دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: انرژی: انرژی تجدید پذیر ویرایش: نویسندگان: Krishna Kumar, Ram Shringar Rao, Omprakash Kaiwartya, Shamim Kaiser, Sanjeevikumar Padmanaban سری: ISBN (شابک) : 0323912281, 9780323912280 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 418 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 77 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Sustainable Developments by Artificial Intelligence and Machine Learning for Renewable Energies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب توسعه پایدار توسط هوش مصنوعی و یادگیری ماشین برای انرژی های تجدیدپذیر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Sustainable Developments by Artificial Intelligence and Machine Learning for Renewable Energies Copyright Dedication Contents Contributors About the editors Preface Chapter 1: Application of alternative clean energy 1.1. Introduction 1.2. Solar energy 1.2.1. Photovoltaic systems 1.2.2. Solar thermal energy systems 1.2.3. Solar water heating (SWH) systems 1.2.4. Solar cooker 1.2.4.1. Box type solar cooker 1.2.4.2. Parabolic concentrating type solar cooker 1.2.5. Solar water pumps 1.2.6. Solar space heating 1.2.6.1. Active space heating 1.2.6.2. Passive space heating 1.3. Geothermal energy 1.3.1. Geothermal power generation 1.3.1.1. Direct steam power plants 1.3.1.2. Single flash system power plants 1.3.1.3. Double flash steam power plants 1.3.1.4. Binary cycle power plants 1.3.2. Direct uses of geothermal energy 1.4. Wind energy 1.4.1. Horizontal Axis wind turbine 1.4.2. Vertical axis wind turbine 1.4.3. Wind turbine applications 1.5. Biomass energy 1.5.1. Method of biomass energy extraction 1.5.1.1. Pyrolysis 1.5.2. Gasification 1.5.3. Anaerobic digestion 1.5.4. Biofuels 1.5.5. Bioethanol production 1.5.5.1. Sugar or starch fermentation 1.5.5.2. Bioethanol from lignocellulose fermentation 1.5.6. Biodiesel 1.6. Ocean and tidal energy 1.6.1. Wave energy 1.6.2. OTEC 1.6.3. TIC 1.7. Small, micro, and mini hydro plants 1.8. Case study 1.9. Conclusion References Chapter 2: Optimization of hybrid energy generation 2.1. Introduction 2.2. RES data and uncertainty statistical analysis 2.2.1. Wind source analysis 2.2.2. Solar source analysis 2.3. Test case modifications and solution methodology 2.3.1. Test case modifications 2.3.2. Configuration of cases 2.3.3. Solution methodology 2.3.4. Sensitivity factors 2.3.5. Locational marginal pricing (LMP) 2.3.6. Reliability parameters 2.4. Results 2.4.1. Impact of probabilistic nature and location of RES on sensitivity factors 2.4.2. Impact of probabilistic nature and location of RES on LMP 2.4.3. Impact of the probabilistic nature and location of RES on TTC and TRM 2.5. Discussion and conclusion, future scope 2.5.1. Discussion 2.5.2. Conclusion 2.5.3. Future scope Acknowledgment References Chapter 3: IoET-SG: Integrating internet of energy things with smart grid 3.1. Introduction 3.2. Traditional grid 3.3. Smart grid 3.4. Internet of energy things (IoET) 3.5. IoET-SG system 3.6. Research challenges and future guidelines 3.7. Conclusion References Chapter 4: Evolution of high efficiency passivated emitter and rear contact (PERC) solar cells 4.1. Introduction 4.2. Photon absorption and optical generation 4.3. Loss mechanisms in PERC solar cells 4.3.1. Optical losses 4.3.2. Electrical losses 4.3.2.1. Loss due to reflection 4.3.2.2. Incomplete absorption Interband absorption Intraband absorption Free-carrier absorption 4.3.2.3. Shadowing 4.3.2.4. Resistive losses 4.3.2.5. Recombination losses Radiative recombination Auger recombination Shockley-Read-Hall (SRH) recombination Surface recombination 4.4. Carrier transport equations 4.4.1. Solar cell parameters 4.5. PERC technology 4.5.1. PERC process flow 4.5.2. Surface passivation 4.5.2.1. Passivation by SiO2 4.5.2.2. Passivation by SiNx 4.5.2.3. Passivation by Al2O3 4.5.2.4. Dielectric stack passivation 4.5.3. LBSF and rear local contact 4.5.4. Rear polishing 4.5.5. PERC performance 4.5.6. Improvements of PERC solar cells 4.5.7. Further improvements 4.5.8. Bifacial PERC 4.6. Fabrication of PERC solar cells 4.6.1. Saw damage removal, texturization, and cleaning 4.6.1.1. Saw damage removal 4.6.1.2. Texturization 4.6.1.3. Wafer cleaning 4.6.2. Diffusion and oxidation 4.6.2.1. Phosphorus diffusion Process steps for phosphorus diffusion PSG removal 4.6.2.2. Thermal oxidation 4.6.3. Reactive ion etching 4.6.4. Plasma-enhanced chemical vapor deposition (PECVD) 4.6.5. Atomic layer deposition (ALD) 4.6.6. Laser ablation 4.6.7. Metallization 4.7. Characterization equipment 4.7.1. Scanning electron microscopy (SEM) 4.7.2. Four point probe measurement 4.7.3. Thickness profilometer 4.7.4. I-V and C-V measurement 4.7.5. X-ray photo electron spectroscopy (XPS) 4.7.6. Lifetime and Suns-Voc measurement 4.7.7. Reflectance and external quantum efficiency (EQE) measurement 4.7.7.1. Reflectance measurement 4.7.7.2. External quantum efficiency (EQE) measurement 4.7.8. Current-voltage (I-V) measurement 4.8. Conclusion References Chapter 5: Online-based approach for frequency control of microgrid using biologically inspired intelligent controller 5.1. Introduction 5.2. Test system description 5.2.1. Photovoltaic model 5.2.2. Wind energy 5.2.3. Diesel engine generator (DEG) model 5.2.4. Fuel cell, BESS, and FESS 5.3. Fuzzy logic controller 5.4. Particle swarm optimization (PSO) 5.5. Gray wolf optimization (GWO) 5.6. Results analysis 5.7. Conclusion References Chapter 6: Optimal allocation of renewable energy sources in electrical distribution systems based on technical and econo ... 6.1. Introduction 6.1.1. Motivation 6.1.2. Literature review 6.1.3. Contribution and chapter organization 6.2. Problem formulation 6.2.1. Multiobjective function 6.2.2. Equality constraints 6.2.3. Inequality constraints of distribution line 6.2.4. Inequality constraints of DG units 6.3. Cosine adapted whale optimization algorithm (CAWOA) 6.4. Results and discussion 6.4.1. Test systems 6.4.2. Analysis of optimal results 6.4.3. Comparison results 6.4.4. Impact of DG on branch currents 6.4.5. Impact of loadability variation on EDS 6.5. Conclusions Abbreviations References Chapter 7: Optimization of renewable energy sources using emerging computational techniques Abbreviations 7.1. Introduction 7.2. Sources of renewable energy 7.2.1. Bioenergy (BE) 7.2.2. Geothermal energy (GE) 7.2.3. Hydropower energy (HPE) 7.2.4. Hydrogen energy (HE) 7.2.5. Solar energy (SE) 7.2.6. Wind energy (WE) 7.2.7. Ocean energy (OE) 7.3. Artificial intelligence (AI) 7.3.1. Artificial intelligence in bioenergy 7.3.2. Artificial intelligence in geothermal energy 7.3.3. Artificial intelligence in hydro energy 7.3.4. Artificial intelligence in hydrogen energy 7.3.5. Artificial intelligence in solar energy 7.3.6. Artificial intelligence in wind energy 7.3.7. Artificial intelligence in ocean energy 7.4. Conclusion References Chapter 8: Advanced renewable dispatch with machine learning-based hybrid demand-side controller: The state of the art an ... 8.1. Introduction 8.2. Building energy demand forecasting with machine learning 8.2.1. Predictions on cooling/heating/electrical loads 8.2.2. Machine learning modeling techniques 8.3. Flexible demand-side management strategies 8.3.1. Smart appliances 8.3.2. HVAC systems 8.3.3. Plug-in loads and storages 8.4. Machine learning-based advanced controllers Acknowledgment References Chapter 9: A machine learning-based design approach on PCMs-PV systems with multilevel scenario uncertainty 9.1. Introduction 9.2. Overview on PCMs-PV systems and operations 9.2.1. Passive PCMs-PV systems 9.2.2. Active PCMs-PV systems 9.2.3. Combined passive/active PCMs-PV systems 9.3. Mechanism for machine learning on performance prediction of nonlinear systems 9.4. Application of machine learning in PCMs-PV systems 9.4.1. Surrogate model for performance prediction 9.4.2. System optimization 9.4.2.1. Single-objective optimization 9.4.2.2. Multiobjective optimization of the hybrid renewable system using the Pareto NSGA-II 9.4.3. Robust optimization with multilevel scenario uncertainty 9.5. Challenges and outlooks 9.5.1. Uncertainty quantification and probability density function 9.5.2. Stochastic sampling size and uncertainty-based optimization function 9.5.3. Hybrid learning and advanced optimization algorithms 9.5.4. Multicriteria decision-marking for trade-off solutions Acknowledgment References Chapter 10: Agent-based peer-to-peer energy trading between prosumers and consumers with cost-benefit business models 10.1. Introduction 10.2. Agent-based peer-to-peer energy trading with dynamic internal pricing 10.2.1. P2P energy trading modes with different energy forms 10.2.2. Mechanisms and mathematical models for dynamic internal pricing 10.2.2.1. Theoretical mechanisms 10.2.2.2. Mathematical models 10.3. Blockchain and machine learning technologies in P2P energy trading 10.3.1. Blockchain in P2P energy trading 10.3.2. Machine learning technologies in P2P energy trading 10.4. Electricity market and techno-economic incentives for P2P energy market 10.4.1. Decentralized electricity market design 10.4.2. Techno-economic incentives 10.5. Challenges and outlook Acknowledgment References Chapter 11: Machine learning-based hybrid demand-side controller for renewable energy management 11.1. Introduction 11.1.1. Renewable and hybrid energy system 11.1.2. Demand-side management 11.2. Machine learning at a glance 11.2.1. Machine learning meets model-based control 11.2.2. The application of machine learning in hybrid demand-side controllers 11.2.3. Support vector machine 11.2.4. K-means clustering 11.2.5. Extreme learning machine 11.2.6. Linear regression 11.2.7. Partial least squares 11.2.8. Challenges and future research direction 11.3. Conclusion References Chapter 12: Prediction of energy generation target of hydropower plants using artificial neural networks 12.1. Introduction 12.2. Artificial neural network (ANN) 12.3. Performance measurement parameters 12.4. Modeling and analysis 12.5. Conclusion References Chapter 13: Response surface methodology-based optimization of parameters for biodiesel production 13.1. Introduction 13.2. Problem formulation 13.3. Mathematical model of biodiesel production 13.3.1. Optimization of the mathematical model 13.3.2. Proposed methodology 13.3.3. Basic elephant swarm water search algorithm (ESWSA) 13.4. Methodology 13.5. Reaction conditions by RSM 13.6. Surface plot by different combinations in RSM model 13.7. Conclusion References Chapter 14: Reservoir simulation model for the design of irrigation projects 14.1. Introduction 14.2. System description 14.3. Cost-benefit functions 14.4. Methodology 14.4.1. Linear programming model (LP model) 14.4.2. Reservoir simulation 14.4.2.1. The simulation model 14.4.2.2. System design variables, parameters, and constants 14.5. Simulation computations 14.6. Results and discussion 14.7. Response of Harabhangi irrigation project 14.7.1. Support for the use of simulation 14.8. Conclusion References Chapter 15: Effect of hydrofoils on the starting torque characteristics of the Darrieus hydrokinetic turbine Abbreviations 15.1. Introduction 15.2. Investigated parameters for the Darrieus hydrokinetic turbine 15.3. Numerical simulation analysis 15.3.1. Turbine model development 15.3.2. Grid generation 15.3.3. Boundary conditions and turbulence modeling 15.4. Results and discussion 15.4.1. Performance characteristics 15.4.2. Flow contours 15.5. Conclusions References Index Back Cover