دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: شیمی ارگانیک ویرایش: نویسندگان: Stefano Protti. Alessandro Palmieri سری: ISBN (شابک) : 1839162031, 9781839162039 ناشر: Royal Society of Chemistry سال نشر: 2021 تعداد صفحات: 603 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 43 مگابایت
در صورت تبدیل فایل کتاب Sustainable Organic Synthesis: Tools and Strategies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سنتز ارگانیک پایدار: ابزارها و استراتژی ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سالهای اخیر شاهد رشد عظیمی در زمینه شیمی پایدار بوده ایم. برای برآوردن نیازهای شیمیایی جمعیت جهانی و در عین حال به حداقل رساندن تأثیرات بر سلامت و محیط زیست، بازنگری و بهبود فرآیندهای مصنوعی ضروری است.
Sustainable Organic Synthesis مجموعه جامعی از مشارکتها است که توسط متخصصان شیمی سبز ارائه شده است و موضوعاتی از رویکردهای کاتالیزوری تا رسانههای واکنش خوشخیم و جایگزین و فناوریهای نوآورانه و کارآمدتر را پوشش میدهد. .
Recent years have seen huge growth in the area of sustainable chemistry. In order to meet the chemical needs of the global population whilst minimising impacts on health and the environment it is essential to keep reconsidering and improving synthetic processes.
Sustainable Organic Synthesis is a comprehensive collection of contributions, provided by specialists in Green Chemistry, covering topics ranging from catalytic approaches to benign and alternative reaction media, and innovative and more efficient technologies.
Cover Sustainable Organic Synthesis: Tools and Strategies Preface Biographies Contents Section 1 - Activation of Chemical Substrates under Sustainable Conditions Chapter 1 - Assessing the Sustainability of Syntheses of the Anti- tuberculosis Pharmaceutical Pretomanid by Green Metrics 1.1 Introduction 1.2 Syntheses of Pretomanid 1.3 Sustainability Index 1.4 Ranking Analysis of the Pretomanid Synthesis Plans 1.5 Conclusion References Chapter 2 - Homogeneous Catalysis 2.1 Introduction 2.2 Catalysis 2.3 Homogeneous Catalysis 2.4 Model Examples 2.4.1 Hydrogenation Reactions 2.4.2 C–C Bond Forming Reactions 2.4.3 C–Heteroatom Bond Forming Reactions 2.4.4 Polymerisation Reactions 2.5 Conclusions References Chapter 3 - Heterogeneous Catalysis 3.1 Basic Concepts from a Historical Perspective 3.1.1 Heterogeneous Catalysts 3.1.1.1 Bulk Inorganic Catalysts 3.1.1.2 Bulk Organic Catalysts 3.1.1.3 Supported Catalysts 3.1.2 Heterogeneity Test 3.1.2.1 Recycling Test 3.1.3 Examples of the Application of Heterogeneous Catalysis 3.1.3.1 Lewis Acid- supported Catalysts: A3/KA2 Coupling and Nitro- Mannich Reactions 3.1.3.2 Heteropolyacid- supported Catalysts: Aza- Friedel- Crafts Reaction 3.2 Conclusions References Chapter 4 - Biocatalysis, an Introduction. Exploiting Enzymes as Green Catalysts in the Synthesis of Chemicals and Drugs 4.1 Introduction 4.2 Lipases 4.2.1 Lipase- catalysed Hydrolysis of Esters 4.2.2 Lipase- catalysed Esterification Reactions 4.2.3 Lipase- catalysed Aminolysis Reactions 4.2.4 Lipase- catalysed Oxidation Reactions 4.3 Nitrilases 4.4 Monoamine Oxidases (MAOs) 4.5 Ketoreductases (KRED) 4.6 Monooxygenases and Baeyer–Villiger Monooxygenases (BVMO) 4.7 Transaminases 4.8 Other Enzymes and Perspectives List of Abbreviations References Chapter 5 - Activation of Chemical Substrates Under Sustainable Conditions: Electrochemistry and Electrocatalysis 5.1 Introduction 5.2 Principles of Synthetic Organic Electrochemistry 5.2.1 General Setup 5.2.2 Potential vs. Current 5.2.2.1 Potentiostatic Conditions 5.2.2.2 Galvanostatic Conditions 5.2.3 Reaction Setup 5.2.3.1 Power Supply 5.2.3.2 Reaction Vessels 5.2.3.3 Electrodes 5.2.3.4 Solvents 5.2.3.5 Supporting Electrolytes 5.2.3.6 Modes of Electron Transfer 5.3 Application of Electrochemical Procedures for Sustainable Activation of Substrates 5.3.1 Shono Oxidation 5.3.2 Dehydrogenative Aryl–Aryl Coupling 5.3.3 Electroreductive Difunctionalisation of Alkenes 5.3.4 Electrochemical Birch Reduction 5.4 Conclusion References Chapter 6 - Colored Compounds for Eco- sustainable Visible- light Promoted Syntheses 6.1 Introduction 6.2 Classes of Colored Compounds Applied in Photochemical Syntheses 6.2.1 Thioketones 6.2.2 α-Diketones 6.2.3 Barton Esters 6.2.4 Cyanoarenes 6.2.5 Azoderivatives of Formulae R–N=N–R 6.2.6 4- Substituted- 1,4- dihydropyridines 6.2.7 Other Radical Precursors 6.2.8 Carbene Precursors 6.2.9 Nitrene Precursors 6.3 Conclusions References Chapter 7 - Activation of Chemical Substrates Under Sustainable Conditions: Mechanochemistry 7.1 Introduction 7.2 Methodology in Mechanochemistry 7.2.1 Laboratory Instrumentation 7.2.2 Sample Preparation 7.2.3 Control of Solid- State Reactivity 7.2.3.1 Liquid- Assisted Grinding (LAG) 7.2.3.2 Ion- and Liquid- Assisted Grinding (ILAG) 7.2.3.3 Polymer- Assisted Grinding (POLAG) 7.2.3.4 Ionic Liquid- Assisted Grinding (IL- AG) 7.2.3.5 Liquid- Assisted Resonant Acoustic Mixing (LA- RAM) 7.3 Analysis of Mechanochemical Reactions 7.3.1 Powder X- Ray Diffraction 7.3.2 Raman Spectroscopy 7.3.3 TRIS- XANES and Solid- State NMR 7.3.4 Temperature Measurement during Milling 7.4 Organic Synthesis Under Mechanochemical Conditions 7.4.1 Metal Catalysis 7.4.2 Organocatalysis 7.4.3 Photocatalysis References Chapter 8 - Sustainable Activation of Chemical Substrates Under Sonochemical Conditions 8.1 Introduction 8.2 Sonochemistry, a Chemistry based on Power Ultrasound 8.2.1 Acoustic Cavitation and Associated Effects 8.2.2 Ultrasonic Parameters and Experimental Factors Affecting Cavitation 8.2.2.1 Ultrasonic Frequency 8.2.2.2 Dissipated Ultrasonic Power 8.2.2.3 Hydrostatic Pressure 8.2.2.4 Temperature 8.2.2.5 Nature of the Solvent 8.2.2.6 Dissolved Gas 8.2.2.7 External Pressure 8.2.2.8 Ultrasonic Intensity 8.2.3 Mode of Irradiation and Sonoreactors 8.2.3.1 Modes of Irradiation 8.2.3.2 Equipment 8.2.3.3 Characterization of the Ultrasonic Parameters 8.3 Organic Sonochemistry: beneficial Effects and New Reactivities 8.3.1 Green Organic Sonochemistry 8.3.2 Cases Studies in Organic Sonochemistry 8.3.2.1 Examples of Oxidation Reactions 8.3.2.2 Examples of Reduction Reactions 8.3.2.3 Examples of Fused Heterocycles 8.3.2.4 Examples of Organometallic Reactions 8.3.3 Scale- up and Industrial Applications 8.4 Conclusions: from the Challenges to New Perspectives of Organic Sonochemistry List of Abbreviations References Section 2 - Benign Media for Organic Synthesis Chapter 9 - Biomass- derived Solvents 9.1 Introduction 9.2 Methyltetrahydrofuran (2- MeTHF) 9.2.1 2- MeTHF as a Solvent in Organic Chemistry Reactions 9.2.2 2- MeTHF as a Solvent in Biotransformations 9.3 Gamma- Valerolactone (GVL) 9.3.1 GVL as a Solvent in Organic Chemistry Reactions 9.3.2 GVL as a Solvent in Biotransformations 9.4 Dihydrolevoglucosenone 9.4.1 Dihydrolevoglucosenone as a Solvent in Organic Chemistry Reactions 9.4.2 Dihydrolevoglucosenone in Biotransformations 9.5 Glycerol and Glycerol- based Solvents (GBs) 9.5.1 Glycerol and Glycerol- based Solvents (GBs) in Organic Chemistry Reactions 9.5.2 Glycerol and Glycerol- based Solvents (GBs) in Biotransformations References Chapter 10 - Supercritical Solvents 10.1 Definition of Supercritical State 10.2 Properties of Supercritical Fluids as Pure Substances 10.2.1 SCFs in Practice 10.3 Tailoring SCF Properties 10.3.1 Selected Applications of Supercritical Solvents in Organic Synthesis 10.3.2 Olefin Metathesis Using scCO2 as a Solvent 10.3.3 Platform Chemicals from Glucose in SCW 10.3.4 Biodiesel Production in SC- Methanol/Ethanol 10.3.5 The Enzyme- catalyzed Synthesis of Butyl Levulinate from Levulinic Acid and Butanol: Green Metrics Evaluation References Chapter 11 - Challenges of Using Fluorous Solvents for Greener Organic Synthesis 11.1 Introduction 11.2 Perfluorinated Solvents 11.2.1 Physical Properties of Perfluorocarbons and Perfluorinated Polyethers 11.2.2 Organic Synthesis Using Perfluorinated Solvents 11.3 Fluorous- organic Hybrid Solvents 11.3.1 Physical Properties of Fluorous- organic Hybrid Solvents 11.3.2 Organic Synthesis Using Fluorous- organic Hybrid Solvents 11.4 Phase- vanishing (PV) Methods Using a Fluorous Solvent as a Liquid- phase Membrane 11.4.1 Concept of PV Methods 11.4.2 PV Method Accompanied by Photo Irradiation 11.4.3 Grignard- type Reaction Using the PV Method 11.4.4 PV Method Accompanied by in situ Gas Evolution 11.5 Conclusions References Chapter 12 - Ionic Liquids and Deep Eutectic Solvents 12.1 A Very Short Introduction 12.2 Ionic Liquids 12.2.1 Ionic Liquid Structure, Synthesis and Basic Properties: A Brief Survey 12.2.2 Sustainable Physical Properties 12.2.3 Solvent Intrinsic Catalysis 12.2.4 Ionic Liquids as a Nice Environment for Metal- based Catalysts 12.2.5 How Sustainable are ILs 12.3 Deep Eutectic Solvents 12.3.1 Deep Eutectic Solvents (DESs): General Overview 12.3.2 Preparation of DESs and Overview of their Properties and Applications 12.3.3 DESs in Organic Synthesis 12.3.3.1 Consecutive Reactions in DESs 12.3.3.2 Unveiling the Role Played by the DES 12.3.3.3 The Case of Reactive DESs 12.3.3.4 Grignard and Organolithium Chemistry in DESs 12.3.3.5 To What Extent are the Green Metrics of Reactions in DESs Investigated 12.3.4 Future Perspective 12.4 Author Credits References Chapter 13 - Environmentally Benign Media: Water, AOS, and Water/Organic Solvent Azeotropic Mixtures 13.1 Introduction 13.2 Water and Biphasic/Azeotropic Mixtures as Reaction Solvents 13.2.1 Organic Synthesis Exclusively Performed in Water 13.2.2 Organic Reactions in Aqueous Organic Solvents or a Biphasic System 13.3 Surfactants as an Additive for Chemistry in Water 13.3.1 Anionic Surfactants 13.3.2 Amphiphilic Surfactants 13.4 Use of Aqueous Reaction Media for Industrial Applications 13.5 Academic Incorporation of Chemistry in Water 13.6 Conclusion References Chapter 14 - Solvent- free Conditions 14.1 Introduction 14.2 Solvent- free Organic Reactions 14.2.1 Neat Reactions 14.2.2 MOF- catalysed Reactions 14.3 Solid- state Reactions 14.3.1 Thermal Solid- state Reactions 14.3.2 Topochemical Reactions 14.3.3 Solid- state Melt Reactions 14.3.4 Mechanochemical Reactions 14.3.5 Photochemical Reactions 14.4 Asymmetric Reactions 14.5 Continuous Flow Twin- Screw Extrusion 14.6 Conclusion References Section 3 - Sustainable Approaches in Organic Synthesis Chapter 15 - Biomass- derived Platform Chemicals 15.1 The Platform Molecules 15.2 Rich Diversity Across the Platforms 15.3 Heteroatom Content 15.4 Functional Groups/Level of Functionality 15.5 The Challenge of Hydrophobic Platform Molecules 15.6 Time for a New Top Twelve References Chapter 16 - Sustainable Tools for Flow Chemistry 16.1 Introduction 16.1.1 Flow Chemistry as a Key Tool in Green and Sustainable Chemistry 16.2 Heterogeneous and Recyclable Catalytic Systems 16.2.1 Pd/C Catalyzed Arylation of Indoles in a Recoverable Polarclean/Water Mixture as the Reaction Medium 16.2.2 Heterogenized Palladium- based Catalytic Systems 16.2.3 Polymer- supported Catalytic Systems 16.3 Selection of Safer and Recoverable Reaction Media 16.3.1 Biomass- derived Solvents 16.3.1.1 Heck–Mizoroki Cross- coupling in GVL 16.3.1.2 Fujiwara–Moritani C–H Alkenylation in GVL 16.3.2 Recoverable Azeotropic Reaction Media 16.3.2.1 Waste Minimized Reduction of Nitrocompounds by a Heterogenous Au- based Catalyst in an EtOH/Water Azeotrope 16.3.2.2 Waste Minimized Ullmann- type Reaction in Biomass Derived Furfuryl Alcohol/Water Azeotrope 16.4 Adoption of Flow Conditions to Access Sustainable Processes 16.4.1 Waste- minimized Synthesis of Questiomicyn- A and Related Compounds 16.4.2 Sustainable Flow Synthesis of Benzoxazoles by Heterogeneous Manganese- based Systems 16.4.3 Leaching- minimized Flow- assisted Protocol for Mizoroki–Heck Reaction 16.4.4 Continuous Flow Waste Minimized C–H Arylation of 1,2,3- triazoles 16.5 Conclusions References Chapter 17 - Step Economy 17.1 Introduction to Step Economy 17.2 Cascade Reactions 17.2.1 Introduction 17.2.2 Trifluoromethylation Reaction 17.2.3 Trifluoromethylthiolation Reaction 17.3 Multicomponent Reactions 17.3.1 Introduction 17.3.2 Construction of Fluorine- Containing Functional Groups Involving Difluorocarbene 17.3.3 Fluorinated Functionalization of Carbon–Carbon Unsaturated Bonds 17.4 Conclusion List of Abbreviations References Chapter 18 - Microwave Irradiation 18.1 Introduction to Microwaves 18.1.1 History and Theory 18.1.2 How Microwaves Enhance Organic Reactions 18.1.3 Non- thermal Effect of Microwaves 18.1.4 Microwave Reactors 18.2 Microwave- assisted Organic Synthesis and Green Chemistry 18.2.1 Energy Efficiency and Microwaves 18.2.2 Solvent- free Reactions 18.2.3 Susceptors 18.2.4 Heterogeneous Catalysis 18.2.5 Green Solvents 18.2.6 Flow Chemistry and Green Scale- up 18.2.7 MW- assisted Reactions and the E- factor 18.2.8 The Setup of a Green MW- assisted Chemistry Process 18.3 Conclusions References Chapter 19 - Process Intensification: From Green Chemistry to Continuous Processing 19.1 Process Intensification & Green Approaches to Enable a Better Future 19.2 Process Intensification 19.2.1 General Strategies in PI 19.2.2 Continuous Flow Technology: an Essential Tool for PI 19.3 Benefits and Impact of PI 19.3.1 Business Benefits: Responsive Processing 19.3.1.1 On Processing Flexibility 19.3.1.2 Going from the Lab to Production Scales 19.3.2 Sustainability Impact of PI and Continuous Flow Technology 19.3.2.1 Continuous Technology to Improve PI of HSE Problematic Chemistries 19.3.2.1.1 Lab Miniaturisation for Diazomethane Preparation.One illustrative example of safely handling hazardous material involves the gen... 19.3.2.1.2 Handling Organometallics.The use of organometallics in organic synthesis programs is of fundamental importance for making carbon... 19.3.2.2 Continuous Flow Technology to Improve PI vs. Waste Minimization 19.3.2.3 Continuous Technology to Minimize Energy Needs from Processes 19.3.2.4 Continuous Technology to Minimize Intermediate Inventories by Telescoping Steps 19.3.2.5 Continuous Flow Technology to Facilitate Catalytic Processes 19.3.2.6 Continuous Flow Technology to Improve the Output Quality of Processes 19.4 Current Barriers and Inhibitors Towards PI References Chapter 20 - The Contribution of Green Chemistry to Industrial Organic Synthesis 20.1 Green Chemistry: Opportunities and Driving Forces 20.2 Green Solvents as Building Blocks for Sustainable Industrial Synthesis 20.2.1 Supercritical CO2 20.2.2 Ionic Liquids 20.2.3 Bio- based Solvents 20.3 Purification and Wastewater Treatments Under Acoustic and Hydrodynamic Cavitation 20.3.1 Sonocrystallisation 20.3.2 Wastewater Purification 20.4 Innovative Reactors for Smart Chemistry 20.4.1 Photoreactors 20.4.2 Microwave Reactors 20.5 Conclusions References Subject Index