دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Charis Michel Galanakis (editor)
سری:
ISBN (شابک) : 0128227141, 9780128227145
ناشر: Academic Press
سال نشر: 2021
تعداد صفحات: 394
[396]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 49 Mb
در صورت تبدیل فایل کتاب Sustainable Food Processing and Engineering Challenges به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فرآوری مواد غذایی پایدار و چالش های مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title page Copyright Contents Contributors Preface Chapter 1 - Industry 4.0 Applied to Food 1 - Introduction and background 2 - Food industry and Industry 4.0 3 - Objective and methodology 4 - Key principles of Industry 4.0 in the food industry 4.1 - Enabling technologies in the food industry 4.2 - Industry-level 4.3 - Supply chain-level 4.4 - Company-level 4.5 - Business area-level 4.6 - Sustainability and Industry 4.0 5 - Food 4.0 framework 6 - Discussions and future research avenues References Chapter 2 - Pasteurization of Juices with Non-Thermal Technologies 1 - Introduction 2 - Pulsed electric field treatment 2.1 - Definition of pulsed electric field process 2.2 - Pulsed electric field system 2.3 - Critical parameters in pulsed electric field process 2.4 - Electroporation phenomena 2.5 - Ohmic heating effect during pulsed electric field 2.6 - Susceptibility of microorganisms to pulsed electric fields 2.7 - Pulsed electric field effects on enzymes 2.8 - Impact of pulsed electric field treatment on nutrients 2.9 - Physicochemical properties of the pulsed electric field treated juice 2.10 - Benefits and drawbacks 3 - High-pressure processing 3.1 - Principle of high-pressure processing 3.2 - Design of high-pressure system 3.3 - Microbial inactivation by high-pressure application 3.4 - Effect of high-pressure process on enzyme structure 3.5 - Effect of high-pressure processing on juice properties 3.6 - Effect of HPP on physical properties of the juice 3.7 - Advantages and limitations of high-pressure processing 4 - High-pressure carbon dioxide processing 4.1 - Description of high-pressure carbon dioxide 4.2 - High-pressure carbon dioxide process system 4.3 - Mechanism of carbon dioxide bactericidal action 4.4 - Inactivation mechanism of enzymes 4.5 - Effect on the physicochemical attributes of juice 4.6 - Potentials and limitations of high-pressure carbon dioxide technology 5 - Sonication treatment 5.1 - Definition of sonication 5.2 - Design of sonication system 5.3 - Mechanism of cavitation 5.4 - Effect of sonication on microorganisms 5.5 - Ultrasonic application in enzymes inactivation 5.6 - Effect of sonication on physicochemical attributes of juice 5.7 - Advantages and limitations of ultrasonication 6 - Ultraviolet treatment 6.1 - Definition and description of ultraviolet treatment 6.2 - Ultraviolet equipment 6.3 - Sensitivity of microorganisms to ultraviolet 6.4 - Effects on nutritional aspects 6.5 - Impact on juice appearance 6.6 - Advantages and disadvantages 7 - Ozone processing 7.1 - Ozone overview 7.2 - Methods of ozone generation 7.3 - Factors affecting the efficacy of ozone treatment 7.4 - Antimicrobial action of ozone 7.5 - Effect on juice quality 7.6 - Advantages and limitations 8 - Conclusion References Chapter 3 - High-Pressure Processing; Principle, Applications, Impact, and Future Prospective Section 1 1 - Introduction 1.1 - HPP equipment 1.1.1 - Pressure-transmitting fluid 1.2 - HPP principles 1.3 - Impact of HPP on food quality 1.4 - Impact of HPP on food safety 1.5 - Applications of HPP 1.6 - Conclusions and future aspects Section 2 2 - High-pressure processing of fruits and vegetables 2.1 - Introduction 2.2 - Impact of HPP on enzymes and microorganisms 2.3 - Impact of HPP on physicochemical parameters of fruits and vegetables 2.3.1 - Impact of HPP on color 2.3.2 - Impact of HPP on texture 2.3.3 - Impact of HPP on flavor 2.3.4 - Impact of HPP on vitamins 2.4 - Conclusions and future aspects Section 3 3 - Impact of high-pressure processing on fresh salads and ready to eat foods 3.1 - Importance of salads and ready meals 3.2 - Impact of HPP on microorganisms 3.3 - Impact on enzyme activity 3.4 - Impact on color 3.5 - Impact on texture 3.6 - Impact on nutrients/nutritional value 3.7 - Conclusions and future aspects Section 4 4 - Impact of high-pressure processing on dairy/egg 4.1 - Importance of HPP on dairy/egg 4.2 - HPP impact on the texture and water retention of meat and seafood 4.3 - Impact of HPP on dairy/egg quality 4.4 - Safety aspect of HHP for meat/seafood/dairy/egg 4.5 - Conclusions and future aspects Section 5 5 - Conclusions 5.1 - Advantages of HPP 5.2 - Limitations of HPP 5.3 - Future perspectives of HPP References Chapter 4 - Cold Plasma 1 - Introduction 2 - General aspects 2.1 - Fundamentals 2.2 - Classification of plasma sources 2.3 - Effectiveness of cold plasma in microbial inactivation 2.4 - Process parameters 3 - Effects of cold plasma and applicability in food processing 3.1 - Food decontamination, food surfaces, and packaging 3.2 - Sensory and physicochemical aspects 3.3 - Mycotoxins degradation 3.4 - Pesticide degradation 3.5 - Allergen degradation 4 - Advantages and disadvantages of cold plasma processing 5 - Current status of cold plasma processing 6 - Regulatory context of cold plasma processing 7 - Perspectives References Chapter 5 - Pulsed Electric Field 1 - Introduction 2 - PEF: mechanism of electroporation or electropermeabilization 3 - PEF: factors and their effects on biological tissues 4 - PEF: applications in food processing 4.1 - PEF: effects on microbial inactivation 4.2 - PEF: effects on extraction of bioactive compounds 4.3 - PEF: effects on drying of food and food products 4.4 - PEF: effects on quality parameters 4.5 - PEF: miscellaneous effects on food and food products 5 - Conclusion References Chapter 6 - Ultraviolet Light-Assisted Titanium Dioxide Photocatalysis for Food Safety 1 - Introduction 2 - Photocatalytic properties of TiO2 3 - TiO2/UV photocatalysis in the food industry 3.1 - Surfaces with antibacterial activity 3.2 - Active food packaging 3.2.1 - Covers 3.2.2 - Scavengers 3.2.3 - Oxygen indicators 4 - Potential usage in the food processing plant 4.1 - Air and water purification 4.2 - Fresh vegetable washing 4.3 - Drinks and juice disinfection 5 - Risks connected with nanomaterials—food and consumer safety 6 - Nanofood materials—legislation regulatory issues 7 - Conclusions References Chapter 7 - Bioplastic for Sustainable Food Packaging 1 - Introduction 2 - Types and forms of bioplastic food packaging 2.1 - Bio-based and biodegradable polymers 2.2 - Bioplastic materials 2.2.1 - Poly(lactic acid) 2.2.2 - Polyhydroxyalkanoate 2.2.3 - Polybutylene succinate 2.2.4 - Polycaprolactone 2.2.5 - Polybutylene adipate terephthalate 2.2.6 - Thermoplastic starch 2.2.7 - Non-starch polysaccharide 2.2.8 - Protein 2.2.9 - Plant oil 2.2.10 - Renewable conventional plastics 2.3 - Conversion technology and forms of bioplastic packaging 2.3.1 - Extrusion 2.3.2 - Thermoforming 2.3.3 - Blow molding 2.3.4 - Injection molding 3 - Improved barrier properties of bioplastic packaging 3.1 - Multilayer bioplastic packaging 3.2 - Nanofillers and nanocomposite packaging 3.3 - Polymer modifications 4 - Developments of bioplastic food packaging 4.1 - Fresh produce 4.2 - Bakery 4.3 - Meat, poultry, and seafood 5 - Conclusions References Chapter 8 - Intelligent Packaging 1 - Introduction 2 - Definitions and types of intelligent packaging 3 - Time and temperature indicators (TTIs) 3.1 - Essential technologies of TTI construction 3.1.1 - Diffusion-based indicators 3.1.2 - Enzymatic indicators 3.1.3 Polymer-based TTIs 3.2 - Examples of commercial TTIs application 3.2.1 - Dairy products 3.2.2 Meat products 3.2.3 Fish and fish products 3.2.4 Vegetables 3.3 - Overview of TTIs strengths and weaknesses 4 - Food freshness indicators 5 - Other intelligent packaging systems 5.1 - Integrity indicators 5.2 - Data carriers 5.3 - Sensors 6 - Intelligent packaging in food processing and distribution 7 - Summary References Chapter 9 - Active Packaging 1 - Introduction 2 - Antimicrobial agents 3 - Carbon dioxide emitters 4 - Antioxidant releasers 5 - Oxygen scavengers 6 - Ethylene absorbers 7 - Conclusion Acknowledgments References Chapter 10 - Food Digestion Engineering 1 - Background 2 - Digestive system 3 - In vivo digestion 3.1 - Animal studies 3.2 - Human studies 3.2.1 - Parameters of interest in human studies 3.3 - Medical imaging techniques 3.4 - Outlook 4 - In vitro digestion 4.1 - Types of in vitro digestion models, applications, and limitations 4.1.1 - Static digestion models 4.1.2 - Dynamic digestion model 4.2 - Outlook 5 - In silico digestion 5.1 - Mouth 5.2 - Stomach 5.3 - Small intestine 5.4 - Colon 5.5 - Outlook 6 - Conclusions References Index Back cover