دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: طراحی: معماری ویرایش: نویسندگان: Kheir Al-Kodmany, Peng Du, Mir M. Ali سری: IET Built Environment Series, 3 ISBN (شابک) : 1839532807, 9781839532801 ناشر: The Institution of Engineering and Technology سال نشر: 2022 تعداد صفحات: 672 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 140 مگابایت
در صورت تبدیل فایل کتاب Sustainable High-Rise Buildings: Design, technology, and innovation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ساختمان های بلندمرتبه پایدار: طراحی، فناوری و نوآوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
افزایش سریع جمعیت شهری، قیمت زمین و حفظ زمین، بازسازی شهری، و همچنین جهانی شدن و تغییرات آب و هوایی شهرها را مجبور به ساخت و ساز رو به بالا کرده است. بلندمرتبهها میتوانند بخشی از یک راهحل پایدارتر باشند، اگر چالشهای ساختوساز و مهندسی قبل از شروع ساختوساز برطرف شوند. فنآوریهای هوشمند در محیط دیجیتال ادغام میشوند تا کارایی انرژی، ایمنی و امنیت بهتری داشته باشند و سلامت و رفاه سرنشینان را به حداکثر برسانند.
ارائه شده توسط تیمی متشکل از کارشناسان برجسته جهان، این کتاب ویرایش شده جامع، جدیدترین تحقیقات پیشرفته، نوآوری ها و چشم اندازهای آینده نسبت به ساختمان های بلندمرتبه پایدار را پوشش می دهد. این کتاب در سه بخش از معماری گرفته تا مهندسی و برنامهریزی شهری شامل سیستمهای زیست محیطی پایدار، پلهای آسمانی، انعطافپذیری دیوارهای پردهای، ساختمانهای چوبی بلند، مهندسی سازه پایدار، طراحی هسته و بهرهوری فضا تنظیم شده است. همچنین شامل طراحی لرزه ای، رویکردهای مبتنی بر میرایی انبوه، مواد مبتنی بر کشاورزی زیست پلیمری نوآورانه، بلندمرتبه ها در مقابل پراکندگی، توسعه ترانزیت محور، شبکه های تحرک و فضای شهری، تفکر انعطاف پذیری، و وابستگی متقابل ساختمان های بلند و شهر است. .
معماران، مهندسان، محققان، مدیران انرژی و تاسیسات، طراحان شهری، برنامه ریزان و توسعه دهندگان پروژه، و کارشناسان راه حل های ساختمان هوشمند و همچنین اعضای هیات علمی، فوق دکترا، دانشجویان پیشرفته که در زمینههای محیط ساختهشده، ساختوساز ساختمان، طراحی سیستم، مهندسی عمران، معماری، شهرسازی، شهرهای هوشمند، پایداری و تابآوری و مهندسی محیطزیست کار میکنند و در حال بررسی شیوههای ساختمانسازی پایدار هستند، این مرجع پیشرفته جدید را بسیار مفید خواهند یافت. و الهام بخش.
The rapid increase in urban population, land prices and land preservation, urban regeneration, as well as globalization and climate change have been forcing cities to build upward. High-rises can be part of a more sustainable solution if the construction and engineering challenges are addressed before construction starts. Smart technologies are being integrated in the digital environment to allow for better energy efficiency, safety and security, and to maximize the health and well-being of the occupants.
Delivered by a team of world leading experts, this comprehensive edited book covers the state-of-the-art of advanced research, innovations, and future perspectives towards sustainable high-rise buildings. The book is structured in three parts from architecture to engineering and city planning including sustainable environmental systems, skybridges, curtain walling resiliency, tall timber buildings, sustainable structural engineering, core design and space efficiency. It also includes seismic design, mass-damping-based approaches, innovative bio-polymeric agro-based materials, high-rises versus sprawl, transit-oriented development, mobility and urban space networks, resilience thinking, and interdependence of tall buildings and the city.
Architects, engineers, researchers, energy and facility managers, urban designers, project planners and developers, and smart building solutions experts as well as faculty members, postdocs, advanced students who are working in the fields of the built environment, building construction, system design, civil engineering, architecture, urban planning, smart cities, sustainability and resiliency and environmental engineering, and who are exploring sustainable building practices, will find this new advanced reference most useful and inspiring.
Cover Contents About the editors The Institution of Engineering and Technology About CTBUH Foreword Introduction The organization of the book Part I: Architecture Part II: Engineering Part III: City planning Acknowledgment References Part I: Architecture 1 Designing sustainable tall buildings 1.1 The idea of the sustainable tall building or skyscraper 1.2 Ecosystem characteristics and attributes 1.3 Preliminary design studies for technical, biological, and augmented solutions 1.3.1 Ecosystem’s biotic–abiotic structure 1.3.2 Ecosystem biodiversity 1.3.3 Ecosystem connectivity and nexus 1.3.4 Provision of ecosystem services 1.3.5 Ecosystem biointegration 1.3.6 Ecosystem responsiveness to climate 1.3.7 Ecosystem’s use and cycling of material 1.3.8 Ecosystem hydrology 1.3.9 Ecosystem symbiosis 1.3.10 Ecosystem homeostasis 1.3.11 Ecosystem’s food production 1.3.12 Ecosystem’s succession 1.4 Building physics and modeling 1.5 Conclusion References 2 Skybridges: bringing the horizontal into the vertical realm 2.1 Introduction 2.1.1 Purpose of the research 2.1.2 Issues under exploration 2.1.3 Research objectives 2.1.4 Research methodology 2.2 Classification and analytical criteria 2.2.1 Skybridge typologies 2.2.2 Measurement and calculation methodology 2.3 Analysis 2.3.1 Ownership/management 2.3.2 Usage/programming 2.3.3 Access/security 2.3.4 Structural engineering 2.3.5 MEP engineering 2.3.6 Fire engineering/evacuation 2.3.7 Construction 2.3.8 Interiors 2.3.9 Evaluation: qualitative 2.3.10 Evaluation: quantitative 2.4 Urban-scale considerations: skybridge networks in practice 2.4.1 Hong Kong skybridge network 2.4.2 Atlanta: Peachtree Center 2.4.3 Learning from the Atlanta and Hong Kong skybridge networks 2.5 3-D urban growth 2.6 Conclusion Acknowledgment References 3 Recent developments in sustainable environmental systems of tall buildings 3.1 Introduction 3.2 Goals and objectives 3.3 Methodology 3.4 Environmental systems 3.5 Multi-functional tall buildings 3.6 Bioclimatic design 3.7 Sustainable environmental services and strategies 3.7.1 Natural ventilation 3.7.2 Daylight harvesting and artificial lighting 3.7.3 Heating and cooling 3.7.4 Combined heat and power 3.8 Integrated systems 3.8.1 Integration of intelligent building systems 3.9 Case studies 3.9.1 4 Times square 3.9.2 Pearl River Tower 3.9.3 New York Times Headquarters 3.9.4 Shanghai Tower 3.9.5 Leeza SOHO Tower 3.9.6 Salesforce Transit Tower and Transit Center 3.9.7 340 On the Park 3.9.8 30 St. Mary Axe 3.9.9 Pertamina Energy Tower 3.10 Discussion 3.11 Sustainable cities and environmental infrastructures 3.11.1 New Songdo City 3.12 Conclusion References 4 Assessment of tall buildings’ environmental sustainability: frameworks and tools 4.1 Introduction 4.2 Assessment of tall building sustainability 4.2.1 Social and economic sustainability 4.2.2 Environmental sustainability 4.3 Tall buildings and impacts on the environment 4.3.1 Structural systems 4.3.2 Whole building 4.4 Uncertainties and limitations in the assessment of impacts 4.5 Conclusion References 5 Curtain walling resiliency for tall buildings: standards, testing, and solutions 5.1 Introduction 5.2 Impact resiliency of curtain walls: testing standards 5.2.1 Impact testing of curtain walls 5.2.2 Flying debris impact testing of curtain walls 5.3 Windborne debris resiliency of curtain walls and tall building fac¸ade design 5.3.1 Characteristics of flying debris-resilient curtain wall solutions 5.4 Local windborne debris-resistant curtain walls: the aerodynamic of windborne debris 5.4.1 Literature review 5.4.2 Roof tiles 5.4.3 Debris failure in extreme wind events 5.4.4 Future work 5.5 Findings 5.6 Conclusion References 6 Sustainability meets performance with tall timber buildings 6.1 Why tall timber? 6.2 Carbon footprint and forest health 6.3 Embodied carbon and LCA 6.4 Global precedents and US code changes 6.5 Mass timber products and performance 6.6 Fire-resistance ratings and timber encapsulation 6.6.1 Contribution of mass timber to FRR 6.6.2 Fire protection of connections 6.6.3 Fire protection of concealed spaces 6.6.4 Fire protection of shaft enclosures 6.6.5 Noncombustible protection of mass timber shaft walls 6.6.6 Other considerations 6.7 Acoustic performance in tall timber 6.7.1 Basics of acoustics and code requirements 6.7.2 Unique mass timber acoustics considerations 6.8 Grid selection and cost optimization 6.8.1 Grid selection 6.8.2 Mass timber panel spans 6.8.3 Grid options 6.8.4 Manufacturer input 6.9 Market drivers for tall wood 6.9.1 Innovation and aesthetic appeal 6.9.2 Cost savings 6.9.3 Healthy buildings 6.10 Opportunities, challenges, and next steps 6.11 Conclusion References Part II: Engineering 7 Sustainable structural design of tall buildings 7.1 Introduction 7.2 Tubular systems for sustainable structures 7.2.1 Framed tube and bundled tube 7.2.2 Braced tube 7.2.3 Braced megatube 7.2.4 Diagrids 7.2.5 Optimal lateral stiffness distribution for tubular structures 7.3 Outrigger structure 7.3.1 Structural design and performance of outrigger system 7.3.2 Comparative premium for height 7.4 Hybrid structural systems 7.4.1 Supertalls with mixed structural systems 7.4.2 Lateral stiffness distribution alternatives in mixed systems 7.5 Superframed conjoined towers for sustainable megatalls 7.5.1 Superframed conjoined towers with single-link structures 7.5.2 Superframed conjoined towers with multiple-link structures 7.6 Conclusion References 8 Core design and space efficiency in contemporary supertall office buildings 8.1 Introduction 8.2 Literature review 8.3 Methodology 8.4 Design considerations for supertall office buildings 8.4.1 Core planning 8.4.2 Structural systems and structural materials 8.4.3 Lease span and floor-to-floor height 8.4.4 Space efficiency 8.5 Discussion 8.5.1 Structural system 8.5.2 Structural material 8.5.3 Core planning 8.5.4 Space efficiency 8.6 Conclusion Glossary References 9 An overview of seismic design and sustainability of high-rise buildings 9.1 Introduction to seismology 9.1.1 Seismic magnitude 9.1.2 Seismic intensity 9.1.3 Ground movement during earthquakes 9.2 Response spectrum of building structures 9.2.1 Seismic response of single-degree freedom (SDF) structure 9.2.2 Seismic action 9.2.3 Seismic response spectrum 9.3 Seismic action and response of high-rise buildings 9.3.1 Seismic action of vibration mode of high-rise buildings 9.3.2 Seismic response of high-rise buildings without torsion 9.3.3 Seismic response of high-rise buildings with torsion 9.4 Seismic resistance of high-rise buildings 9.4.1 Strength requirement 9.4.2 Deformation requirement 9.5 Basic concepts for seismic resistance of high-rise buildings 9.5.1 Selection of suitable site for buildings 9.5.2 Regular building forms 9.5.3 Reasonable seismic resistance system 9.5.4 Strong slab for floors 9.6 Technologies for mitigating seismic effects on high-rise buildings 9.6.1 Seismic isolation principle and technology 9.6.2 Energy dissipation principle and technology 9.6.3 Tuned mass damper (TMD) principle and technology 9.7 Conclusion Symbols References 10 Sustainable construction of wood high-rise buildings and seismic considerations 10.1 Introduction 10.2 Scope and objectives 10.3 Sustainability 10.4 Re-emergence of tall wood buildings 10.5 Tall wood initiatives in North America 10.5.1 Research and development of wood products and systems 10.6 Cross-laminated timber (CLT) 10.7 Structural systems for tall wood and composite buildings 10.8 Moisture content and effects on material properties 10.9 Case study I: Wood Innovation Design Centre 10.10 Tall wood and composite buildings in seismic regions 10.11 Connections and ductility 10.12 Case study II: UBC Brock Commons 10.13 Innovative solutions for wood structures 10.13.1 Self-centering and low-damage structures 10.13.2 Application of self-centering and low-damage technology 10.14 Conclusion Acknowledgments References 11 Innovative mass-damping approaches for sustainable seismic design of tall buildings 11.1 Introduction 11.2 Literature review 11.2.1 Mega-substructure-control system (MSCS) 11.2.2 Intermediate isolation system (IIS) 11.3 Modeling, design parameters, analysis types 11.3.1 Baseline (FB) models of uncontrolled configurations 11.3.2 MSCS models and design parameters 11.3.3 IIS models and design parameters 11.3.4 Reduced-order models (2DOF and 3DOF) 11.3.5 Dynamic problem formulation and analysis methods 11.4 MSCS configurations: analyses 11.4.1 Classical modal analysis 11.4.2 Complex modal analysis 11.4.3 Response spectrum analysis (RSA) 11.4.4 Time history analyses 11.4.5 Effect of the distribution of moving secondary substructures 11.5 IIS configuration analyses 11.5.1 Classical and complex modal analyses 11.5.2 Response spectrum analyses 11.6 Real buildings with IIS 11.6.1 Discussion, major data, and design issues 11.6.2 The case studies: brief description 11.6.3 Building models and relevant dynamic properties 11.6.4 Natural undamped vibration modes for MDOF 11.6.5 Time history analysis for MDOF 11.6.6 Commentary on the position of isolation layer and mass ratio 11.7 Engineering solutions for MSCS 11.7.1 Structural organization of MSCS and design criteria 11.7.2 Examples of MSCS engineering solution 11.8 Discussion 11.9 Conclusion References Appendix I Notations and abbreviations 12 Employing innovative bio-polymeric agro-based materials in tall building fac¸ade applications to tackle climate change 12.1 Introduction: climate change and the urban reality 12.1.1 An “existential threat”: why climate change matters! 12.1.2 Climate change and the built environment 12.1.3 The collinearity between the global overpopulation and the rate of construction and demolition waste in cities 12.2 Origin, prospects, and challenges of bio-polymeric material applications in tall building fac¸ades 12.2.1 Origin of bio-polymeric materials 12.2.2 Emergence, flourish, and decline of bio-polymeric materials 12.2.3 Re-emergence of bio-polymeric materials 12.2.4 Prospects of bio-polymeric materials 12.2.5 Families of bio-polymeric materials 12.2.6 Challenges of bio-polymeric materials application in tall building fac¸ades 12.3 Material selection strategies: limitations and possibilities 12.4 New systematic material (selection + design) framework for tall building fac¸ade applications using multi-performance criteria matrix 12.5 Case study: material screening & selection, assembly design & assessment 12.5.1 Design assumptions and considerations (selection criteria) 12.5.2 Screening with constraints 12.5.3 Evaluation and selection 12.5.4 The BioEnclos Fac¸ade: a computational assessment model 12.6 Conclusion References Part III: City planning 13 Building taller, building denser: explorations in placemaking in London 13.1 Introduction 13.2 Building taller, building denser 13.3 Placemaking in London 13.4 The case of Nine Elms 13.5 Conclusion References 14 High-rises versus sprawl: the impacts of building sizes and land uses on CO2 emissions 14.1 Introduction 14.2 Literature review 14.3 Economic theory 14.3.1 Externalities 14.4 Building height and CO2 in New York City 14.4.1 Emissions versus building height and area 14.4.2 Summary of results 14.5 Household carbon footprints across New York City zip codes 14.5.1 Emissions versus building height and area 14.5.2 Summary of results 14.6 City analysis 14.6.1 Emissions versus building types 14.6.2 Summary of results 14.7 Discussion and policy implications 14.7.1 Policies 14.8 Conclusion References 15 High-rise buildings and transit-oriented development: the case of Hong Kong Abstract 15.1 Introduction 15.2 Literature review 15.3 Key factors influencing TOD 15.3.1 Gross floor area (GFA) in station catchment 15.3.2 Building type 15.3.3 High-rise buildings 15.3.4 Land use mix 15.3.5 Catchment radius and catchment (rail village) area 15.3.6 Number of building users and transit riders 15.3.7 Design and locations of exits 15.3.8 High density and health 15.4 Four types of TODs 15.4.1 “Plug-in” TOD in the old city 15.4.2 “City-edge” TOD 15.4.3 “One-building” TOD 15.4.4 “Suburban” TOD in new areas 15.5 Discussion 15.5.1 Connectivity 15.5.2 Land ownership 15.5.3 High-rise buildings on podium 15.5.4 Diversity and land use mix 15.5.5 Station exits 15.5.6 High-rise, high density, and health 15.5.7 Challenges to TOD 15.6 Conclusion Acknowledgment References Further reading 16 High-density city: extrapolating mobility and urban space networks in Singapore 16.1 Introduction 16.2 Literature review 16.2.1 Transit led vertical urbanism 16.2.2 Historical development of the concept 16.2.3 Vertical urbanism and elevated spaces 16.2.4 A new elaborated 3D configuration with the rise of new transportation modes 16.2.5 Parameters for an analysis of TOD urban spaces 16.3 Goals and objectives 16.4 Analysis parameters 16.5 Case studies 16.5.1 The J-Walk and Jurong Gateway 16.5.2 Marina Bay Sands (MBS) 16.6 Analysis and findings 16.6.1 Design elements: accessibility, connectivity, and legibility 16.6.2 Mobility 16.6.3 Activities and amenities 16.6.4 Management and operation 16.6.5 Transport technologies and their influence on stratified urban networks 16.7 Conclusion Acknowledgments References Further reading 17 Resilience thinking in high-rise clusters: the case of Bayrakli, I. zmir 17.1 Introduction 17.2 Literature review 17.2.1 Historical development and globalization related trends in high-rise districts 17.2.2 High-rise clusters: sustainability and resilience 17.3 Case study: Bayraklı, Izmir as a high-rise district 17.3.1 Bayrakli and development of high-rises 17.3.2 Discussions on resilience: Bayrakli and the recent earthquake 17.4 Conclusion References 18 High-rise buildings as urban habitat: urban design analytics in the context of new urban science 18.1 Introduction 18.1.1 High-rise buildings as urban habitat: a rising issue 18.1.2 New urban science and new research potentials for urban design analytics 18.2 Related studies: mapping the emerging literature 18.3 An evidence-based approach using VR and wearable biosensors: measuring the “unmeasurable” perception 18.3.1 Spatial design exploration via VR: experiencing the design as creators and users 18.3.2 Urban space optimization: human-centred placemaking 18.3.3 The application of VR and wearable biosensors in high-rise building design is rising 18.4 A data-informed approach via multi-sourced urban data and geodesign: improving the social performance of building layout an 18.4.1 Quantitative urban morphology bringing insights for promoting urban vitality 18.4.2 Citizen participation combined with multi-sourced urban data as a new strategy for urban decision making 18.4.3 The assistance of data-informed approach in highrise building design 18.5 A computational design approach relying on visualization techniques and deep learning algorithms: visualizing design impact 18.5.1 Computational visualization techniques as assistance for design decision making 18.5.2 Deep learning algorithms as a design assistance for mapping human activities via computer vision 18.5.3 Smart architecture design: GAN-assisted building plan generation 18.5.4 The computational-oriented design approach would be helpful in high-rise building design 18.6 Discussion 18.6.1 The emerging of analytical techniques in the context of new urban science 18.6.2 The utilities of newly emerged analytical techniques 18.7 Conclusion References 19 Interdependence of high-rise buildings and the city: a complementary approach to sustainability 19.1 Introduction 19.2 The sustainable high-rise building 19.3 Achieving sustainability of high-rise buildings 19.3.1 Passive low-energy strategies 19.3.2 Building skin technology 19.3.3 Material selection and structural systems 19.3.4 Daylighting 19.3.5 Solar and wind energies 19.3.6 Plant and tree-covered towers 19.3.7 Mixed-use towers 19.3.8 Innovative technologies 19.4 The sustainable city 19.4.1 The transport and mixed-use system 19.4.2 The vertical city within a city 19.4.3 Parks and civic spaces 19.4.4 Design for pedestrian traffic 19.4.5 Enhancing the microclimatic environment 19.5 High-rise buildings and urban form 19.6 Discussion 19.7 Conclusion References 20 Conclusion Appendix A: Definitions Tall buildings High-rise buildings Skyscrapers Working definitions Skyscraper size Jumbos Super jumbos Building’s status Under construction Structurally topped out Architecturally topped out On hold Never completed Proposed Visionary Demolished Reference Index Back Cover