ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Sustainable High-Rise Buildings: Design, technology, and innovation

دانلود کتاب ساختمان های بلندمرتبه پایدار: طراحی، فناوری و نوآوری

Sustainable High-Rise Buildings: Design, technology, and innovation

مشخصات کتاب

Sustainable High-Rise Buildings: Design, technology, and innovation

دسته بندی: طراحی: معماری
ویرایش:  
نویسندگان: , ,   
سری: IET Built Environment Series, 3 
ISBN (شابک) : 1839532807, 9781839532801 
ناشر: The Institution of Engineering and Technology 
سال نشر: 2022 
تعداد صفحات: 672 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 140 مگابایت 

قیمت کتاب (تومان) : 34,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Sustainable High-Rise Buildings: Design, technology, and innovation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ساختمان های بلندمرتبه پایدار: طراحی، فناوری و نوآوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب ساختمان های بلندمرتبه پایدار: طراحی، فناوری و نوآوری



افزایش سریع جمعیت شهری، قیمت زمین و حفظ زمین، بازسازی شهری، و همچنین جهانی شدن و تغییرات آب و هوایی شهرها را مجبور به ساخت و ساز رو به بالا کرده است. بلندمرتبه‌ها می‌توانند بخشی از یک راه‌حل پایدارتر باشند، اگر چالش‌های ساخت‌وساز و مهندسی قبل از شروع ساخت‌وساز برطرف شوند. فن‌آوری‌های هوشمند در محیط دیجیتال ادغام می‌شوند تا کارایی انرژی، ایمنی و امنیت بهتری داشته باشند و سلامت و رفاه سرنشینان را به حداکثر برسانند.

ارائه شده توسط تیمی متشکل از کارشناسان برجسته جهان، این کتاب ویرایش شده جامع، جدیدترین تحقیقات پیشرفته، نوآوری ها و چشم اندازهای آینده نسبت به ساختمان های بلندمرتبه پایدار را پوشش می دهد. این کتاب در سه بخش از معماری گرفته تا مهندسی و برنامه‌ریزی شهری شامل سیستم‌های زیست محیطی پایدار، پل‌های آسمانی، انعطاف‌پذیری دیوارهای پرده‌ای، ساختمان‌های چوبی بلند، مهندسی سازه پایدار، طراحی هسته و بهره‌وری فضا تنظیم شده است. همچنین شامل طراحی لرزه ای، رویکردهای مبتنی بر میرایی انبوه، مواد مبتنی بر کشاورزی زیست پلیمری نوآورانه، بلندمرتبه ها در مقابل پراکندگی، توسعه ترانزیت محور، شبکه های تحرک و فضای شهری، تفکر انعطاف پذیری، و وابستگی متقابل ساختمان های بلند و شهر است. .

معماران، مهندسان، محققان، مدیران انرژی و تاسیسات، طراحان شهری، برنامه ریزان و توسعه دهندگان پروژه، و کارشناسان راه حل های ساختمان هوشمند و همچنین اعضای هیات علمی، فوق دکترا، دانشجویان پیشرفته که در زمینه‌های محیط ساخته‌شده، ساخت‌وساز ساختمان، طراحی سیستم، مهندسی عمران، معماری، شهرسازی، شهرهای هوشمند، پایداری و تاب‌آوری و مهندسی محیط‌زیست کار می‌کنند و در حال بررسی شیوه‌های ساختمان‌سازی پایدار هستند، این مرجع پیشرفته جدید را بسیار مفید خواهند یافت. و الهام بخش.


توضیحاتی درمورد کتاب به خارجی

The rapid increase in urban population, land prices and land preservation, urban regeneration, as well as globalization and climate change have been forcing cities to build upward. High-rises can be part of a more sustainable solution if the construction and engineering challenges are addressed before construction starts. Smart technologies are being integrated in the digital environment to allow for better energy efficiency, safety and security, and to maximize the health and well-being of the occupants.

Delivered by a team of world leading experts, this comprehensive edited book covers the state-of-the-art of advanced research, innovations, and future perspectives towards sustainable high-rise buildings. The book is structured in three parts from architecture to engineering and city planning including sustainable environmental systems, skybridges, curtain walling resiliency, tall timber buildings, sustainable structural engineering, core design and space efficiency. It also includes seismic design, mass-damping-based approaches, innovative bio-polymeric agro-based materials, high-rises versus sprawl, transit-oriented development, mobility and urban space networks, resilience thinking, and interdependence of tall buildings and the city.

Architects, engineers, researchers, energy and facility managers, urban designers, project planners and developers, and smart building solutions experts as well as faculty members, postdocs, advanced students who are working in the fields of the built environment, building construction, system design, civil engineering, architecture, urban planning, smart cities, sustainability and resiliency and environmental engineering, and who are exploring sustainable building practices, will find this new advanced reference most useful and inspiring.



فهرست مطالب

Cover
Contents
About the editors
The Institution of Engineering and Technology
About CTBUH
Foreword
Introduction
	The organization of the book
	Part I: Architecture
	Part II: Engineering
	Part III: City planning
	Acknowledgment
	References
Part I: Architecture
	1 Designing sustainable tall buildings
		1.1 The idea of the sustainable tall building or skyscraper
		1.2 Ecosystem characteristics and attributes
		1.3 Preliminary design studies for technical, biological, and augmented solutions
			1.3.1 Ecosystem’s biotic–abiotic structure
			1.3.2 Ecosystem biodiversity
			1.3.3 Ecosystem connectivity and nexus
			1.3.4 Provision of ecosystem services
			1.3.5 Ecosystem biointegration
			1.3.6 Ecosystem responsiveness to climate
			1.3.7 Ecosystem’s use and cycling of material
			1.3.8 Ecosystem hydrology
			1.3.9 Ecosystem symbiosis
			1.3.10 Ecosystem homeostasis
			1.3.11 Ecosystem’s food production
			1.3.12 Ecosystem’s succession
		1.4 Building physics and modeling
		1.5 Conclusion
		References
	2 Skybridges: bringing the horizontal into the vertical realm
		2.1 Introduction
			2.1.1 Purpose of the research
			2.1.2 Issues under exploration
			2.1.3 Research objectives
			2.1.4 Research methodology
		2.2 Classification and analytical criteria
			2.2.1 Skybridge typologies
			2.2.2 Measurement and calculation methodology
		2.3 Analysis
			2.3.1 Ownership/management
			2.3.2 Usage/programming
			2.3.3 Access/security
			2.3.4 Structural engineering
			2.3.5 MEP engineering
			2.3.6 Fire engineering/evacuation
			2.3.7 Construction
			2.3.8 Interiors
			2.3.9 Evaluation: qualitative
			2.3.10 Evaluation: quantitative
		2.4 Urban-scale considerations: skybridge networks in practice
			2.4.1 Hong Kong skybridge network
			2.4.2 Atlanta: Peachtree Center
			2.4.3 Learning from the Atlanta and Hong Kong skybridge networks
		2.5 3-D urban growth
		2.6 Conclusion
		Acknowledgment
		References
	3 Recent developments in sustainable environmental systems of tall buildings
		3.1 Introduction
		3.2 Goals and objectives
		3.3 Methodology
		3.4 Environmental systems
		3.5 Multi-functional tall buildings
		3.6 Bioclimatic design
		3.7 Sustainable environmental services and strategies
			3.7.1 Natural ventilation
			3.7.2 Daylight harvesting and artificial lighting
			3.7.3 Heating and cooling
			3.7.4 Combined heat and power
		3.8 Integrated systems
			3.8.1 Integration of intelligent building systems
		3.9 Case studies
			3.9.1 4 Times square
			3.9.2 Pearl River Tower
			3.9.3 New York Times Headquarters
			3.9.4 Shanghai Tower
			3.9.5 Leeza SOHO Tower
			3.9.6 Salesforce Transit Tower and Transit Center
			3.9.7 340 On the Park
			3.9.8 30 St. Mary Axe
			3.9.9 Pertamina Energy Tower
		3.10 Discussion
		3.11 Sustainable cities and environmental infrastructures
			3.11.1 New Songdo City
		3.12 Conclusion
		References
	4 Assessment of tall buildings’ environmental sustainability: frameworks and tools
		4.1 Introduction
		4.2 Assessment of tall building sustainability
			4.2.1 Social and economic sustainability
			4.2.2 Environmental sustainability
		4.3 Tall buildings and impacts on the environment
			4.3.1 Structural systems
			4.3.2 Whole building
		4.4 Uncertainties and limitations in the assessment of impacts
		4.5 Conclusion
		References
	5 Curtain walling resiliency for tall buildings: standards, testing, and solutions
		5.1 Introduction
		5.2 Impact resiliency of curtain walls: testing standards
			5.2.1 Impact testing of curtain walls
			5.2.2 Flying debris impact testing of curtain walls
		5.3 Windborne debris resiliency of curtain walls and tall building fac¸ade design
			5.3.1 Characteristics of flying debris-resilient curtain wall solutions
		5.4 Local windborne debris-resistant curtain walls: the aerodynamic of windborne debris
			5.4.1 Literature review
			5.4.2 Roof tiles
			5.4.3 Debris failure in extreme wind events
			5.4.4 Future work
		5.5 Findings
		5.6 Conclusion
		References
	6 Sustainability meets performance with tall timber buildings
		6.1 Why tall timber?
		6.2 Carbon footprint and forest health
		6.3 Embodied carbon and LCA
		6.4 Global precedents and US code changes
		6.5 Mass timber products and performance
		6.6 Fire-resistance ratings and timber encapsulation
			6.6.1 Contribution of mass timber to FRR
			6.6.2 Fire protection of connections
			6.6.3 Fire protection of concealed spaces
			6.6.4 Fire protection of shaft enclosures
			6.6.5 Noncombustible protection of mass timber shaft walls
			6.6.6 Other considerations
		6.7 Acoustic performance in tall timber
			6.7.1 Basics of acoustics and code requirements
			6.7.2 Unique mass timber acoustics considerations
		6.8 Grid selection and cost optimization
			6.8.1 Grid selection
			6.8.2 Mass timber panel spans
			6.8.3 Grid options
			6.8.4 Manufacturer input
		6.9 Market drivers for tall wood
			6.9.1 Innovation and aesthetic appeal
			6.9.2 Cost savings
			6.9.3 Healthy buildings
		6.10 Opportunities, challenges, and next steps
		6.11 Conclusion
		References
Part II: Engineering
	7 Sustainable structural design of tall buildings
		7.1 Introduction
		7.2 Tubular systems for sustainable structures
			7.2.1 Framed tube and bundled tube
			7.2.2 Braced tube
			7.2.3 Braced megatube
			7.2.4 Diagrids
			7.2.5 Optimal lateral stiffness distribution for tubular structures
		7.3 Outrigger structure
			7.3.1 Structural design and performance of outrigger system
			7.3.2 Comparative premium for height
		7.4 Hybrid structural systems
			7.4.1 Supertalls with mixed structural systems
			7.4.2 Lateral stiffness distribution alternatives in mixed systems
		7.5 Superframed conjoined towers for sustainable megatalls
			7.5.1 Superframed conjoined towers with single-link structures
			7.5.2 Superframed conjoined towers with multiple-link structures
		7.6 Conclusion
		References
	8 Core design and space efficiency in contemporary supertall office buildings
		8.1 Introduction
		8.2 Literature review
		8.3 Methodology
		8.4 Design considerations for supertall office buildings
			8.4.1 Core planning
			8.4.2 Structural systems and structural materials
			8.4.3 Lease span and floor-to-floor height
			8.4.4 Space efficiency
		8.5 Discussion
			8.5.1 Structural system
			8.5.2 Structural material
			8.5.3 Core planning
			8.5.4 Space efficiency
		8.6 Conclusion
		Glossary
		References
	9 An overview of seismic design and sustainability of high-rise buildings
		9.1 Introduction to seismology
			9.1.1 Seismic magnitude
			9.1.2 Seismic intensity
			9.1.3 Ground movement during earthquakes
		9.2 Response spectrum of building structures
			9.2.1 Seismic response of single-degree freedom (SDF) structure
			9.2.2 Seismic action
			9.2.3 Seismic response spectrum
		9.3 Seismic action and response of high-rise buildings
			9.3.1 Seismic action of vibration mode of high-rise buildings
			9.3.2 Seismic response of high-rise buildings without torsion
			9.3.3 Seismic response of high-rise buildings with torsion
		9.4 Seismic resistance of high-rise buildings
			9.4.1 Strength requirement
			9.4.2 Deformation requirement
		9.5 Basic concepts for seismic resistance of high-rise buildings
			9.5.1 Selection of suitable site for buildings
			9.5.2 Regular building forms
			9.5.3 Reasonable seismic resistance system
			9.5.4 Strong slab for floors
		9.6 Technologies for mitigating seismic effects on high-rise buildings
			9.6.1 Seismic isolation principle and technology
			9.6.2 Energy dissipation principle and technology
			9.6.3 Tuned mass damper (TMD) principle and technology
		9.7 Conclusion
		Symbols
		References
	10 Sustainable construction of wood high-rise buildings and seismic considerations
		10.1 Introduction
		10.2 Scope and objectives
		10.3 Sustainability
		10.4 Re-emergence of tall wood buildings
		10.5 Tall wood initiatives in North America
			10.5.1 Research and development of wood products and systems
		10.6 Cross-laminated timber (CLT)
		10.7 Structural systems for tall wood and composite buildings
		10.8 Moisture content and effects on material properties
		10.9 Case study I: Wood Innovation Design Centre
		10.10 Tall wood and composite buildings in seismic regions
		10.11 Connections and ductility
		10.12 Case study II: UBC Brock Commons
		10.13 Innovative solutions for wood structures
			10.13.1 Self-centering and low-damage structures
			10.13.2 Application of self-centering and low-damage technology
		10.14 Conclusion
		Acknowledgments
		References
	11 Innovative mass-damping approaches for sustainable seismic design of tall buildings
		11.1 Introduction
		11.2 Literature review
			11.2.1 Mega-substructure-control system (MSCS)
			11.2.2 Intermediate isolation system (IIS)
		11.3 Modeling, design parameters, analysis types
			11.3.1 Baseline (FB) models of uncontrolled configurations
			11.3.2 MSCS models and design parameters
			11.3.3 IIS models and design parameters
			11.3.4 Reduced-order models (2DOF and 3DOF)
			11.3.5 Dynamic problem formulation and analysis methods
		11.4 MSCS configurations: analyses
			11.4.1 Classical modal analysis
			11.4.2 Complex modal analysis
			11.4.3 Response spectrum analysis (RSA)
			11.4.4 Time history analyses
			11.4.5 Effect of the distribution of moving secondary substructures
		11.5 IIS configuration analyses
			11.5.1 Classical and complex modal analyses
			11.5.2 Response spectrum analyses
		11.6 Real buildings with IIS
			11.6.1 Discussion, major data, and design issues
			11.6.2 The case studies: brief description
			11.6.3 Building models and relevant dynamic properties
			11.6.4 Natural undamped vibration modes for MDOF
			11.6.5 Time history analysis for MDOF
			11.6.6 Commentary on the position of isolation layer and mass ratio
		11.7 Engineering solutions for MSCS
			11.7.1 Structural organization of MSCS and design criteria
			11.7.2 Examples of MSCS engineering solution
		11.8 Discussion
		11.9 Conclusion
		References
		Appendix I Notations and abbreviations
	12 Employing innovative bio-polymeric agro-based materials in tall building fac¸ade applications to tackle climate change
		12.1 Introduction: climate change and the urban reality
			12.1.1 An “existential threat”: why climate change matters!
			12.1.2 Climate change and the built environment
			12.1.3 The collinearity between the global overpopulation and the rate of construction and demolition waste in cities
		12.2 Origin, prospects, and challenges of bio-polymeric material applications in tall building fac¸ades
			12.2.1 Origin of bio-polymeric materials
			12.2.2 Emergence, flourish, and decline of bio-polymeric materials
			12.2.3 Re-emergence of bio-polymeric materials
			12.2.4 Prospects of bio-polymeric materials
			12.2.5 Families of bio-polymeric materials
			12.2.6 Challenges of bio-polymeric materials application in tall building fac¸ades
		12.3 Material selection strategies: limitations and possibilities
		12.4 New systematic material (selection + design) framework for tall building fac¸ade applications using multi-performance criteria matrix
		12.5 Case study: material screening & selection, assembly design & assessment
			12.5.1 Design assumptions and considerations (selection criteria)
			12.5.2 Screening with constraints
			12.5.3 Evaluation and selection
			12.5.4 The BioEnclos
			Fac¸ade: a computational assessment model
		12.6 Conclusion
		References
Part III: City planning
	13 Building taller, building denser: explorations in placemaking in London
		13.1 Introduction
		13.2 Building taller, building denser
		13.3 Placemaking in London
		13.4 The case of Nine Elms
		13.5 Conclusion
		References
	14 High-rises versus sprawl: the impacts of building sizes and land uses on CO2 emissions
		14.1 Introduction
		14.2 Literature review
		14.3 Economic theory
			14.3.1 Externalities
		14.4 Building height and CO2 in New York City
			14.4.1 Emissions versus building height and area
			14.4.2 Summary of results
		14.5 Household carbon footprints across New York City zip codes
			14.5.1 Emissions versus building height and area
			14.5.2 Summary of results
		14.6 City analysis
			14.6.1 Emissions versus building types
			14.6.2 Summary of results
		14.7 Discussion and policy implications
			14.7.1 Policies
		14.8 Conclusion
		References
	15 High-rise buildings and transit-oriented development: the case of Hong Kong
		Abstract
		15.1 Introduction
		15.2 Literature review
		15.3 Key factors influencing TOD
			15.3.1 Gross floor area (GFA) in station catchment
			15.3.2 Building type
			15.3.3 High-rise buildings
			15.3.4 Land use mix
			15.3.5 Catchment radius and catchment (rail village) area
			15.3.6 Number of building users and transit riders
			15.3.7 Design and locations of exits
			15.3.8 High density and health
		15.4 Four types of TODs
			15.4.1 “Plug-in” TOD in the old city
			15.4.2 “City-edge” TOD
			15.4.3 “One-building” TOD
			15.4.4 “Suburban” TOD in new areas
		15.5 Discussion
			15.5.1 Connectivity
			15.5.2 Land ownership
			15.5.3 High-rise buildings on podium
			15.5.4 Diversity and land use mix
			15.5.5 Station exits
			15.5.6 High-rise, high density, and health
			15.5.7 Challenges to TOD
		15.6 Conclusion
		Acknowledgment
		References
		Further reading
	16 High-density city: extrapolating mobility and urban space networks in Singapore
		16.1 Introduction
		16.2 Literature review
			16.2.1 Transit led vertical urbanism
			16.2.2 Historical development of the concept
			16.2.3 Vertical urbanism and elevated spaces
			16.2.4 A new elaborated 3D configuration with the rise of new transportation modes
			16.2.5 Parameters for an analysis of TOD urban spaces
		16.3 Goals and objectives
		16.4 Analysis parameters
		16.5 Case studies
			16.5.1 The J-Walk and Jurong Gateway
			16.5.2 Marina Bay Sands (MBS)
		16.6 Analysis and findings
			16.6.1 Design elements: accessibility, connectivity, and legibility
			16.6.2 Mobility
			16.6.3 Activities and amenities
			16.6.4 Management and operation
			16.6.5 Transport technologies and their influence on stratified urban networks
		16.7 Conclusion
		Acknowledgments
		References
		Further reading
	17 Resilience thinking in high-rise clusters: the case of Bayrakli, I. zmir
		17.1 Introduction
		17.2 Literature review
			17.2.1 Historical development and globalization related trends in high-rise districts
			17.2.2 High-rise clusters: sustainability and resilience
		17.3 Case study: Bayraklı, Izmir as a high-rise district
			17.3.1 Bayrakli and development of high-rises
			17.3.2 Discussions on resilience: Bayrakli and the recent earthquake
		17.4 Conclusion
		References
	18 High-rise buildings as urban habitat: urban design analytics in the context of new urban science
		18.1 Introduction
			18.1.1 High-rise buildings as urban habitat: a rising issue
			18.1.2 New urban science and new research potentials for urban design analytics
		18.2 Related studies: mapping the emerging literature
		18.3 An evidence-based approach using VR and wearable biosensors: measuring the “unmeasurable” perception
			18.3.1 Spatial design exploration via VR: experiencing the design as creators and users
			18.3.2 Urban space optimization: human-centred placemaking
			18.3.3 The application of VR and wearable biosensors in high-rise building design is rising
		18.4 A data-informed approach via multi-sourced urban data and geodesign: improving the social performance of building layout an
			18.4.1 Quantitative urban morphology bringing insights for promoting urban vitality
			18.4.2 Citizen participation combined with multi-sourced urban data as a new strategy for urban decision making
			18.4.3 The assistance of data-informed approach in highrise building design
		18.5 A computational design approach relying on visualization techniques and deep learning algorithms: visualizing design impact
			18.5.1 Computational visualization techniques as assistance for design decision making
			18.5.2 Deep learning algorithms as a design assistance for mapping human activities via computer vision
			18.5.3 Smart architecture design: GAN-assisted building plan generation
			18.5.4 The computational-oriented design approach would be helpful in high-rise building design
		18.6 Discussion
			18.6.1 The emerging of analytical techniques in the context of new urban science
			18.6.2 The utilities of newly emerged analytical techniques
		18.7 Conclusion
		References
	19  Interdependence of high-rise buildings and the city: a complementary approach to sustainability
		19.1 Introduction
		19.2 The sustainable high-rise building
		19.3 Achieving sustainability of high-rise buildings
			19.3.1 Passive low-energy strategies
			19.3.2 Building skin technology
			19.3.3 Material selection and structural systems
			19.3.4 Daylighting
			19.3.5 Solar and wind energies
			19.3.6 Plant and tree-covered towers
			19.3.7 Mixed-use towers
			19.3.8 Innovative technologies
		19.4 The sustainable city
			19.4.1 The transport and mixed-use system
			19.4.2 The vertical city within a city
			19.4.3 Parks and civic spaces
			19.4.4 Design for pedestrian traffic
			19.4.5 Enhancing the microclimatic environment
		19.5 High-rise buildings and urban form
		19.6 Discussion
		19.7 Conclusion
		References
	20 Conclusion
Appendix A: Definitions
	Tall buildings
	High-rise buildings
	Skyscrapers
	Working definitions
	Skyscraper size
	Jumbos
	Super jumbos
	Building’s status
		Under construction
		Structurally topped out
		Architecturally topped out
		On hold
		Never completed
		Proposed
		Visionary
		Demolished
	Reference
Index
Back Cover




نظرات کاربران