دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: M. Jerold (editor), A. Santhiagu (editor), Rajulapati Sathish Babu (editor), Narasimhulu Korapatti (editor) سری: ISBN (شابک) : 0367459086, 9780367459086 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 330 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 36 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Sustainable Bioprocessing for a Clean and Green Environment: Concepts and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پردازش زیستی پایدار برای محیطی پاک و سبز: مفاهیم و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
زیست فرآوری پایدار برای محیطی پاک و سبز: مفاهیم و کاربردها اهمیت زباله برای سلامتی را برجسته میکند که در آن زبالهها به طور ایمن از طریق فناوریهای فرآیند زیستی به محصولات با ارزش افزوده تبدیل میشوند. این کتاب با ارائه مفاهیم و کاربردهای اساسی، روش شناسی پشت عملیات انواع فرآیندهای بیولوژیکی مورد استفاده در توسعه محصولات ارزشمند از زباله را به خوانندگان ارائه می دهد.
ویژگی ها:
این کتاب میان رشته ای به محققان و متخصصان مهندسی شیمی، مهندسی محیط زیست، و زمینه های مرتبط دیدگاه گسترده ای در زمینه مبانی، فناوری ها و کاربردهای زیست محیطی پردازش زیستی پایدار ارائه می دهد.< /p>
Sustainable Bioprocessing for a Clean and Green Environment: Concepts and Applications highlights the importance of waste to health in which waste is safely converted to value-added products via bioprocess technologies. Providing fundamental concepts and applications, this book also offers readers the methodology behind the operation of a variety of biological processes used in developing valuable products from waste.
Features:
This interdisciplinary book offers researchers and practitioners in chemical engineering, environmental engineering, and related fields a broad perspective on fundamentals, technologies, and environmental applications of sustainable bioprocessing.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editor Biographies Contributors Chapter 1: Alternative Plastics from Wastes through Biomass Valorization Approaches 1.1 Introduction 1.2 Classification of Bioplastic 1.2.1 Based on Biological Macromolecules 1.2.1.1 Starch 1.2.1.1.1 Modifications of Starch 1.2.1.1.2 Cross-linking 1.2.1.1.3 Esterification 1.2.1.1.4 Stabilization 1.2.1.1.5 Pre-gelatinization 1.2.1.1.6 Thermoplastic Starch 1.2.1.1.6.1 Thermoplastic Starch-Polyethylene Blends 1.2.1.1.6.2 Thermoplastic Starch-Polypropylene Blends 1.2.1.1.6.3 Thermoplastic Starch-PLA Blends 1.2.1.2 Chitosan 1.2.1.2.1 Chitosan Incorporation with Other Polymers 1.2.1.2.2 Chitosan-based Films 1.2.1.2.3 Chitosan/Whey Protein Conglomerated Films 1.2.1.2.4 Chitosan/Ovalbumin Films 1.2.1.2.5 Chitosan/Soy Protein Films 1.2.1.3 Proteins 1.2.1.3.1 Plant-based Sources 1.2.1.3.1.1 Corn Zein 1.2.1.3.1.2 Wheat Gluten 1.2.1.3.1.3 Soy Proteins 1.2.1.3.1.4 Peanuts and Cotton Seed 1.2.1.3.1.5 Milk Proteins 1.2.1.3.2 Animal-based Sources 1.2.1.3.2.1 Collagen and Gelatin 1.2.1.3.2.2 Keratin 1.3 Wastes As Source of Bioplastic 1.3.1 Sugar Refinery Waste (Cane Molasses) 1.3.2 Paper Mill Waste 1.3.3 Bioplastic from Waste Glycerol 1.3.4 Vegetable Waste 1.3.5 Food Waste Valorization 1.3.6 Palm Tree Biomass-based Processing Plants 1.3.7 Banana Waste 1.4 Cyano Bacteria and PHB 1.4.1 PHB Synthesize 1.4.2 Detection and Analysis of PHB 1.4.3 Biodegradability and Biological Considerations of Poly-β-hydroxybutyrate 1.5 Conclusion References Chapter 2: Bioelectrochemical System: Waste/Wastewater to Bioenergy Conversion Technology 2.1 Introduction 2.2 Basic Principles of Bioelectrochemical System (BES) 2.2.1 Electron Transfer Mechanism 2.2.2 Voltage Generation in BES 2.2.3 Performance of BES 2.3 Components and Materials Used in BES 2.4 Factors Influencing the BES Performance 2.4.1 Types of Wastewater and Its Concentration 2.4.2 Types of Bacteria 2.4.3 Types of Electron Acceptors in the Cathodic Chamber 2.4.4 Electrode Materials 2.4.5 Membrane 2.4.6 Reactor Configuration 2.5 Various Types of Bioelectrochemical System 2.5.1 Microbial Electrolysis Cell 2.5.2 Microbial Desalination Cell 2.5.3 Microbial Remediation Cell 2.6 Conclusion References Chapter 3: Bioelectrochemical Reactors: Factors Governing Power Production and Its Applications 3.1 Introduction 3.2 Bioelectrogenesis and Bioelectrochemical Reactors 3.3 Factors Affecting Power Generation in BES 3.3.1 Biological Parameters 3.3.1.1 Biological Components 3.3.1.2 Electron Transfer to Anode 3.3.2 Physicochemical Parameters 3.3.2.1 Electrode Materials 3.3.3 Operating Parameters 3.3.3.1 pH of the System 3.3.3.2 Organic Loading Rate (OLR) 3.3.3.3 Hydraulic Retention Time and Shear Stress 3.3.3.4 Effect of Temperature 3.4 Applications of Bioelectrochemical Systems 3.4.1 Wastewater Treatment 3.4.2 Microbial Electrmolymsis Cells 3.4.3 Electro-synthesis of Products 3.4.4 Removal of Pollutants 3.4.5 Microbial Desalinization Cell 3.4.6 Biosensors 3.4.6.1 Biochemical Oxygen Demand 3.4.6.2 Toxicity Sensor 3.4.7 Microbial Activity Monitoring 3.4.8 Monitoring of Corrosive Biofilm 3.5 Conclusion References Chapter 4: Photosynthetic Microbial Fuel Cells: Advances, Challenges and Applications 4.1 Introduction 4.2 General Concepts 4.2.1 Microbial Fuel Cell Technology 4.2.2 Phototrophic Microorganisms 4.2.2.1 Microalgae 4.2.2.2 Photosynthetic Bacteria 4.2.2.2.1 Cyanobacteria 4.2.2.2.2 Purple Bacteria 4.2.2.2.3 Green Bacteria 4.3 Classification of Photosynthetic MFCs 4.3.1 Sub-cellular Photo-MFC 4.3.2 Cellular Photo-MFC 4.3.3 Complex Cellular Photo-MFCs 4.4 Integrating Photosynthetic Organisms with MFC 4.4.1 Phototrophic Microorganisms at Anode 4.4.1.1 Microalgal Biomass as Substrate 4.4.1.2 Phototrophic Microorganisms Assisting the Anode Process 4.4.1.2.1 Oxygenic Photosynthetic Organisms as Biocatalyst Without Heterotrophic Bacteria 4.4.1.2.2 Anoxygenic Photosynthetic Organisms as Biocatalyst – Without Heterotrophic Bacteria 4.4.1.2.3 Syntrophic Relation between Phototrophic Organisms and Heterotrophic Bacteria Assisting the Anode Process 4.4.2 Phototrophic Microorganisms Assisting the Cathode Process 4.5 Application Aspects of Photosynthetic Microbial Fuel Cell 4.5.1 Microbial Carbon Capture Cell 4.5.2 Microbial Desalination Cell 4.5.3 Photosynthetic Sediment MFCs 4.6 Conclusions and Perspectives References Chapter 5: Pretreatment of Paddy Straw for Sustainable Bioethanol Production 5.1 Introduction 5.2 Potential 5.3 Chemical Composition 5.4 Conversion of Paddy Straw into Bioethanol 5.5 Physical Pretreatment Methods 5.6 Chemical Pretreatment Methods 5.7 Biological Pretreatment Methods 5.8 Combined Pretreatment Methods 5.9 Conclusions References Chapter 6: Bio-based Coagulants for the Remediation of Environmental Pollutants 6.1 Introduction 6.1.1 Water Quality Parameters 6.1.2 Turbidity-Sources and Factors Their Impacts 6.1.3 Impacts of Turbidity 6.2 Types of Wastewater Treatment 6.3 Coagulation 6.4 Bio-based Coagulants 6.5 Plant-based Coagulant Materials 6.6 Conclusions Acknowledgments References Chapter 7: The Role of Nanomaterials in Wastewater Treatment 7.1 Introduction 7.2 Role of Nanomaterials in the Wastewater Treatment 7.2.1 Nanophotocatalysts 7.2.2 Nano- and Micromotors 7.2.3 Nano-membranes 7.2.4 Nano-adsorbents 7.2.4.1 Carbon-based Nano-adsorbents 7.2.4.2 Silica-based Nano-adsorbents 7.2.4.3 Metal Oxide-based Nano-adsorbents 7.2.4.4 Chitosan-based Nano-adsorbents 7.3 The Challenges of Nanomaterials in the Wastewater Treatment 7.4 Conclusion and Future Perceptions References Chapter 8: Application of Biogenic Nanoparticles for a Clean Environment 8.1 Introduction 8.2 Pollutants and Environmental Contamination: A Global Issue 8.2.1 Air Pollution 8.2.2 Soil Pollution 8.2.3 Water Pollution 8.3 Nanotechnology: New Emerging Technology 8.4 Green Synthesis of Nanoparticles and Its Properties 8.5 Exploration of Nanoparticles in Different Fields 8.6 Exploration of Biogenic Nanoparticles for Clean Environment: Nanoremediation References Chapter 9: Phycoremediation of Heavy Metals in Wastewater: Strategy and Developments 9.1 Introduction 9.1.1 Wastewater and Its Characteristics 9.1.2 Heavy Metals and Its Effects in Wastewater 9.2 Treatment of Heavy Metals in Wastewater 9.2.1 Electrocoagulation 9.2.2 Chemical Precipitation 9.2.3 Ion Exchange 9.2.4 Reverse Osmosis 9.2.5 Natural Resources in the Treatment of Heavy Metals 9.2.6 Micro and Macro Algae 9.3 Phycoremediation 9.3.1 Cultivation Method 9.3.1.1 Open Pond Cultivation 9.3.1.2 Closed Photobioreactor 9.3.1.3 Immobilized Cultivation 9.3.2 Algae Harvesting Technologies 9.3.2.1 Sedimentation 9.3.2.2 Membrane Separation 9.3.2.3 Flocculation 9.3.2.4 Froth Floatation 9.4 Phycoremediation Mechanism of Heavy Metal Removal 9.4.1 Phycoremediation Strategy in Heavy Metal Removal 9.4.1.1 Facultative Stabilization Pond 9.4.1.2 High Rate Algae Ponds 9.4.1.3 Algae Settling Pond 9.4.1.4 Maturation Pond 9.5 Challenges and Remedial Measures 9.5.1 Recent Developments in Phycoremediation of Heavy Metals 9.6 Summary References Chapter 10: An Economic Perspective of Bio-waste Valorization for Extended Sustainability 10.1 Introduction 10.1.1 Disposal and Management 10.1.1.1 Medical Bio-waste 10.1.1.2 Liquid Waste 10.1.1.3 Biodegradable Waste 10.2 The Transition from Linear to a Circular Economy 10.2.1 The Value Chain of Biomass Waste 10.2.2 Waste Hierarchy 10.2.3 Life Cycle Assessment of Bio-waste 10.3 Valorization of Bio-waste and Their By-product 10.3.1 Waste to Wealth Concept 10.4 Sustainability of Bio-valorization 10.4.1 Bio-waste to Biomaterials 10.4.1.1 Biopolymers 10.4.1.2 Hydroxyapatite 10.4.1.3 Bioplastics 10.4.1.4 Silica and Silicates 10.4.1.5 Biopesticides 10.4.1.6 Enzymes 10.5 Bio-based Circular Economy 10.5.1 Revenue of Bio-valorization 10.6 Conclusion Acknowledgment References Chapter 11: Recovery of Energy from Plastic Wastes by Pyrolysis Process for Sustainable Waste Management 11.1 Introduction 11.2 Thermochemical Treatment 11.2.1 Gasification 11.2.2 Hydrogenation 11.2.3 Pyrolysis 11.2.3.1 Pyrolysis of Different Types of Plastics 11.2.3.1.1 Polyethylene Terephthalate (PET) 11.2.3.1.2 High-density Polyethylene (HDPE) 11.2.3.1.3 Polyvinyl Chloride (PVC) 11.2.3.1.4 Low-density Polyethylene (LDPE) 11.2.3.1.5 Polypropylene (PP) 11.2.3.1.6 Polystyrene (PS) 11.3 Hazardous Plastics 11.3.1 Treatment Process 11.3.1.1 Types of Pyrolysis Reactors Used 11.3.1.2 Fixed-bed Reactors (FBR) 11.3.1.3 Batch Reactors 11.3.1.4 Fluidized-bed Reactors (FBR) 11.3.1.5 Conical Spouted Bed Reactors (CSBR) 11.3.1.6 Rotary Kiln Reactors 11.3.1.7 Microwave-assisted Reactors 11.3.1.8 Plasma Reactors 11.3.1.9 Solar Reactors 11.4 Value-added Products of Pyrolysis 11.4.1 Bio-oil 11.4.2 Production of Bio-oil 11.4.3 Biochar 11.4.3.1 Production of Biochar from Plastic Wastes 11.4.4 Gas Fuel 11.4.5 Production of Syngas (Synthetic Gas) 11.5 Energy Recovery from Pyrolysis of Plastic Waste 11.6 Conclusion References Chapter 12: Biosurfactant: A Sustainable Replacement for Chemical Surfactants 12.1 Surfactant 12.1.1 Disadvantages of Surfactants 12.1.2 Need for an Alternative 12.1.3 Biosurfactants 12.1.4 Types of Biosurfactant 12.1.5 Production of Biosurfactants from Inexpensive Raw Materials 12.1.6 Production 12.1.6.1 Screening Tests for Biosurfactant Production 12.1.6.2 Hemolysis Method 12.1.6.3 Oil Spreading Test 12.1.6.4 Emulsification Index Test 12.1.6.5 Bacterial Adhesion to Hydrocarbon Assay (BATH) 12.1.6.6 Hydrocarbon Overlay Agar Method 12.1.6.7 CTAB Agar Plate Method 12.1.6.8 Drop Collapse Method 12.1.6.9 Emulsification Assay 12.1.7 Fermentation Process 12.1.7.1 Solid Fermentation Process 12.1.7.2 Submerged Fermentation Process 12.1.8 Parameters Controlling the Production of Biosurfactant 12.1.9 Optimization for Biosurfactant Production 12.1.9.1 Response Surface Methodology 12.1.9.2 Plackett Burman Method 12.1.9.3 Extraction of Biosurfactant 12.1.10 Purification of Biosurfactant 12.1.10.1 Ammonium Sulphate Precipitation Method 12.1.10.2 Zinc Chloride Precipitation Method 12.2 Production and Purification of Various Biosurfactant 12.2.1 Sources of Biosurfactant Production ( Table 12.2) 12.2.2 Screening, Extraction and Purification Process of Various Biosurfactant 12.3 Recent Applications of Biosurfactant in Various Fields ( Nwaguma et al., 2016) 12.4 Conclusion References Chapter 13: Nutraceutical Prospects of Green Algal Resources in Sustainable Development 13.1 Introduction 13.2 Nutraceuticals 13.3 Algae as a Food Resource 13.4 Role of Nutraceuticals 13.4.1 In Human Health 13.4.2 In the Food Industry 13.5 The Relevance of Microalgal Biomass as Alternative Nutraceutical Resource 13.6 Nutraceutically Valuable Compounds in Microalgal Biomass 13.6.1 Nutraceutically Valuable Proteins in Algae 13.6.2 Nutraceutically Valuable Oils in Algae 13.6.3 Nutraceutically Valuable Pigments in Algae 13.6.4 Nutraceutically Valuable Carbohydrates in Algae 13.6.5 Nutraceutically Valuable Vitamins and Minerals in Algae 13.6.6 Nutraceutically Valuable Antioxidants and Antimicrobials in Algae 13.7 The Industrial Significance of the Search of Algal Nutraceuticals 13.8 Conclusion References Chapter 14: Green Algae as a Bioenergy Resource with the Eco-technological Potential for Sustainable Development 14.1 Introduction 14.2 Research on Lipid-yielding Microalgae 14.3 Research on Algal Technology as a Means of Pollution Control 14.4 Research on Bioconversion Technologies 14.4.1 Thermochemical Conversion of Algal Biomass 14.4.2 Biochemical Conversion 14.4.3 Transesterification 14.4.4 Photosynthetic Microbial Fuel Cell 14.5 Research on Up-gradation of the Quality of Algae-based Biofuel 14.5.1 Fischer–Tropsch Conversion 14.5.2 Hydrotreated Conversion 14.5.3 Hydrocracking Conversion 14.5.4 Hydroisomerization Conversion 14.6 Conclusion References Chapter 15: Compilation of Characterization and Electrochemical Behavior from Novel Biomass as Porous Electrode Materials for Energy Storage Devices 15.1 Introduction 15.2 Experimental 15.2.1 Synthesis of Functional Carbon from Selected Dried Seaweeds and Plant Leaves 15.2.2 Characterization of Synthesized Functional Carbon – SW-700/TC-700/PAL-1000/SLL-1000 15.2.3 Electrode Fabrication of SW-700/TC-700/PAL-1000/SLL-1000 15.3 Results and Discussion 15.3.1 Compilation of Synthesized Functional Carbon Materials of SW-700/TC-700/PAL-1000/SLL-1000 by Characterization Techniques 15.3.2 Comparison of Fabricated Functional Carbon Electrodes of SW-700/TC-700/PAL-1000/SLL-1000 by Electrochemical Measurements 15.4 Conclusion Conflict of Interest References Index