ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Sustainable Construction Technologies: Life-Cycle Assessment

دانلود کتاب فن آوری های ساخت و ساز پایدار: ارزیابی چرخه زندگی

Sustainable Construction Technologies: Life-Cycle Assessment

مشخصات کتاب

Sustainable Construction Technologies: Life-Cycle Assessment

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 0128117494, 0128117491 
ناشر: Elsevier; Butterworth-Heinemann 
سال نشر: 2019 
تعداد صفحات: 478 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 15 مگابایت 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Sustainable Construction Technologies: Life-Cycle Assessment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فن آوری های ساخت و ساز پایدار: ارزیابی چرخه زندگی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فن آوری های ساخت و ساز پایدار: ارزیابی چرخه زندگی

فناوری‌های ساخت و ساز پایدار: ارزیابی چرخه زندگی ابزاری را در اختیار پزشکان قرار می‌دهد تا به آنها کمک کند فناوری‌هایی را انتخاب کنند که از نظر مالی سودمند هستند، حتی اگر هزینه اولیه بالاتری داشته باشند. فصل ها یک نمای کلی از LCA و نحوه استفاده از آن در ارتباط با سایر شاخص ها برای مدیریت ساخت و ساز ارائه می دهند. موضوعات تحت پوشش عبارتند از کیفیت محیط داخلی، بهره وری انرژی، حمل و نقل، استفاده مجدد از آب، مواد، کاربری زمین و محیط زیست و موارد دیگر. این کتاب ابزار ارزشمندی را برای متخصصان و محققین ساخت و ساز ارائه می دهد که می خواهند تکنیک های ساخت و ساز پایدار را در پروژه های خود به کار گیرند. شاغلین مطالعات موردی بین المللی و بحث های مربوط به مقررات و استانداردهای جهانی را بسیار مفید خواهند یافت. چارچوبی برای تجزیه و تحلیل فناوری های ساخت و ساز پایدار و دوام اقتصادی ارائه می دهد معیارهای اعتباری کلیدی را برای فناوری های مختلف ساخت و ساز پایدار معرفی می کند مرتبط ترین مناطق ساخت و ساز را پوشش می دهد شامل فن آوری هایی است که می توانند در طول فرآیند ساخت و ساز یا محصول فرآیند ساخت و ساز، به عنوان مثال ساختمان ها به کار گرفته شوند. تجزیه و تحلیل سیستم های رتبه بندی بین المللی و ارائه مطالعات موردی پشتیبانی می کند


توضیحاتی درمورد کتاب به خارجی

Sustainable Construction Technologies: Life-Cycle Assessment provides practitioners with a tool to help them select technologies that are financially advantageous even though they have a higher initial cost. Chapters provide an overview of LCA and how it can be used in conjunction with other indicators to manage construction. Topics covered include indoor environment quality, energy efficiency, transport, water reuse, materials, land use and ecology, and more. The book presents a valuable tool for construction professionals and researchers that want to apply sustainable construction techniques to their projects. Practitioners will find the international case studies and discussions of worldwide regulation and standards particularly useful. Provides a framework for analyzing sustainable construction technologies and economic viability Introduces key credit criteria for different sustainable construction technologies Covers the most relevant construction areas Includes technologies that can be employed during the process of construction, or to the product of the construction process, i.e. buildings Analyzes international rating systems and provides supporting case studies



فهرست مطالب

Cover
Sustainable Construction Technologies: Life-Cycle Assessment
Copyright
List of Contributors
1 Introduction
	1.1 Introduction
	1.2 Significance of Construction and Building Sector
	1.3 Green Buildings and Its Life Cycle
		1.3.1 Design Stage
			1.3.1.1 Quality Design
			1.3.1.2 Procurement Route
			1.3.1.3 Land Use/Ecology and Accessibility
		1.3.2 Construction Stage
			1.3.2.1 Material Selection and Sourcing
			1.3.2.2 Construction Environmental Management Plan
		1.3.3 Operational and Maintenance Stage
			1.3.3.1 Indoor Environmental Quality
			1.3.3.2 Energy
			1.3.3.3 Water
			1.3.3.4 Operational Waste
		1.3.4 Demolition Stage
	1.4 Geographical information system (GIS) for green building construction
	1.5 Summary
	References
2 Current Management Approach
	2.1 Definition of Sustainability and Sustainable Development
		2.1.1 Building Sustainability Rating Systems
		2.1.2 Sustainability in Infrastructure
		2.1.3 Corporate Sustainability
		2.1.4 Implementation of Sustainable Construction Management
	2.2 Innovative Approach in Sustainable Management
		2.2.1 Construction Method
		2.2.2 Digital Technology: Building Information Modeling
		2.2.3 Project Delivery Methods
	2.3 Life Cycle Assessment
		2.3.1 Definition of Life Cycle Assessment
		2.3.2 Life Cycle Assessment in Construction Management
	2.4 International Case Studies
		2.4.1 Sustainable Earthwork Construction in Australia (Li and Wang, 2016)
		2.4.2 Green Construction Management in Dalian, China
		2.4.3 Integrated Project Delivery Approach in the Solar Decathlon Competition
		2.4.4 Life-Cycle Assessment of the New Jersey Meadowlands Commission Center (Source: From Krogmann et al., 2008)
	2.5 SUMMARY
	References
	Further Reading
3 Management
	3.1 Management Approach
	3.2 Sustainable Procurement
	3.3 Integrated Project Delivery/Integrated Design Approach/Integrative Process
	3.4 Environmental Management System
	3.5 Building Sustainability Assessment Systems
	3.6 Post-Occupancy Management
	3.7 Conclusion
	References
	Further Reading
4 Indoor Environmental Quality
	4.1 Introduction
	4.2 Factors Affecting Indoor Environmental Quality
	4.3 Components of Indoor Environmental Quality
	4.4 Indoor Environmental Quality in Sustainable Construction Technology (Green Buildings Versus Conventional Buildings)
	4.5 Consequences of Unacceptable Indoor Environmental Quality
	4.6 Conclusions
	References
5 Life Cycle Energy Consumption of Buildings; Embodied + Operational
	5.1 Introduction
	5.2 Embodied and Operational; Definitions, Data, and Drivers
		5.2.1 Embodied Energy
		5.2.2 Operational Energy
			5.2.2.1 Drivers and Determinants of Operational Energy Consumption in Buildings
	5.3 Current Approaches to Operational and Embodied Energy Performance
		5.3.1 Beyond-Code Energy Requirements
		5.3.2 Energy Simulation and Modeling
			5.3.2.1 Issue of Uncertainty in Operational and Embodied Energy Use Estimations
			5.3.2.2 Analytical Methods and Tools
			5.3.2.3 Embodied Energy Performance Benchmarking
	5.4 Life Cycle Assessment and Energy Accounting Methods
		5.4.1 Process-Based Life Cycle Assessment
		5.4.2 Economic Input-Output-Based Life Cycle Assessment
		5.4.3 Other Life Cycle Energy Analysis Methods
		5.4.4 Software, Tools and Databases to Estimate Embodied and Life-Cycle Energy Analysis
	5.5 Conclusion
	References
6 Energy: Current Approach
	6.1 Introduction
	6.2 Active strategies
		6.2.1 Onsite Renewable Energy Generation
			6.2.1.1 Solar Energy
			6.2.1.2 Wind Turbines
			6.2.1.3 Biomass
			6.2.1.4 Geothermal
			6.2.1.5 Hydropower
		6.2.2 Energy Optimisation
			6.2.2.1 High Energy Efficient Products and Equipment
			6.2.2.2 Energy Recovery
		6.2.3 Energy Conservation
			6.2.3.1 Demand Side Management System
			6.2.3.2 Demand Response
			6.2.3.3 Smart Grid
			6.2.3.4 Energy Management System
			6.2.3.5 Dynamic Energy Management System
			6.2.3.6 Smart/ Intelligent Building Control System
	6.3 Passive Strategies
		6.3.1 Design and Orientation
		6.3.2 Building Envelope
	6.4 Conclusions
	References
7 Sustainable Procurement and Transport of Construction Materials
	7.1 Introduction
	7.2 Scope of the Chapter
	7.3 Current Approaches
		7.3.1 Objectives of Sustainable Procurement
		7.3.2 Current Approach to Adoption of Technologies and Procurement Strategies
			7.3.2.1 Time Horizon
			7.3.2.2 Information
			7.3.2.3 Evaluation Process
			7.3.2.4 Decision Makers
			7.3.2.5 Material Supply
	7.4 Literature Review
		7.4.1 Supply Chain Structure of Materials
		7.4.2 Planning Offsite Transport of Prefabricated Materials
		7.4.3 Life Cycle Analysis
		7.4.4 Role of Life Cycle Thinking in Planning of Material Procurement
		7.4.5 Techniques for Multiattribute Decision-Making
	7.5 A New Combinatorial Approach to Procurement of Construction Materials
		7.5.1 Sequence of Decisions in Procurement of Materials
		7.5.2 Procurement Criteria
		7.5.3 Life Cycle Assessment of Materials
			7.5.3.1 Cost
			7.5.3.2 Time
			7.5.3.3 Quality
			7.5.3.4 Environmental/Social
			7.5.3.5 Group Decision-Making
				7.5.3.5.1 Participants and Their Role
				7.5.3.5.2 Assessment of Decision Criteria
			7.5.3.6 Ranking the Supply Decision Alternatives
	7.6 Case Study
		7.6.1 Case One: Procurement of Curtain Wall
		7.6.2 Case Two: Procurement of Materials in Industrial Construction Projects
	7.7 Conclusions
	References
8 Sustainable Water Use in Construction
	8.1 Introduction
	8.2 Sources of Water Used in Construction
	8.3 Usage of Water in Construction
	8.4 Aspects of Water Management Strategies in Civil Construction Sites
	8.5 Sustainable Management of Runoff From Construction Sites
	8.6 Sustainable Water Conservation Measures in Construction Industry
	8.7 Mining and Water Use
		8.7.1 Water Usage by Mining Activities
		8.7.2 Characteristics of Water Produced by Mining Activities
		8.7.3 Impact of Mining Activities on Water Resources and Remedial Options
	8.8 Tools and Techniques to Reduce Water Use in Buildings
		8.8.1 Types of Water Use in Buildings
		8.8.2 Strategies to Improve Water Sustainability in Buildings
			8.8.2.1 Rainwater Harvesting
			8.8.2.2 Graywater Harvesting
			8.8.2.3 Flush and Flow Fixtures in Buildings
			8.8.2.4 Water Wise Landscaping
	8.9 Water Use and Greenhouse Gas Emission
	8.10 Conclusion
	References
	Further Reading
9 Materials
	9.1 Introduction
	9.2 Environmental Impact of Buildings
	9.3 Life Cycle Assessment
		9.3.1 Cement and Cement-Based Materials
		9.3.2 Steel and Steel-Based Materials
		9.3.3 Aluminum
		9.3.4 Insulation Materials
		9.3.5 Bricks and Ceramic Tiles
	9.4 Strategies for Minimizing Impact of Construction
		9.4.1 Improved Materials Production Processes
		9.4.2 Minimizing Environmental Impact Through Recycling
		9.4.3 Materials Substitution
		9.4.4 Innovative Construction Methods
		9.4.5 Building for Deconstruction and Disassembly
		9.4.6 Use of New and Innovative Materials
		9.4.7 Use of Eco-friendly Renewable Materials
	9.5 Implications
		9.5.1 Barriers and Drivers
		9.5.2 Institutional Support and Legislation
		9.5.3 Promoting Environmental Products Declarations
		9.5.4 Adoption of Environmental Assessment Tools
	9.6 Conclusion
	References
10 Emissions
	10.1 Introduction
	10.2 International Policies, Standards, and Programs on Reducing Greenhouse Gas Emissions
	10.3 Calculation Methods
		10.3.1 Traditional Approaches
		10.3.2 Digital Approaches
	10.4 Life Cycle Assessment
		10.4.1 The Process
		10.4.2 Emissions at Product Phase
		10.4.3 Emission of Transportation
		10.4.4 Emissions at Construction Phase
		10.4.5 Emissions at Operating Stage
		10.4.6 Emissions at the End-of-Life Stage
	10.5 Sustainable Building Products and Technologies
		10.5.1 Innovative Products From Renewable Sources
		10.5.2 Advancement of Technologies in Material Production
		10.5.3 Advancement of Technologies in Reducing Operating Emissions
		10.5.4 Advancement of Technologies in Carbon Capture and Storage
	10.6 Emission Reduction Strategies
		10.6.1 Use Low Impact Materials
		10.6.2 Extend Building Lifespan
		10.6.3 Maximize Design of Building Structures
		10.6.4 Improve Project Delivery Onsite
		10.6.5 Increase Reuse and Recycling of Materials
	10.7 International Case Studies
		10.7.1 Pines Calyx, England
		10.7.2 Chau Chak Wing Building, Australia
	10.8 Conclusion
	References
11 Sustainable Construction Technology Adoption
	11.1 Introduction
	11.2 Sustainable Construction Technology Diffusion
	11.3 The Importance of Situational Context
	11.4 Case study A: The Sustainability Value of Massive Timber Construction Technology
	11.5 Case Study B: Adoption in the Australian Context of Massive Timber Construction
	11.6 Conclusion
	References
	Further Reading
12 Lean Principles in Construction
	12.1 Introduction
	12.2 An Overview of the Construction Industry
	12.3 The Concept of Lean Construction and Innovation
	12.4 Lean Principles and Lean Thinking in Construction
		12.4.1 Identifying Value
		12.4.2 Value Stream Mapping
		12.4.3 Allowing Customer Pull
		12.4.4 Pursuing Perfection
	12.5 Lean Construction Tools and Techniques
		12.5.1 Last Planner System
		12.5.2 Increased Visualization
		12.5.3 Daily Huddle Meetings
		12.5.4 First Run Studies
		12.5.5 5S Process
		12.5.6 Fail Safe for Quality and Safety
		12.5.7 Concurrent Engineering
		12.5.8 Value Stream Mapping
	12.6 Benefits of Lean Construction
	12.7 Organizational Challenges in the Implementation of Lean Construction
		12.7.1 Management-Related Barriers
		12.7.2 Technology-Related Barriers
		12.7.3 Resource-Related Barriers
		12.7.4 Process-Related Barriers
		12.7.5 People-Related Barriers
		12.7.6 Other Barriers
	12.8 Research Report on the Impact of Lean Construction Techniques on Sustainable Construction in the United Kingdom
		12.8.1 Benefits of Synchronizing Lean and Sustainability
		12.8.2 Lean Principles/Techniques for Enabling Sustainability
		12.8.3 Areas of Linkage Between Lean and Sustainability
	12.9 Summary
	References
	Further Reading
13 BIM-Enabled Sustainable Housing Refurbishment—LCA Case Study
	13.1 Introduction
	13.2 Life Cycle Assessment for Housing Refurbishment
	13.3 Implication of Building Information Modeling for Sustainable Housing Refurbishment
		13.3.1 Case Study: Methodology and Scope of Building Information Modeling Simulation
	13.4 Whole-House Fabric Refurbishment Options
	13.5 Energy Performance Standards
	13.6 Basic Information for House Models
	13.7 Detailed Information of Houses for Energy Simulation
	13.8 Life Cycle Environmental Impacts and Financial Implications
		13.8.1 Environmental and Economic Feasibility for Housing Refurbishment
	13.9 Comparative Analysis for Life Cycle Assessment and Life Cycle Cost Among Different House Types
	13.10 CO2 Emission Reduction and CO2 Payback Period
	13.11 Discussions About the Limitation of Building Information Modeling Tools
	13.11.1 Data Exchange and Interoperability
	13.11.2 Unstandardized Specification System between Different Data Source
	13.12 Conclusion
	References
	Further Reading
	Appendix 13.1 Basic Information for Semidetached/End Terraced House Model
	Appendix 13.2 Basic Information for Terraced House Model
	Appendix 13.3 Life Cycle Assessment and Life Cycle Cost Study Results for Detached House
	Appendix 13.4 Life Cycle Assessment and Life Cycle Cost Study Results for Semidetached/End Terraced House
	Appendix 13.5 Life Cycle Assessment and Life Cycle Cost Study Results Terraced House
14 Bridging Sustainable Construction Technologies and Heritage: Novel Approach to the Conservation of the Built Environment
	14.1 Introduction
	14.2 Current Approaches in Sustainable Built Heritage Conservation
	14.3 Innovative Approach to Built Heritage Conservation: ICOMOS+C2C
		14.3.1 ICOMOS for Built Cultural Heritage Conservation
		14.3.2 Cradle-to-Cradle for Built Cultural Heritage Conservation
		14.3.3 ICOMOS + C2C
		14.3.4 International Case Study—Mirbat
			14.3.4.1 Step 1: Understanding Significance (ICOMOS) and Analysis (C2C)
				14.3.4.1.1 ICOMOS: Understanding building significance
		14.3.5 C2C: Inspired Elements Identification
			14.3.5.1 Step 2: Developing Policy (ICOMOS) and Evaluation (C2C)
				14.3.5.1.1 Conservation Policy and Conservation Plan
					Reuse or Compatible Use?
					Residence Physical Condition Assessment
					Minimizing the Impact on Building Significance
					Detailed Inventory of Build Heritage BHR 108 Attributes and Materials’ Execution
					Developing the Conservation Policy
					Identifying the Options and Test Their Impact on Significance
					Preparing the Statement of Conservation Policy
	14.4 Step 3: Manage (ICOMOS) and Optimization (C2C)
	14.5 Discussions and Conclusions
	References
	Further Reading
15 Conclusions
	References
Index
Back Cover




نظرات کاربران