دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Faruq Mohammad (editor), Hamad A. Al-lohedan (editor), Mohammad Jawaid (editor) سری: Micro and Nano Technologies ISBN (شابک) : 0128167890, 9780128167892 ناشر: Elsevier سال نشر: 2020 تعداد صفحات: 415 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 28 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Sustainable Nanocellulose and Nanohydrogels from Natural Sources (Micro and Nano Technologies) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانوسلولز و نانوهیدرژل پایدار از منابع طبیعی (فناوری های میکرو و نانو) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نانوسلولز و نانوهیدرژل های پایدار از منابع طبیعی استفاده از پلیمرهای زیستی را در زمینه های کاربردی خاص مانند الکترونیک، انرژی، کالاهای مصرفی، مواد بسته بندی، درمان، تصفیه آب و مهندسی بررسی می کند، و چه چیزی را خاص می کند. پلیمر برای درگیر کردن آن در این کاربردها. این یک منبع مرجع مهم برای کسانی است که مایلند در مورد چگونگی استفاده از نانوکامپوزیت های بیوپلیمری در پایداری و حفاظت از محیط زیست بیشتر بیاموزند.
بیوپلیمرها، از جمله پلیمرهای گیاهی و دریایی، نقش مهمی در تشکیل و حفظ پایداری نانوکامپوزیتهای صنعتی دارند. عملکردهای مشترک آنها اصلاح سطح و محافظت از هسته های بسیار ناپایدار اکسیداتیو، به عنوان پایه ای پایدار برای نگه داشتن اهداف متعدد و به عنوان محافظی برای فلزات غیر آلی و بسیار سمی است. این نانوکامپوزیت های مبتنی بر پلیمرهای زیستی برای کاربردها در بخش های الکترونیک، خودرو، ساخت و ساز و زیست پزشکی استفاده می شوند.
Sustainable Nanocellulose and Nanohydrogels from Natural Sources explores the use of biopolymers in specific application areas such as electronics, energy, consumer goods, packaging materials, therapeutics, water treatment and engineering, and what makes the particular polymer to engage it in these applications. This is an important reference source for those who would like to learn more about how biopolymeric nanocomposites are used in sustainability and environmental protection.
Biopolymers, including plant and sea-based polymers, play an important role in the formation and maintaining the stability of industrial nanocomposites; their common functions being the surface modification and protection for the highly oxidative-unstable cores, as stable base for holding multiple targets, and as a shield for the inorganic and highly toxic metals. These biopolymer-based nanocomposites are being used for applications in the electronics, automobile, construction and biomedical sectors.
Cover Sustainable Nanocellulose and Nanohydrogels From Natural Sources Copyright Dedication Contents List of Contributors About the Editors Preface 1 General introduction on sustainable nanocellulose and nanohydrogel matrices Abbreviations 1.1 Background 1.2 Nanocelluloses: fundamental properties, synthesis, and applications 1.2.1 Nanocelluloses: general methods of synthesis and applications 1.2.1.1 Mechanical processing 1.2.1.2 Acid hydrolysis 1.2.1.3 Enzymatic hydrolysis 1.2.1.4 Oxidation-mediated processes 1.3 Nanohydrogels: fundamental properties, synthesis, and applications 1.3.1 Nanohydrogels: fundamental properties 1.3.1.1 Swelling properties 1.3.1.2 Mechanical properties 1.3.1.3 Biocompatibility and sustainability 1.3.2 Nanohydrogels: general methods of synthesis 1.3.2.1 Nanohydrogels 1.3.2.2 Bulk polymerization 1.3.2.3 Solution polymerization or cross-linking 1.3.2.4 Suspension polymerization 1.3.2.5 Radical polymerization 1.3.2.6 Graft polymerization 1.4 Adsorption of pollutants by nanocelluloses and nanohydrogels 1.4.1 Nanocellulose-based adsorbents 1.4.1.1 Adsorption of organic pollutants 1.4.1.2 Adsorption of heavy metal species from water 1.4.1.3 Nanocellulose-based photocatalysts 1.4.1.4 Adsorption using nanocellulose membranes and filters 1.4.2 Nanohydrogels-based adsorbents Acknowledgment References 2 Nanocellulose and nanohydrogel for energy, environmental, and biomedical applications 2.1 Introduction 2.1.1 Nanocellulose 2.1.2 Nanohydrogel and nanostructured conductive hydrogels 2.2 Synthesis of nanocellulose and nanohydrogel 2.2.1 Nanocellulose 2.2.1.1 Chemical methods 2.2.1.2 Mechanical methods 2.2.2 Nanostructured conductive hydrogel 2.3 Nanocellulose and nanostructured hydrogel for energy applications 2.3.1 Supercapacitors 2.3.2 Lithium-ion batteries 2.3.3 Electrocatalysts for energy conversion reactions 2.4 Nanocellulose and nanohydrogel for environmental applications 2.4.1 Adsorption mechanism 2.4.2 Pollutants adsorption and water collection 2.4.3 Oil–water separation 2.5 Nanocellulose and nanohydrogel for biomedical applications 2.5.1 Biosensors 2.5.2 Wound healing 2.5.3 Drug delivery 2.5.4 Cardiac recovery 2.6 Summary References 3 Market analysis and commercially available cellulose and hydrogel-based composites for sustainability, clean environment,... 3.1 Introduction 3.2 Trends in composites business 3.3 Overview of cellulose-based materials 3.3.1 Developments in nanocellulose 3.4 Developments in hydrogel-based composites 3.4.1 Cellulose-based hydrogel composites 3.5 Cellulose and hydrogel-based composites from a sustainability point of view and environmental imprint 3.5.1 Forest business in sustaining the supply chain of cellulose: processes and environmental implications 3.6 Summary and conclusion References Further reading 4 Nanocellulose and nanohydrogels for the development of cleaner energy and future sustainable materials 4.1 Introduction 4.2 Nanocellulose extraction from natural resources 4.2.1 Preparation methods of cellulose nanofibers 4.2.1.1 High-pressure homogenization 4.2.1.2 Grinding 4.2.1.3 Cryocrushing 4.2.1.4 Refining 4.2.2 Preparation of cellulose nanocrystals 4.2.2.1 Acid hydrolysis 4.2.2.2 Hydrolysis with solid acid 4.2.2.3 Hydrolysis with gaseous acids 4.2.2.4 Hydrolysis with metal salt catalyst 4.3 Nanocellulose for energy and other applications 4.3.1 Nanocellulose for energy storage 4.3.2 Nanocellulose for energy harvester 4.3.3 Nanocellulose for wastewater treatment 4.3.4 Nanocellulose for paper transistor 4.3.5 Nanocellulose as biomaterials 4.4 Nanohydrogels 4.5 Nanohydrogels as sustainable materials 4.5.1 Biotechnological applications 4.5.2 Nanohydrogel for wound care 4.5.3 Nanohydrogel for drug delivery 4.5.4 Nanohydrogel for food packaging 4.5.5 Future of nanogel for sensing applications 4.6 Conclusions References 5 Nanocellulose and nanohydrogel-mediated sustained drug delivery: smart medical technology 5.1 Introduction 5.2 Hydrogels 5.2.1 Nanohydrogels 5.2.2 Nanohydrogels in drug delivery 5.3 Nanocellulose 5.4 Nanocellulose safety and biodegradability 5.5 Nanocellulose-based smart drug delivery systems 5.5.1 pH-responsive hydrogels 5.5.2 Aerogels 5.5.3 Injectable hydrogels, implants, and films for topical 5.5.4 Magnetic nanocellulose 5.5.5 Other nanocellulose-based smart medical technologies 5.6 Conclusion References 6 Current role and future developments of biopolymers in green and sustainable chemistry and catalysis 6.1 Introduction 6.2 Biopolymers 6.2.1 Biopolymers from renewable sources 6.2.2 Classes of biomass 6.2.2.1 Starch 6.2.2.2 Cellulose 6.2.2.2.1 Current and potential applications 6.2.2.3 Hemicellulose 6.2.2.4 Lignin 6.2.2.4.1 Current and future applications 6.3 Roles of biopolymers in green chemistry 6.3.1 Polysaccharides as reinforcing agents in bionanocomposites 6.3.2 Polysaccharides as fillers 6.3.3 Natural rubber with polysaccharide fillers as biocomposites 6.3.4 Metal-polysaccharide nanocomposites 6.3.5 Starch as a matrix for the synthesis of nanoparticles 6.3.6 Starch as morphology-directing agent 6.4 Roles of biopolymers in catalysis 6.4.1 Chitosan as catalyst support 6.4.1.1 Cobalt-chitosan catalyst 6.4.2 Carbonaceous mesoporous materials (Starbon) 6.5 Conclusion References Further reading 7 Review of nanocellulose and nanohydrogel matrices for the development of sustainable future materials 7.1 Introduction 7.2 Development of nanohydrogel materials based on nanocellulose 7.2.1 Nanocellulose 7.2.1.1 Origin of nanocellulose 7.2.1.2 Nanocellulose preparation 7.2.1.2.1 Pretreatment methods 7.2.1.2.2 Mechanical methods 7.2.1.2.3 Chemical hydrolysis 7.2.1.3 Nanocellulose characterization 7.2.1.4 Nanocellulose properties 7.2.2 Nanohydrogels 7.2.3 Benefits and downsides of nanohydrogel 7.2.3.1 Origin of nanohydrogels 7.2.3.1.1 Based on the nature of polymer 7.2.3.1.1.1 Natural polymer 7.2.3.1.1.2 Synthetic polymer 7.2.3.1.2 Cross-linking type 7.2.3.1.3 Nanohydrogels based on responsive-stimuli 7.2.3.2 Methods of preparation of nanohydrogels 7.2.3.2.1 Water-in-oil (W/O) heterogeneous emulsion methods 7.2.3.2.2 Emulsification polymerization method 7.2.3.2.3 Photolithographic method 7.2.3.2.4 Chemical cross-linking methods 7.2.3.2.5 Physical self-assembly of interactive polymers 7.2.3.2.6 Association of nanohydrogels based on polymers 7.2.3.3 Nanohydrogel characterization 7.2.3.3.1 Dynamic light scattering 7.2.3.3.2 Zeta potential 7.2.3.4 Electron microscopy methods 7.3 Applications 7.3.1 Nanocellulose applications 7.3.2 Nanohydrogel applications 7.4 Conclusion References 8 Nanocellulose and nanohydrogel matrices as sustainable biomass materials: structure, properties, present status, and futu... 8.1 Introduction 8.1.1 Nanocelluloses 8.1.1.1 Structure of nanocellulose 8.1.1.2 Preparation of nanocellulose 8.1.1.3 Types of nanocellulose 8.1.1.4 Properties of nanocellulose 8.1.2 Nanohydrogel 8.1.2.1 Classification of nanohydrogels 8.1.2.2 Properties of hydrogels 8.1.3 Application and future prospects of nanocellulose and nanohydrogels References 9 Biopolymers and biocomposites-mediated sustainable high-performance materials for automobile applications 9.1 Introduction 9.2 Biopolymers 9.3 Biopolymers in automotive sector 9.3.1 History 9.3.2 Poly(lactic acid) 9.3.2.1 Plasticized poly(lactic acid) in automobiles 9.3.2.2 Elastomer-toughened poly(lactic acid) in automobiles 9.3.3 Natural fibers 9.3.4 Biopolyamides 9.3.5 Biopolypropylene 9.3.6 Poly(trimethylene terephthalate) 9.4 Polymer biocomposites in automotive sector 9.4.1 History 9.4.2 Different biocomposites in automotive applications 9.5 Conclusion References 10 Nanocellulose-mediated fabrication of sustainable future materials 10.1 Introduction 10.2 Types and properties of nanocellulose 10.2.1 Categories of nanocellulose 10.2.2 Unique properties of nanocellulose 10.3 Isolation and surface modification of nanocellulose 10.3.1 Isolation 10.3.2 Surface modification 10.4 Nanocellulose-based smart materials 10.4.1 Biomedical materials 10.4.2 Environmental remediation 10.4.3 Smart sensors 10.4.4 Food packaging, filler, and nano-coating 10.4.5 Energy producers, harvesters, and flexible electronics 10.4.6 Automotive, aviation, and paints 10.4.7 Polymeric reinforced nanocomposites 10.4.8 Other functional materials 10.5 Market projection of nanocellulose and its products 10.6 Challenges, future trends, and conclusion References 11 Nanocellulose reinforced polymer nanocomposites for sustainable packaging of foods, cosmetics, and pharmaceuticals 11.1 Introduction 11.2 About nanocellulose 11.3 Nanocellulose as potential reinforcing nanomaterials for polymer matrices 11.4 Barrier properties of nanocellulose reinforced polymer nanocomposites for packaging 11.5 Nanocellulose reinforced degradable/partially degradable polymer nanocomposites 11.6 Nanocellulose reinforced polymer nanocomposites as prospective packaging materials of foods, cosmetics, and pharmaceut... 11.7 Nanocellulose as potential nanoreinforcement for active packaging of food, cosmetics, and pharmaceuticals 11.8 Conclusion and future directions References 12 Cellulose and hydrogel matrices for environmental applications 12.1 Introduction 12.2 Overview of cellulose 12.3 By-products of cellulose 12.4 Advantages of cellulose nanomaterials 12.5 Classification of cellulose 12.6 Current challenges 12.7 Environmental applications of cellulose 12.7.1 Dye 12.7.2 Heavy metal 12.7.3 Oil adsorption 12.7.4 Air contaminant adsorption 12.8 Hydrogel 12.9 History 12.10 Classification of hydrogels 12.10.1 By features 12.10.2 By network 12.10.3 By source 12.11 Hydrogel properties 12.12 Environmental applications of hydrogel 12.12.1 Dye 12.12.2 Fluoride 12.12.3 Heavy metals 12.13 Conclusion References 13 Antioxidative response mechanisms of nanocelluloses and nanohydrogels matrices: a review 13.1 Background 13.2 Life cycle of nanocellulose and nanohydrogels 13.3 Biological impact of nanoparticles 13.4 Nanocellulose response toward oxidative stress 13.5 Antioxidant capacity of nanoparticles 13.6 Drug delivery applications 13.7 Organ-on-chip culturing applications 13.8 Application in bone regeneration 13.9 Application in cardiac regeneration 13.10 Dental applications 13.11 Wound healing applications 13.12 Noncytotoxic cellular uptake 13.13 Scavenging an inflammatory response 13.14 Nongenotoxic effects 13.15 Conclusion References 14 Bacterial nanocellulose and its application in wastewater treatment 14.1 Introduction 14.2 Bacterial cellulose as hydrogel 14.2.1 Development in bacterial cellulose research 14.2.2 Modification of bacterial cellulose 14.2.2.1 Ex situ modification of bacterial cellulose 14.2.2.2 In situ modification of bacterial cellulose 14.3 Potential of bacterial cellulose as biosorbent for heavy metal removal 14.3.1 Cellulose as adsorbent for heavy metal removal 14.3.2 Biosorption for heavy metal removal 14.3.3 Biosorbent 14.3.4 Bacterial cellulose application in wastewater treatment 14.4 Conclusion and future perspective Acknowledgment References 15 Recent developments in nanocellulose and nanohydrogel matrices—towards stem cell research and development 15.1 Introduction 15.2 Properties of the nanocelluloses and nanohydrogels 15.2.1 Physical properties 15.2.2 Biological properties 15.3 Nanocellulose-based scaffolds and cell survival 15.4 Hydrogel matrices and stem cell–based therapies 15.5 Nano-engineered matrices and controlled drug delivery 15.6 Stem cell research and developments 15.6.1 Stem cells in regenerative medicine 15.6.2 Retention and viability of injected stem cells 15.6.3 Enhancement of endogenous stem cell functionality 15.7 Conclusions References 16 Role of natural cellulose and hydrogel matrices in stem cell therapy of diabetic foot ulcer 16.1 Introduction 16.2 Management of diabetic wound 16.3 Diabetic wound healing 16.4 Biomaterial and tissue engineering for diabetic wound care 16.5 Factors affecting the physical properties of the scaffolds 16.6 Natural polymers as biomaterial substituents for the diabetic wound healing 16.6.1 Chitosan as biomaterial scaffold 16.6.2 Collagen as biomaterial scaffold 16.7 Specialized techniques for fabrication of biomaterial scaffolds 16.7.1 Electrospinning 16.7.2 Phase separation 16.7.3 Freeze drying 16.7.4 Stem-cell-based wound dressings and therapeutics 16.7.5 Mesenchymal stem cells 16.8 Mesenchymal stem cells for scaffold development 16.9 Conclusion Acknowledgement Conflict of interest References Further reading 17 Nanocellulose in polymer nanocomposite 17.1 Introduction 17.2 Nanocellulose 17.3 Polymer/nanocellulose nanocomposite 17.4 Reinforcing effects 17.5 Potential applications and challenges 17.6 Summary References 18 Cellulose-derived materials for drug delivery applications 18.1 Introduction 18.2 Classification of cellulose-based polymers 18.3 Cellulose and its derivatives for drug delivery applications 18.3.1 Hydroxypropyl methylcellulose in drug delivery 18.3.2 Cellulose nanocarrier for drug delivery 18.3.3 Cellulose hydrogel for drug delivery 18.3.4 Cellulose-inorganic hybrid for drug delivery 18.3.5 Cellulose derivatives–based drug delivery 18.4 Conclusion References Index Back Cover