دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Arpit Jain, Abhinav Sharma, Vibhu Jately, Brian Azzopardi سری: Smart Technologies for Engineers and Scientists ISBN (شابک) : 1032392754, 9781032392752 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 200 [201] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Sustainable Energy Solutions with Artificial Intelligence, Blockchain Technology, and Internet of Things به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راه حل های انرژی پایدار با هوش مصنوعی، فناوری بلاک چین و اینترنت اشیا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
The text provides sustainable energy solutions using smart technologies such as artificial intelligence, blockchain technology, and the Internet of Things. It further presents several case studies on applications of the Internet of Things, artificial intelligence, and blockchain technology in the field of sustainable energy. Focuses on the integration of smart technology including artificial intelligence and sustainable energy Covers recent advancements in energy management techniques used in residential and commercial energy systems Highlights the use of artificial intelligence, machine learning, and their applications in sustainable energy Discusses important topics such as green energy, grid modernization, smart security in the power grid, and fault diagnosis Presents case studies on the applications of the Internet of Things, blockchain, and artificial intelligence in sustainable energy The text showcases the latest advancements, and the importance of technologies including artificial intelligence, blockchain, and Internet of Things in achieving sustainable energy systems. It further discusses the role of machine learning, applied deep learning, and edge computing in renewable energy. The text cover key concepts such as intelligent battery management system, energy trading, green energy, grid modernization, electric vehicles, and charging station optimization. It will serve as an ideal reference text for senior undergraduate, graduate students, and academic researchers in the fields including electrical engineering, electronics and communication engineering, computer engineering, and environmental engineering.
Cover Half Title Series Page Title Page Copyright Page Contents Preface Acknowledgments Editors' Biography Contributors Chapter 1: Recent Developments of Artificial Intelligence for Renewable Energy: Accelerated Material and Process Design 1.1 Introduction 1.2 Role of AI in Renewable Energy 1.3 Advancements of AI towards Sustainable Energy 1.3.1 Improved Machine Learning Models 1.3.2 DL Models 1.3.3 Optimization Techniques 1.4 Digital Transformation of Renewable Energy Industry 1.4.1 Hydrogen Production from Biomass 1.4.1.1 Background and Motivation 1.4.1.2 Catalytic Conversion of Biomass to Hydrogen through Gasification 1.4.1.2.1 Alkaline Earth Metallic Catalysts 1.4.1.2.2 Metal and Metallic Oxides Catalysts 1.4.1.2.3 Natural Mineral Catalysts 1.4.1.2.4 Hybrid Catalysts 1.4.1.3 Current Challenges in Biomass Conversion to Hydrogen 1.4.1.4 Intervention of AI/ML in H2 Production from Biomass 1.4.1.5 Conclusions and Future Directions 1.4.2 Hydrogen Generation from Photocatalytic Water Splitting 1.4.2.1 Materials Development Photocatalytic Water Splitting 1.4.2.1.1 Metal-Modified TiO2 1.4.2.1.2 Non-Metal-Modified TiO2 1.4.2.1.3 Semiconductor Coupling TiO2 1.4.2.1.4 Ternary TiO2 1.4.2.1.5 Carbon-Based Photocatalyst 1.4.2.2 ML Aided Photocatalyst Development 1.4.2.3 Conclusions and Future Directions 1.4.3 Geothermal Energy Applications 1.5 Challenges of AI in the Renewable Energy Industry 1.5.1 Lack of Theoretical Background 1.5.2 Lack of Practical Expertise 1.5.3 Outdated Infrastructure 1.5.4 Financial Pressure 1.6 Outlook and Future Perspectives References Chapter 2: Recent Advancements in Artificial Intelligence and Machine Learning in Sustainable Energy Management 2.1 Introduction 2.2 Literature Survey 2.3 Different Forms of Sustainable Energy 2.3.1 Solar Energy/Solar Farms 2.3.2 Wind Energy 2.4 Sustainable Energy Management 2.5 Recent Advancements in Energy Management Using AI and ML 2.5.1 Solar Related Methodological Approaches 2.5.2 Related Models of Predicting Algorithms 2.5.3 Wind System Related Methodological Approaches 2.6 Pros and Cons of Current Scenario 2.7 Conclusion References Chapter 3: Role of Machine Learning in Renewable Energy 3.1 Introduction 3.2 Machine Learning 3.3 Renewable Energy 3.4 Solar Energy 3.4.1 Current Usage of Solar Energy 3.4.2 Role of ML in Solar Power Forecasting 3.5 Wind Energy 3.5.1 Current Use of Wind Energy 3.5.2 Role of ML in Wind Energy 3.6 Hydroelectric Power 3.6.1 Current Use of Hydroelectric Power 3.6.2 Role of ML in Hydroelectric Energy 3.7 Biomass 3.7.1 Current Usage of Biomass 3.7.2 Role of ML in Biomass Gasification 3.7.3 Role of ML in Biomass Production in the Wastewater Treatment System 3.8 Geothermal Energy 3.8.1 Current use of Geothermal Energy 3.8.2 Role of ML in Geothermal Oil and Gas Well Subsurface Temperature Prediction 3.9 Conclusion References Chapter 4: Smart Home Energy Management Using Non-intrusive Load Monitoring: A Deep Learning Perspective 4.1 Introduction 4.1.1 Supervised Algorithms 4.1.2 Unsupervised Algorithms 4.1.3 Semi-Supervised Algorithm 4.2 Datasets and Algorithms 4.2.1 Datasets 4.2.1.1 REDD 4.2.1.2 UK - DALE 4.2.1.3 REFIT 4.2.1.4 SynD 4.2.2 Algorithms 4.2.2.1 Combinatorial Optimization (CO) 4.2.2.2 Factorial HMM 4.2.2.3 Denoising Auto Encoder (DAE) 4.2.2.4 Recurrent Neural Network (RNN) 4.2.2.5 Gated Recurrent Unit (GRU) and Window GRU 4.2.2.6 Short Sequence to Point (SS2P) 4.2.2.7 Sequence to Sequence (S2S) 4.2.2.8 Bidirectional Encoder Representation for Transformers (BERT) 4.3 Experimental Results and Discussion 4.3.1 Case 1: REDD with Five Appliances (Fridge, Light, Sockets, Microwave, and Dishwasher) 4.3.2 Case 2: UK - DALE with Five Appliances (Washer Dryer, Kettle, Fridge Freezer, Microwave, and Dish washer) 4.3.3 Case 3: SynD with five appliances (Electric space heater, Clothes iron, Dish washer, Washing machine, and Fridge) 4.3.4 Case 4: REFIT with five appliances (Dish washer, Kettle, Fridge freezer, Washing machine, and Audio system) 4.4 Conclusion References Chapter 5: New Scheme of Cost-Load Optimization by Appliance Scheduling in Smart Homes 5.1 Introduction 5.2 Mathematical Modelling 5.2.1 Objective Functions 5.2.2 Operational Constraints 5.3 Solution Methods 5.3.1 Cuckoo Search (CS) Method 5.3.2 Adaptive Cuckoo Search (ACS) Method 5.3.3 Hybrid GA-PSO Algorithm 5.4 Results and Discussion 5.4.1 Analysis of Results for Case Study I (Waterloo North Hydro Inc., Canada) 5.4.1.1 Scenario 1: Individual Smart Home Residents Reschedule His/Her Power Consumption in Order to Minimize Electricity Bill Cost 5.4.1.2 Scenario 2: Individual Smart Home Residents Reschedule His/Her Power Consumption in Order to Minimize the Peak to Average Ratio (PAR) 5.4.1.3 Scenario 3: Individual Smart Home Residents Reschedule His/Her Power Consumption in Order to Optimize the Electricity Bill Cost and Peak Demand Together 5.4.2 Result Analysis for Case Study II (Gulf Power's Company, Northwest Florida) 5.4.2.1 Scenario 1: Individual Smart Home Residents Reschedule His/Her Power Consumption in Order to Minimize Electricity Bill Cost 5.4.2.2 Scenario 2: Individual Smart Home Residents Reschedule His/Her Power Consumption in Order to Minimize the Peak to Average Ratio (PAR) 5.4.2.3 Scenario 3: Individual Smart Home Residents Reschedule His/Her Power Consumption in Order to Optimize the Electricity Bill Cost and Peak Demand Together 5.5 Conclusion and Future Scope References Chapter 6: A Comparison of Metaheuristic Algorithms for Estimating Solar Cell Parameters Using a Single Diode Model 6.1 Introduction 6.2 Problem Formulation 6.2.1 Single-Diode Model 6.2.2 Objective Function 6.3 Metaheuristic Algorithms 6.3.1 Particle Swarm Optimization 6.3.2 Gray Wolf Optimization 6.3.3 Atom Search Optimization 6.4 Results and Discussion 6.5 Conclusion References Chapter 7: Review on Controlling of BLDC Motor via Optimization Techniques for Renewable Energy Applications 7.1 Introduction 7.2 Mathematical Model of BLDC 7.3 PID and PD Controller 7.4 Optimization Techniques 7.4.1 Different Optimization Techniques 7.4.1.1 Particles Swarm Optimization 7.4.1.2 Grey Wolf Optimization 7.4.1.3 Whale Optimization Algorithm 7.4.1.4 COOT Algorithm 7.4.1.5 Sine Cos Algorithm 7.4.1.6 Moth Flame Optimization 7.4.2 Common Optimization Steps 7.5 Simulation and Results 7.6 Conclusion References Chapter 8: Energy-Efficient Task Offloading in Edge Computing with Energy Harvesting 8.1 Introduction 8.1.1 An Overview of the Energy-Harvesting Capabilities of the IoT 8.1.2 Energy Efficient IoT Protocols 8.2 The Reasons for Energy Optimization 8.2.1 Hardware and Software for Mobile Devices 8.2.2 Offloading Strategies for Computation 8.2.3 Offload Computation from Devices 8.2.4 Energy Aware Computing Offloading 8.2.5 Offloading over Device to Device 8.3 Task Offloading Scheme 8.4 Offloading Algorithm 8.5 Conclusion References Chapter 9: Blockchain Application in Sustainable Energy Solution 9.1 Introduction 9.2 Blockchain 9.2.1 Blockchain Term Definition 9.2.2 The Making of a Blockchain 9.2.3 The Blockchain Technology Architecture 9.2.4 The Grouping of Blockchain 9.2.5 Blockchain's Core Technologies 9.3 Specification of Blockchain 9.3.1 Decentralization 9.3.2 Accessibility 9.3.3 An Automatic Execution Agreement 9.3.4 Credibility, Security, Data Integrity, and Traceability 9.3.5 Anonymity 9.4 Blockchain Technology: Development and Applications 9.5 EI Introduction and Definition 9.5.1 Features of the EI 9.5.1.1 Accurate Calculation 9.5.1.2 Regional Multi-source Collaboration 9.5.1.3 Intelligent Command 9.5.1.4 Open Trading 9.5.1.5 EI and Blockchain Technology Compatibility 9.5.2 Blockchain in the EI: Application Scenarios and Use Cases 9.5.2.1 Blockchain in the EI: Application Scenarios 9.5.2.2 P2P Energy Transaction 9.5.2.3 The Electric Vehicles 9.5.2.4 Physical Information Security 9.5.2.5 Carbon Emissions Trading and Certification 9.5.2.6 Virtual Power Plant 9.5.2.7 The Multiple Energy System's Synergy 9.5.2.8 Customer Demand Response 9.6 Practical Applications 9.7 EI-Related Blockchain Technology Challenges 9.7.1 Some Barriers in Blockchain Technology Still Exist 9.7.2 Applying Blockchain Technology to the Complicated EI is Insufficient in Terms of Dependability and Security 9.7.3 Blockchain Technology's Standards and Oversight Systems Require Improvement 9.7.4 The Blockchain Industry is Lacking in Skill 9.8 Conclusions References Index