دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Vivian W.Y. Tam, Khoa N. Le سری: ISBN (شابک) : 0128117494, 0128117491 ناشر: Elsevier; Butterworth-Heinemann سال نشر: 2019 تعداد صفحات: 478 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت تبدیل فایل کتاب Sustainable Construction Technologies: Life-Cycle Assessment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فن آوری های ساخت و ساز پایدار: ارزیابی چرخه زندگی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فناوریهای ساخت و ساز پایدار: ارزیابی چرخه زندگی ابزاری را در اختیار پزشکان قرار میدهد تا به آنها کمک کند فناوریهایی را انتخاب کنند که از نظر مالی سودمند هستند، حتی اگر هزینه اولیه بالاتری داشته باشند. فصل ها یک نمای کلی از LCA و نحوه استفاده از آن در ارتباط با سایر شاخص ها برای مدیریت ساخت و ساز ارائه می دهند. موضوعات تحت پوشش عبارتند از کیفیت محیط داخلی، بهره وری انرژی، حمل و نقل، استفاده مجدد از آب، مواد، کاربری زمین و محیط زیست و موارد دیگر. این کتاب ابزار ارزشمندی را برای متخصصان و محققین ساخت و ساز ارائه می دهد که می خواهند تکنیک های ساخت و ساز پایدار را در پروژه های خود به کار گیرند. شاغلین مطالعات موردی بین المللی و بحث های مربوط به مقررات و استانداردهای جهانی را بسیار مفید خواهند یافت. چارچوبی برای تجزیه و تحلیل فناوری های ساخت و ساز پایدار و دوام اقتصادی ارائه می دهد معیارهای اعتباری کلیدی را برای فناوری های مختلف ساخت و ساز پایدار معرفی می کند مرتبط ترین مناطق ساخت و ساز را پوشش می دهد شامل فن آوری هایی است که می توانند در طول فرآیند ساخت و ساز یا محصول فرآیند ساخت و ساز، به عنوان مثال ساختمان ها به کار گرفته شوند. تجزیه و تحلیل سیستم های رتبه بندی بین المللی و ارائه مطالعات موردی پشتیبانی می کند
Sustainable Construction Technologies: Life-Cycle Assessment provides practitioners with a tool to help them select technologies that are financially advantageous even though they have a higher initial cost. Chapters provide an overview of LCA and how it can be used in conjunction with other indicators to manage construction. Topics covered include indoor environment quality, energy efficiency, transport, water reuse, materials, land use and ecology, and more. The book presents a valuable tool for construction professionals and researchers that want to apply sustainable construction techniques to their projects. Practitioners will find the international case studies and discussions of worldwide regulation and standards particularly useful. Provides a framework for analyzing sustainable construction technologies and economic viability Introduces key credit criteria for different sustainable construction technologies Covers the most relevant construction areas Includes technologies that can be employed during the process of construction, or to the product of the construction process, i.e. buildings Analyzes international rating systems and provides supporting case studies
Cover Sustainable Construction Technologies: Life-Cycle Assessment Copyright List of Contributors 1 Introduction 1.1 Introduction 1.2 Significance of Construction and Building Sector 1.3 Green Buildings and Its Life Cycle 1.3.1 Design Stage 1.3.1.1 Quality Design 1.3.1.2 Procurement Route 1.3.1.3 Land Use/Ecology and Accessibility 1.3.2 Construction Stage 1.3.2.1 Material Selection and Sourcing 1.3.2.2 Construction Environmental Management Plan 1.3.3 Operational and Maintenance Stage 1.3.3.1 Indoor Environmental Quality 1.3.3.2 Energy 1.3.3.3 Water 1.3.3.4 Operational Waste 1.3.4 Demolition Stage 1.4 Geographical information system (GIS) for green building construction 1.5 Summary References 2 Current Management Approach 2.1 Definition of Sustainability and Sustainable Development 2.1.1 Building Sustainability Rating Systems 2.1.2 Sustainability in Infrastructure 2.1.3 Corporate Sustainability 2.1.4 Implementation of Sustainable Construction Management 2.2 Innovative Approach in Sustainable Management 2.2.1 Construction Method 2.2.2 Digital Technology: Building Information Modeling 2.2.3 Project Delivery Methods 2.3 Life Cycle Assessment 2.3.1 Definition of Life Cycle Assessment 2.3.2 Life Cycle Assessment in Construction Management 2.4 International Case Studies 2.4.1 Sustainable Earthwork Construction in Australia (Li and Wang, 2016) 2.4.2 Green Construction Management in Dalian, China 2.4.3 Integrated Project Delivery Approach in the Solar Decathlon Competition 2.4.4 Life-Cycle Assessment of the New Jersey Meadowlands Commission Center (Source: From Krogmann et al., 2008) 2.5 SUMMARY References Further Reading 3 Management 3.1 Management Approach 3.2 Sustainable Procurement 3.3 Integrated Project Delivery/Integrated Design Approach/Integrative Process 3.4 Environmental Management System 3.5 Building Sustainability Assessment Systems 3.6 Post-Occupancy Management 3.7 Conclusion References Further Reading 4 Indoor Environmental Quality 4.1 Introduction 4.2 Factors Affecting Indoor Environmental Quality 4.3 Components of Indoor Environmental Quality 4.4 Indoor Environmental Quality in Sustainable Construction Technology (Green Buildings Versus Conventional Buildings) 4.5 Consequences of Unacceptable Indoor Environmental Quality 4.6 Conclusions References 5 Life Cycle Energy Consumption of Buildings; Embodied + Operational 5.1 Introduction 5.2 Embodied and Operational; Definitions, Data, and Drivers 5.2.1 Embodied Energy 5.2.2 Operational Energy 5.2.2.1 Drivers and Determinants of Operational Energy Consumption in Buildings 5.3 Current Approaches to Operational and Embodied Energy Performance 5.3.1 Beyond-Code Energy Requirements 5.3.2 Energy Simulation and Modeling 5.3.2.1 Issue of Uncertainty in Operational and Embodied Energy Use Estimations 5.3.2.2 Analytical Methods and Tools 5.3.2.3 Embodied Energy Performance Benchmarking 5.4 Life Cycle Assessment and Energy Accounting Methods 5.4.1 Process-Based Life Cycle Assessment 5.4.2 Economic Input-Output-Based Life Cycle Assessment 5.4.3 Other Life Cycle Energy Analysis Methods 5.4.4 Software, Tools and Databases to Estimate Embodied and Life-Cycle Energy Analysis 5.5 Conclusion References 6 Energy: Current Approach 6.1 Introduction 6.2 Active strategies 6.2.1 Onsite Renewable Energy Generation 6.2.1.1 Solar Energy 6.2.1.2 Wind Turbines 6.2.1.3 Biomass 6.2.1.4 Geothermal 6.2.1.5 Hydropower 6.2.2 Energy Optimisation 6.2.2.1 High Energy Efficient Products and Equipment 6.2.2.2 Energy Recovery 6.2.3 Energy Conservation 6.2.3.1 Demand Side Management System 6.2.3.2 Demand Response 6.2.3.3 Smart Grid 6.2.3.4 Energy Management System 6.2.3.5 Dynamic Energy Management System 6.2.3.6 Smart/ Intelligent Building Control System 6.3 Passive Strategies 6.3.1 Design and Orientation 6.3.2 Building Envelope 6.4 Conclusions References 7 Sustainable Procurement and Transport of Construction Materials 7.1 Introduction 7.2 Scope of the Chapter 7.3 Current Approaches 7.3.1 Objectives of Sustainable Procurement 7.3.2 Current Approach to Adoption of Technologies and Procurement Strategies 7.3.2.1 Time Horizon 7.3.2.2 Information 7.3.2.3 Evaluation Process 7.3.2.4 Decision Makers 7.3.2.5 Material Supply 7.4 Literature Review 7.4.1 Supply Chain Structure of Materials 7.4.2 Planning Offsite Transport of Prefabricated Materials 7.4.3 Life Cycle Analysis 7.4.4 Role of Life Cycle Thinking in Planning of Material Procurement 7.4.5 Techniques for Multiattribute Decision-Making 7.5 A New Combinatorial Approach to Procurement of Construction Materials 7.5.1 Sequence of Decisions in Procurement of Materials 7.5.2 Procurement Criteria 7.5.3 Life Cycle Assessment of Materials 7.5.3.1 Cost 7.5.3.2 Time 7.5.3.3 Quality 7.5.3.4 Environmental/Social 7.5.3.5 Group Decision-Making 7.5.3.5.1 Participants and Their Role 7.5.3.5.2 Assessment of Decision Criteria 7.5.3.6 Ranking the Supply Decision Alternatives 7.6 Case Study 7.6.1 Case One: Procurement of Curtain Wall 7.6.2 Case Two: Procurement of Materials in Industrial Construction Projects 7.7 Conclusions References 8 Sustainable Water Use in Construction 8.1 Introduction 8.2 Sources of Water Used in Construction 8.3 Usage of Water in Construction 8.4 Aspects of Water Management Strategies in Civil Construction Sites 8.5 Sustainable Management of Runoff From Construction Sites 8.6 Sustainable Water Conservation Measures in Construction Industry 8.7 Mining and Water Use 8.7.1 Water Usage by Mining Activities 8.7.2 Characteristics of Water Produced by Mining Activities 8.7.3 Impact of Mining Activities on Water Resources and Remedial Options 8.8 Tools and Techniques to Reduce Water Use in Buildings 8.8.1 Types of Water Use in Buildings 8.8.2 Strategies to Improve Water Sustainability in Buildings 8.8.2.1 Rainwater Harvesting 8.8.2.2 Graywater Harvesting 8.8.2.3 Flush and Flow Fixtures in Buildings 8.8.2.4 Water Wise Landscaping 8.9 Water Use and Greenhouse Gas Emission 8.10 Conclusion References Further Reading 9 Materials 9.1 Introduction 9.2 Environmental Impact of Buildings 9.3 Life Cycle Assessment 9.3.1 Cement and Cement-Based Materials 9.3.2 Steel and Steel-Based Materials 9.3.3 Aluminum 9.3.4 Insulation Materials 9.3.5 Bricks and Ceramic Tiles 9.4 Strategies for Minimizing Impact of Construction 9.4.1 Improved Materials Production Processes 9.4.2 Minimizing Environmental Impact Through Recycling 9.4.3 Materials Substitution 9.4.4 Innovative Construction Methods 9.4.5 Building for Deconstruction and Disassembly 9.4.6 Use of New and Innovative Materials 9.4.7 Use of Eco-friendly Renewable Materials 9.5 Implications 9.5.1 Barriers and Drivers 9.5.2 Institutional Support and Legislation 9.5.3 Promoting Environmental Products Declarations 9.5.4 Adoption of Environmental Assessment Tools 9.6 Conclusion References 10 Emissions 10.1 Introduction 10.2 International Policies, Standards, and Programs on Reducing Greenhouse Gas Emissions 10.3 Calculation Methods 10.3.1 Traditional Approaches 10.3.2 Digital Approaches 10.4 Life Cycle Assessment 10.4.1 The Process 10.4.2 Emissions at Product Phase 10.4.3 Emission of Transportation 10.4.4 Emissions at Construction Phase 10.4.5 Emissions at Operating Stage 10.4.6 Emissions at the End-of-Life Stage 10.5 Sustainable Building Products and Technologies 10.5.1 Innovative Products From Renewable Sources 10.5.2 Advancement of Technologies in Material Production 10.5.3 Advancement of Technologies in Reducing Operating Emissions 10.5.4 Advancement of Technologies in Carbon Capture and Storage 10.6 Emission Reduction Strategies 10.6.1 Use Low Impact Materials 10.6.2 Extend Building Lifespan 10.6.3 Maximize Design of Building Structures 10.6.4 Improve Project Delivery Onsite 10.6.5 Increase Reuse and Recycling of Materials 10.7 International Case Studies 10.7.1 Pines Calyx, England 10.7.2 Chau Chak Wing Building, Australia 10.8 Conclusion References 11 Sustainable Construction Technology Adoption 11.1 Introduction 11.2 Sustainable Construction Technology Diffusion 11.3 The Importance of Situational Context 11.4 Case study A: The Sustainability Value of Massive Timber Construction Technology 11.5 Case Study B: Adoption in the Australian Context of Massive Timber Construction 11.6 Conclusion References Further Reading 12 Lean Principles in Construction 12.1 Introduction 12.2 An Overview of the Construction Industry 12.3 The Concept of Lean Construction and Innovation 12.4 Lean Principles and Lean Thinking in Construction 12.4.1 Identifying Value 12.4.2 Value Stream Mapping 12.4.3 Allowing Customer Pull 12.4.4 Pursuing Perfection 12.5 Lean Construction Tools and Techniques 12.5.1 Last Planner System 12.5.2 Increased Visualization 12.5.3 Daily Huddle Meetings 12.5.4 First Run Studies 12.5.5 5S Process 12.5.6 Fail Safe for Quality and Safety 12.5.7 Concurrent Engineering 12.5.8 Value Stream Mapping 12.6 Benefits of Lean Construction 12.7 Organizational Challenges in the Implementation of Lean Construction 12.7.1 Management-Related Barriers 12.7.2 Technology-Related Barriers 12.7.3 Resource-Related Barriers 12.7.4 Process-Related Barriers 12.7.5 People-Related Barriers 12.7.6 Other Barriers 12.8 Research Report on the Impact of Lean Construction Techniques on Sustainable Construction in the United Kingdom 12.8.1 Benefits of Synchronizing Lean and Sustainability 12.8.2 Lean Principles/Techniques for Enabling Sustainability 12.8.3 Areas of Linkage Between Lean and Sustainability 12.9 Summary References Further Reading 13 BIM-Enabled Sustainable Housing Refurbishment—LCA Case Study 13.1 Introduction 13.2 Life Cycle Assessment for Housing Refurbishment 13.3 Implication of Building Information Modeling for Sustainable Housing Refurbishment 13.3.1 Case Study: Methodology and Scope of Building Information Modeling Simulation 13.4 Whole-House Fabric Refurbishment Options 13.5 Energy Performance Standards 13.6 Basic Information for House Models 13.7 Detailed Information of Houses for Energy Simulation 13.8 Life Cycle Environmental Impacts and Financial Implications 13.8.1 Environmental and Economic Feasibility for Housing Refurbishment 13.9 Comparative Analysis for Life Cycle Assessment and Life Cycle Cost Among Different House Types 13.10 CO2 Emission Reduction and CO2 Payback Period 13.11 Discussions About the Limitation of Building Information Modeling Tools 13.11.1 Data Exchange and Interoperability 13.11.2 Unstandardized Specification System between Different Data Source 13.12 Conclusion References Further Reading Appendix 13.1 Basic Information for Semidetached/End Terraced House Model Appendix 13.2 Basic Information for Terraced House Model Appendix 13.3 Life Cycle Assessment and Life Cycle Cost Study Results for Detached House Appendix 13.4 Life Cycle Assessment and Life Cycle Cost Study Results for Semidetached/End Terraced House Appendix 13.5 Life Cycle Assessment and Life Cycle Cost Study Results Terraced House 14 Bridging Sustainable Construction Technologies and Heritage: Novel Approach to the Conservation of the Built Environment 14.1 Introduction 14.2 Current Approaches in Sustainable Built Heritage Conservation 14.3 Innovative Approach to Built Heritage Conservation: ICOMOS+C2C 14.3.1 ICOMOS for Built Cultural Heritage Conservation 14.3.2 Cradle-to-Cradle for Built Cultural Heritage Conservation 14.3.3 ICOMOS + C2C 14.3.4 International Case Study—Mirbat 14.3.4.1 Step 1: Understanding Significance (ICOMOS) and Analysis (C2C) 14.3.4.1.1 ICOMOS: Understanding building significance 14.3.5 C2C: Inspired Elements Identification 14.3.5.1 Step 2: Developing Policy (ICOMOS) and Evaluation (C2C) 14.3.5.1.1 Conservation Policy and Conservation Plan Reuse or Compatible Use? Residence Physical Condition Assessment Minimizing the Impact on Building Significance Detailed Inventory of Build Heritage BHR 108 Attributes and Materials’ Execution Developing the Conservation Policy Identifying the Options and Test Their Impact on Significance Preparing the Statement of Conservation Policy 14.4 Step 3: Manage (ICOMOS) and Optimization (C2C) 14.5 Discussions and Conclusions References Further Reading 15 Conclusions References Index Back Cover