دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Anoop Desai. Anil Mital
سری: Industrial Engineering: Challenges in Production and Service Industries
ISBN (شابک) : 0367343215, 9780367343217
ناشر: CRC Press
سال نشر: 2020
تعداد صفحات: 284
[285]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 39 Mb
در صورت تبدیل فایل کتاب Sustainable Product Design and Development به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی و توسعه محصول پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب روند طراحی و توسعه محصول پایدار را تشریح می کند. دستورالعملهای طراحی را ارائه میکند که به افزایش عمر محصول و به حداقل رساندن تأثیرات زیستمحیطی آن کمک میکند. این دستورالعمل ها به طور خاص طراحی محصول را برای اهداف پایان عمر (EoL) مانند استفاده مجدد، بازیافت و ساخت مجدد امکان پذیر می کند. طراحی و توسعه محصول پایدار همچنین مدل های ریاضی را ارائه می دهد که به طراح کمک می کند تا هزینه طراحی محصولات پایدار را تعیین کند. این هزینه را میتوان در مراحل اولیه طراحی یک محصول محاسبه کرد.
طراحی و توسعه محصول پایدار راهها و ابزارهای مختلفی را ارائه میدهد که از طریق آن یک محصول میتواند به هر سه ستون پایداری رسیدگی کند— حفاظت از محیط زیست، پایداری اجتماعی و پایداری اقتصادی. مطالعات موردی مختلف در فصل های مختلف گنجانده شده است. مطالعات موردی در مورد طراحی محصولات برای مونتاژ، جداسازی قطعات و ساخت مجدد در فصل های مربوطه ارائه شده است. این کتاب همچنین یک مرور کلی از قوانین زیست محیطی جهانی ارائه می دهد تا به خواننده کمک کند تا اهمیت مدیریت زباله و طراحی محصول پایدار را درک کند.
این کتاب برای حرفه ای ها، دانشجویان مهندسی، محیط زیست طراحی شده است. دانشمندان و کسانی که در محیط کسب و کار هستند.
This book outlines the process of sustainable product design and development. It presents design guidelines that help prolong the life of a product and minimize its environmental impact. These guidelines specifically enable product design for end-of-life (EoL) objectives such as reuse, recycling and remanufacturing. Sustainable Product Design and Development also presents mathematical models that will help the designer determine the cost of designing sustainable products. This cost can be computed early during the design stage of a product.
Sustainable Product Design and Development presents different ways and means by which a product can address all three pillars of sustainability―environmental conservation, social sustainability, and economic sustainability. Various case studies are incorporated in different chapters. Case studies on designing products for assembly, disassembly and remanufacturing have been presented in their respective chapters. The book also provides an overview of global environmental legislation to help the reader grasp the importance of waste management and sustainable product design.
This book is aimed at professionals, engineering students, environmental scientists, and those in the business environment.
Cover Half Title Series Information Title Page Copyright Page Dedication Table of contents Preface Author Biographies 1 Introduction 1.1 Definition of Sustainability 1.1.1 Performance Evaluation of the Economic Pillar 1.1.2 Performance Evaluation of the Environmental Pillar 1.1.3 Performance Evaluation of the Societal Pillar 1.1.4 Sustainable Product Indicators for the Economic Pillar 1.1.5 Sustainable Product Indicators for the Environmental Pillar 1.1.6 Sustainable Product Indicators for the Societal Pillar 1.2 Definition of Design and the Engineering Design Process 1.2.1 The Engineering Design Process 1.3 Selection of Materials 1.4 Selection of Machining Processes 1.5 What is Design Review? 1.5.1 Soft-Hard (S-H) Review 1.6 Designing a Product for Functionality 1.6.1 Case Study: Can Opener 1.6.1.1 Guideline Development for Can Opener 1.6.2 What Are the Manufacturing Attributes That Affect Functionality? 1.6.3 Development of Linkages to Connect Functionality with Manufacturing 1.6.3.1 QFD House 1: Transforming Functional Requirements into Technical and Design Requirements 1.6.3.2 QFD House 2: Product Deployment—Converting Technical Requirements into Product Features 1.6.4 Functionality Evaluation Test: Development of a Survey 1.7 Designing a Product for Usability 1.8 Golden Rules of Sustainable Product Design 1.9 Conclusion References 2 Environmental Legislations 2.1 Introduction 2.2 Examples of Some Environmental Legislations around the World 2.2.1 Environmental Legislation for the State of New York 2.2.2 Environmental Legislation for the State of Illinois 2.2.3 Environmental Legislation for the State of Virginia 2.2.4 Environmental Legislations in Germany 2.2.5 Environmental Legislations in France 2.2.6 Environmental Legislations in England 2.2.7 Environmental Legislations in the EU 2.2.8 Environmental Legislations in the Netherlands 2.2.9 Waste Electrical and Electronic Equipment (WEEE) Directive in the EU 2.2.10 ROHS Directive 2.2.11 R2 Standard 2.2.12 E Stewards Standard 2.2.13 Environmental Laws in China 2.2.14 Product Takeback Law in India 2.2.15 Product Takeback Program: Caterpillar Reman 2.2.16 Product Takeback Program: Dell 2.2.17 Product Takeback Program: Ford 2.2.18 Product Takeback Program: Daimler 2.3 Key Takeaways from State Laws Dealing with Disposal of Electronic Waste 2.3.1 Takeaway 1 2.3.1.1 E-waste Collection Volume Depends on Collection Infrastructure and/or Clearly Documented Collection Goals 2.3.2 Takeaway 2 2.3.2.1 Manufacturers Often Adhere Strictly to State Laws and Will not do any More than Required 2.3.3 Takeaway 3 2.3.3.1 Some States Whose Laws Cover Cost of Collecting e-Waste Have Higher Collection Numbers 2.3.4 Takeaway 4 2.3.4.1 Goals for e-Waste Collection Should be Set High and They Should be in the Form of Minimums 2.3.5 Takeaway 5 2.3.5.1 Manufacturers Seem to Prefer Collection in Urban Areas Over Rural Areas 2.3.6 Takeaway 6 2.3.6.1 The Level of Recycling is Enhanced by Bans on Landfills 2.3.7 Takeaway 7 2.3.7.1 Environmentally Responsible Handling of e-Waste is Ensured by Proactive Decision Making on the Part of the Individual 2.3.8 Takeaway 8 2.3.8.1 Remember: Despite the Obvious Advantages of Recycling, Reusing a Product is Always Preferable to Recycling it 2.3.9 Takeaway 9 2.3.9.1 Consumers Would Like to Bring Back “all” Electronic Products not Just a Few Selected Ones 2.3.10 Takeaway 10 2.3.10.1 Product Takeback Programs Should be Transparent 2.4 Conclusion References 3 Design for Disassembly 3.1 Importance and Definition of Design for Disassembly 3.2 Disassembly Process Planning 3.3 Design for Disassembly Guidelines 3.3.1 The Need for Extensive Assembly Should be Minimized 3.3.2 Configuration of the Product Should Always be as Predictable as Possible 3.3.3 The Process of Disassembly Should be Facilitated as Much as Possible 3.3.4 Product Should be Easy to Handle 3.3.5 Components Should be Designed so They Are Easy to Separate 3.3.6 Part Variability Should be Reduced 3.4 Product Modularization for Disassembly: Design Approach to Disassembly 3.5 Disassembly Algorithms and Sequence Plans: Reactive Approach to Disassembly 3.6 Using Predetermined Motion Time Systems (PMTS) to Evaluate Ease of Disassembly: Proactive Approach 3.7 Framework of an Interactive System for Design for Disassembly 3.7.1 Computing Disassembly Time 3.7.2 How Does the Interactive Design for Disassembly System Work? 3.7.3 Case Study 3.7.4 How is a Product Being Designed Based on Current Practice and Literature? 3.7.5 Solution in the Form of Design Modifications 3.7.6 Design Option I 3.7.7 Design Option II 3.7.8 Design Option III 3.7.9 Advantages of the Proposed System 3.8 Conclusion References 4 Designing for Assembly 4.1 Definition and Importance of the Assembly Process 4.2 Definition of Design for Assembly 4.3 Types of Assembly Methods 4.4 Different Modes of Assembly and Design Guidelines to Facilitate Them 4.4.1 Design Guidelines for Manual Assembly 4.4.2 Design Guidelines for Automatic Assembly 4.4.3 Design Guidelines for Robotic Assembly 4.5 Methodologies for Evaluating DfA 4.5.1 The Hitachi Assemblability Evaluation Method 4.5.2 The Procedure for Design Analysis Using Hitachi Evaluation Method 4.5.3 The Lucas DfA Evaluation Method 4.5.3.1 Functional Analysis 4.5.3.2 Feeding Analysis 4.5.3.3 Fitting Analysis 4.5.3.4 Manufacturing Analysis 4.5.4 The Boothroyd Dewhurst DfA Method 4.5.5 A DfA Methodology Based on MTM Standards 4.6 Conclusion References 5 Designing for Maintenance 5.1 What is Maintenance? 5.2 What Are the Factors That Affect Maintainability? 5.3 Elements of the Maintenance Operation 5.4 Types of Maintenance Procedures 5.4.1 Corrective Maintenance 5.4.2 Predictive Maintenance 5.4.3 Maintaining a Degrading System 5.4.4 Aggressive Maintenance 5.5 Planning for Maintenance and Its Management through Design Review 5.5.1 Reviewing Design Specifications at the Initial Stage 5.5.2 System Review before Delving into Detailed Design 5.5.3 System Review Post Equipment Design 5.5.4 Evaluation of Equipment 5.5.4.1 Evaluating the Concept 5.5.4.2 Device Performance Index (DPI) 5.5.4.3 Analyzing the Profile of the Parameter 5.5.5 Analysis of Components 5.6 Models Used to Facilitate Equipment Design for Ease of Predictive Maintenance 5.6.1 The RCA Method 5.6.2 The Federal Electric Method 5.6.3 Design Attributes for Enhancing Maintainability of a Product 5.6.4 The SAE Maintainability Standard 5.6.5 Location (SAE J817) 5.6.6 Access (SAE J817) 5.6.7 Operation (SAE J817) 5.6.8 Miscellaneous Considerations (SAE J817) 5.6.9 Frequency Multiplier (SAE J817) 5.6.10 The Bretby Maintainability Index 5.6.11 Description of the Index 5.6.12 Part 1 of the Index: Accessibility 5.6.13 Part 2 of the Index: Operations 5.6.14 Bretby Index: Other Features 5.6.15 Using the Index 5.7 Design Recommendations for Ease of Maintenance of Air Force Weapon Systems 5.7.1 Design Requirements for Accessibility 5.7.2 Types of Access in Order of Preference 5.7.3 General Design Requirements for Accessing a Component 5.7.4 Shape of Access 5.7.5 Location of Access 5.7.6 Size of Access 5.7.7 Design Requirements for Handles 5.7.8 General Requirements When Designing Handles 5.7.9 Location of Handles 5.7.10 Additional Use of Handles 5.7.11 Design Requirements for Fasteners 5.7.12 General Fastener Requirements 5.7.13 Types of Fasteners in Order of Preference 5.7.13.1 Quick Disconnect Devices 5.7.13.2 Latches and Catches 5.7.13.3 Captive Fasteners 5.7.13.4 Combination—Head Bolts and Screws 5.7.13.5 Regular Screws 5.7.13.6 Bolts and Nuts 5.7.13.7 Internal Wrenching Screws and Bolts 5.7.13.8 Rivets 5.8 Conclusion References 6 Consideration of Reuse, Recycling and Remanufacturing 6.1 Introduction 6.2 What is Product Reuse? 6.3 Product Modularization for Ease of Reuse 6.4 What is Recycling? 6.5 Types of Recycling 6.6 Components of a Recycling System 6.7 Design for Recycling 6.7.1 Criteria Applicable to Individual Components 6.7.2 Criteria Applicable to Subassemblies 6.7.3 Criteria Applicable to Disassembly Operations 6.7.4 Criteria Applicable to the Entire Product 6.7.5 Criteria Applicable to Recycling Logistics 6.8 Assessing Recyclability 6.9 Manual Material Separation versus Mechanical Separation 6.10 Design Guidelines for Material Separation 6.11 Applying Material Selection Guidelines to Different Scenarios 6.12 What is Remanufacturing? 6.13 Comparing products that Have Been Remanufactured, Recycled, Reconditioned and Repaired 6.14 What Type of Products Can be Remanufactured? 6.15 Conditions Necessary for Remanufacturing to be Profitable 6.16 Types of Remanufacturers 6.17 Guidelines for DfRem 6.18 Benefits of Remanufacturing 6.19 Metric Development for Assessing Remanufacturability 6.20 Case Study to Evaluate Product Remanufacturability 6.21 Conclusion References 7 Costing for Sustainable Product Design 7.1 Introduction 7.2 Basic Definitions and Types of Cost 7.2.1 Types of Indirect Costs 7.3 Mathematical Models to Predict Development Costs for Various End-of-Life Options 7.3.1 Recycling Cost 7.3.2 Remanufacturing Cost 7.3.3 Refurbishing Cost 7.4 Conclusion References Index