrocarbons site, California, USA 4.6 Summary of case studies 5. Conclusions References 12. Landscape architecture and sustainable remediation 1. Overview 2. Brownfields regeneration and landscape architecture 2.1 Why and how landscape architecture plays an important role? 2.2 Landscape practice in brownfield regeneration 3. Brown earth-work 3.1 Concept 3.2 Brown earth-work in landscape architecture and environmental engineering 3.3 Contaminated characteristics and spatial characteristics 4. Sustainable remediation combined with design 4.1 Landscape architecture strategies 4.2 Other sustainable remediation strategies 5. Sustainable development and prospects for the future References 13. Phytoremediation value chains and modeling 1. Introduction 2. Overview of soil contamination and phytoremediation 2.1 The scope of soil contamination 2.1.1 Extent of contamination 2.1.1.1 Europe 2.1.1.2 China 2.2 Contamination indicators 2.2.1 Geoaccumulation index 2.2.2 Enrichment Factor 2.3 Land remediation techniques 2.4 Phytoremediation as a green alternative for soil remediation 2.4.1 Phytoextraction uptake mechanisms 2.4.1.1 Mobilization 2.4.1.2 Uptake and sequestration 2.4.1.3 Xylem loading 2.4.1.4 Xylem transport and unloading 2.4.1.5 Unloading, tissue distribution, and sequestration 2.4.2 Phytoremediation strategies 3. Phytoremediation modeling 3.1 Mathematical optimization 3.1.1 Single Objective Optimization and Multiple Objective Optimization 3.2 Metal biogeochemical cycles and modeling 3.3 Response Surface Methodology and optimization application in phytoremediation 3.4 Application of machine learning techniques in phytoremediation 3.5 Phytoremediation modeling in geographical information systems 3.6 Value chain optimization 4. The proposed modeling framework for the future research frontier 4.1 Spatial–temporal phytoremediation system modeling 4.2 Phytoremediation-biorefinery value chain design 5. Concluding remarks References 14. The sustainability of nanoremediation—two initial case studies from Europe 1. Introduction 2. Approach to the sustainability assessments 2.1 Sites selected for sustainability assessment 2.2 The NanoRem workbook for sustainability assessment 2.3 Preparation 2.4 Definition 2.5 Execution 3. NanoRem site summary details 3.1 Spolchemie site 3.2 Site A 4. Sustainability assessment findings 4.1 Spolchemie 4.2 Site A 5. Conclusions Annex References Annex 1: Public dialogue on nanoremediation References 15. Understanding the diverse norms and rules driving sustainable remediation: a study of positioning, aggregation, and scoping 1. Introduction 2. Conceptualizing the institutional grammar for norms and rules in sustainable remediation 3. Methodology 3.1 Data collection 3.2 Data coding and nested analysis 4. Results 4.1 Norms driving sustainable remediation 4.2 Rules (norm+formal sanction) encouraging compliance with norms 5. Concluding discussion 5.1 Normativity driving sustainable remediation 5.2 Formal sanctions promoting compliance 5.3 Limitations and further research Acknowledgments References 16. Socioeconomic benefit of contaminated site remediation 1. Background 2. A qualitative cost–benefit analysis case study of contaminated site remediation in China 2.1 Development of models for China 2.2 A planning model case at early redevelopment phase of contaminated site 3. Preliminary social cost–benefit analysis of contaminated sites remediation in China at a national level 4. Conclusions References Further reading Index A B C D E F G H I K L M N O P R S T U V W X