دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Dinesh Kumar Maheshwari. Shrivardhan Dheeman
سری: Microorganisms for Sustainability, 43
ISBN (شابک) : 9811995699, 9789811995699
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 407
[408]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Sustainable Agrobiology: Design and Development of Microbial Consortia به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آگروبیولوژی پایدار: طراحی و توسعه کنسرسیوم های میکروبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Editors and Contributors Part I: Basic and Fundamentals: Microbial Consortia Chapter 1: An Overall Insight Into the Attributes, Interactions, and Future Applications of ``Microbial Consortium´´ for Plant... 1.1 Introduction 1.2 Microbe-Microbe Interactions 1.3 Microbial Consortia 1.3.1 Definition and Design 1.3.2 Types, Process, and Development 1.4 Formulations: Difficulties and Success 1.5 Root Colonization and Biofilm Formation 1.6 Abiotic Stress: Action and Mechanism 1.7 Metagenomics and Biotechnological Approach to Increase Efficiency of Microbial Consortium for Plant Growth Promotion 1.7.1 Microbiome Engineering 1.7.2 Molecular Tools to Increase Efficiency of Microbiome Engineering 1.7.3 Next-Generation Microbial Synthetic Communities (SynComs) for Plant Yield Promotion 1.8 Application: Microbial Inoculation and Soil Community 1.9 Conclusions References Chapter 2: Beneficial Microbial Mixtures for Efficient Biocontrol of Plant Diseases: Impediments and Success 2.1 Introduction 2.2 Protocol Strategy: Artificial Microbial Consortia, Construction, and Mode of Applications 2.2.1 Cocktail and Combined Effect 2.2.2 Co-inoculation 2.3 Biofilm and Quorum Sensing 2.4 Factors Affecting the Efficacy of Consortia 2.5 Reason for Failure 2.6 Success Stones and Bottlenecks References Chapter 3: Rhizobacterial-Mediated Interactions for Enhanced Symbiotic Performance of the Root Nodule Rhizobia in Legumes 3.1 Introduction 3.2 Rhizobacterial Interaction in the Initiation of Symbiotic Nitrogen-Fixing Systems 3.2.1 Initiation of Nodule Formation and Development 3.2.2 Induction of Flavonoid Secretion and Symbiotic Effectiveness 3.3 Nutrient Acquisition and Abiotic Stress Tolerance 3.3.1 Induced Systemic Tolerance (IST) in the Legume-Rhizobium Symbiosis 3.3.2 Rhizosphere Interaction for Iron (Fe+3) Acquisition 3.3.3 Phosphorus Acquisition for SNF 3.4 Concluding Summary References Chapter 4: Plant Growth-Promoting Bacterial Consortia Render Biological Control of Plant Pathogens: A Review 4.1 Introduction 4.2 Plant Growth-Promoting Bacterial Consortia 4.3 Plant Growth-Promoting Bacterial Consortia-Mediated Biocontrol Mechanisms 4.4 Plant Growth-Promoting Bacterial Consortia Against Bacterial Pathogens 4.5 Plant Growth-Promoting Bacterial Consortia Against Fungal Pathogens 4.6 Conclusions and Future Perspectives References Chapter 5: Phytohormonal Role of Microorganisms Involved in Bioinoculants 5.1 Introduction 5.2 Bioinoculant: Uses and Practices 5.3 Phytohormones Produced by Soil Microorganisms 5.4 Role of Phytohormones in the PGPB-Plant Relationship 5.5 Yield Increase and Environmental Advantages: Phytohormonal Bioinoculants 5.6 Concluding Remarks References Chapter 6: The Bacterial-Fungal Consortia: Farmer´s Needs, Legal and Scientific Opportunities, and Constraints 6.1 Introduction 6.2 The Farmer´s Need 6.2.1 Biopesticides 6.2.2 Biostimulants 6.2.3 Soil Conditioners 6.2.4 Biofertilizers 6.3 Legal Framework 6.4 Scientific Opportunities and Constraints References Part II: Contribution to Agriculture and Sustainability Chapter 7: Sustainable Improvement of Productivity and Quality of Agricultural Crops Using a Microbial Consortium 7.1 Introduction 7.2 Soil Microbial Consortia 7.3 Mechanism of Microbial Consortia in the Improvement of Productivity and Quality of Agricultural Crops 7.3.1 Biofertilization 7.3.1.1 Nitrogen Fixation 7.3.1.2 Improvement of the Nutrient Bio-availability 7.3.2 Phytostimulation 7.3.2.1 Production of Plant Growth Regulators 7.3.2.2 Production of ACC Deaminase 7.3.3 Biocontrol 7.3.3.1 Production of Antibiotics 7.3.3.2 Cell Wall-Degrading Enzymes 7.3.3.3 Production of Siderophore 7.3.3.4 Hydrogen Cyanide Production 7.3.3.5 Induced Systemic Resistance 7.3.4 Multiple Mechanisms of Action 7.4 Effect of Soil Microbial Consortia on Productivity and Quality of Agricultural Crops 7.5 Future Considerations and Conclusion References Chapter 8: Consortia of Probiotic Bacteria and Their Potentials for Sustainable Rice Production 8.1 Introduction 8.2 Consortia of Probiotic Bacteria for Rice 8.2.1 Probiotic Bacteria 8.2.2 Consortia of Probiotic Bacteria 8.3 Type of Rice Probiotic Bacteria 8.3.1 Nitrogen-Fixing Probiotic Bacteria 8.3.2 Phosphate-Solubilizing Probiotic Bacteria (PSPB) 8.3.3 Potassium-Solubilizing Probiotic Bacteria (KSPB) 8.3.4 Siderophore-Producing Probiotic Bacteria (SPPB) 8.3.5 Accumulation of Nutrients 8.3.6 Act as Biocontrol Agent 8.4 Isolation and Identification of Rice Probiotic Bacteria 8.5 Mode of Beneficial Effects of Probiotic 8.5.1 Root Colonization by Probiotic Bacteria 8.5.2 Nitrogen Fixation 8.5.3 Enhanced Nutrient Accumulation 8.5.4 Increased Plant Growth and Development 8.5.5 Increased Root Growth 8.5.6 Production of Phytohormone 8.5.7 Production of Antibiotic 8.5.8 Induction of Systemic Resistance (ISR) in Plant Life 8.5.9 Production of Lipopeptides 8.6 Conclusions and Future Perspective References Chapter 9: Strategies to Evaluate Microbial Consortia for Mitigating Abiotic Stress in Plants 9.1 Introduction 9.2 Strategies for the Development of Microbial Consortia/Rhizobacterial Consortia 9.2.1 What Are Microbial Consortia? 9.2.1.1 Step 1: Analysis of Traits of Plant Growth-Promoting Rhizobacteria 9.2.1.2 Step 2: Compatibility Efficiency Studies 9.2.1.3 Step 3: Sensitivity to Physical and Chemical Conditions 9.2.1.4 Step 4: PGPR Growth and Mitotic Behavior 9.2.1.5 Step 5: Design of Microbial Consortia 9.2.1.6 Step 6a: Rapid Plant Bioassay 9.2.1.7 Step 6b: Pot Experiments 9.3 Microbial Consortia on Plant Roots: Scanning Electron Microscopy (SEM)/Transmission Electron Microscopy (TEM) 9.4 Role of Microbial Consortia as Efficient Biofertilizer 9.5 Mechanisms as Biofertilizer 9.6 Role of Microbial Consortia to Remediate Abiotic Stress 9.6.1 Abiotic Stress Affecting Crop 9.7 Conclusions References Part III: Contributions to Ecosystem and Crop Production Chapter 10: Co-inoculation of Rhizobacteria in Common Bean (Phaseolus vulgaris) Production in East Africa 10.1 Introduction 10.2 General Overview of the Modes of Action of PGPMs 10.2.1 Nutrient Acquisition 10.2.2 Alleviation of Abiotic Stress: Soil Moisture and Salinity 10.2.3 Biological Control Against Pathogens 10.2.4 Production of Growth Regulators/Promoters 10.3 P. vulgaris Growth Response to Co-inoculation with PGPMs 10.3.1 Effect of Co-inoculation with PGPM Consortia on Common Bean Growth Promotion 10.3.2 PGPM Consortia Inoculation on Nutrient Acquisition for Common Beans 10.3.3 Co-inoculation Effect of PGPM Consortia on Biological Control of Root-Knot Nematodes 10.3.4 Alleviation of Moisture Stress in Common Beans by Co-inoculation with PGPM Consortia 10.4 Formulation and Survival of the PGPM Biofertilizers 10.5 Commercialization of PGPM Strains´ Biofertilizers 10.6 Conclusions Glossary References Chapter 11: Management of Sustainable Vegetable Production Using Microbial Consortium 11.1 Introduction 11.2 Role of Microbial Consortium in Sustainable Vegetable Production 11.3 Types of Microbial Consortia 11.3.1 Bacteria-Bacteria Consortia 11.3.2 Fungus-Bacteria Consortia 11.4 Microbial Consortium as Plant Biostimulants 11.5 Microbial Consortium as a Biocontrol Agent (BCA) 11.6 Microbial Consortium-Mediated Plant Defense 11.7 Microbial Consortium as Biofertilizer 11.8 Challenges with Microbial Consortium 11.9 Conclusive Remarks and Future Perspectives References Chapter 12: Consort Interactions of the Root Endophytes Serendipita spp. (Sebacinales, Agaricomycetes, Basidiomycota) with Cro... 12.1 Introduction 12.2 Inoculum and Root Colonization 12.2.1 Measures of Assessing Mycorrhization 12.2.2 PRC Vs. Inoculum Density 12.2.3 Inoculum Quantity and the Outcome of the Interaction 12.2.4 Inoculum Types and Sources 12.2.5 Inoculum Quantity and Nutritional Conditions of the Substrate 12.2.6 Inconsistent Choice of Inoculum Quantity 12.3 Inoculation Methods 12.3.1 Inoculation Based on Weight/Volume Ratio 12.3.1.1 Mycelial Plugs as the Source of Inoculum 12.3.1.2 Other Inoculation Methods 12.3.2 Improving the Reproducibility of the Inoculation Technique 12.4 Multipartner Symbioses 12.4.1 Consortium of S. indica and/or S. vermifera with Other Microorganisms 12.4.1.1 Consortium with Trichoderma spp. 12.4.1.2 Consortia with Bacteria and AM Fungi 12.4.2 Antagonisms/Synergisms in Multicomponent Systems 12.5 Development of Carrier-Based Formulation 12.5.1 Carrier-Based Formulations of S. indica and S. vermifera 12.6 Conclusions References Chapter 13: Applications of Microbial Consortia and Microbiome Interactions for Augmenting Sustainable Agrobiology 13.1 Introduction 13.2 Overview of the Soil Microbiome 13.2.1 Major Types of Soil Microbiome 13.2.2 Factors Influencing the Growth, Survival, and Diversity of Soil Microbiome 13.2.3 Overview of the Role of the Microbiome in Sustainable Agriculture 13.3 Rhizosphere and Its Importance in Plant Systems 13.3.1 Major Types of Interactions in the Soil 13.3.1.1 Plant-Microbiome Interactions 13.3.1.2 Root-Root Interactions 13.3.1.3 Microbe-Microbe Interactions 13.4 Modern Technology Used in Sustainable Agriculture: Major Goals and Concepts 13.4.1 Data Science Concepts Involved in Agrobiology 13.4.1.1 Genomics and Metagenomics 13.4.1.2 Proteomics and Transcriptomics 13.4.1.3 Metabolomics 13.5 Scope of Data Sciences for the Analysis of Interactions in the Soil Microbiome 13.5.1 Soil Metagenomics and Their Applications 13.5.1.1 Soil Health 13.5.1.2 Discovery of Antibiotics 13.5.1.3 Industrial Use 13.5.1.4 Bioremediation 13.5.1.5 Sustainable Agriculture 13.6 Scope of Next-Generation Sequencing in Agrobiology 13.6.1 Single and Multiple Species Genomics in Agriculture 13.6.2 Impact of NGS on Agrobiology 13.6.3 NGS and Omics Approaches 13.6.4 Revolution of Omics and Impact on Bioinformatics Research 13.7 Challenges of Chemical Pesticides and Fertilizers in Agrobiology 13.8 Alternative Approaches: Design and Development of Novel Microbial Consortia for Enhancing Plant Productivity 13.8.1 Principles Involved in Formulating Microbial Consortia 13.8.2 Methods for Formulating Microbial Consortia 13.8.3 General Applications and Recent Case Studies of Designed Microbial Consortia 13.9 Major Types of Microbial Consortia Responsible for Sustainable and Balanced Agrobiology 13.9.1 Bacterial Consortia and Their Interactions 13.9.2 Bacteria-Fungi Consortia and Their Interactions 13.10 Merits and Demerits of Microbial Consortia-Based Approaches 13.10.1 Merits 13.10.2 Demerits 13.11 Computational Biology and Bioinformatics Tools and Resources for the Design and Formulation of Novel Microbial Consortia 13.11.1 Dynamic Modeling Tools 13.11.2 Steady-State Modeling Tools 13.12 Successful Applications of Data Sciences and Microbial Consortia-Based Approaches in Agrobiology 13.13 Future Perspectives 13.14 Concluding Remarks References Part IV: Biofertilizer, Biocontrol Agents, and Crop Growth Chapter 14: Effect of Microbial Consortium Vs. Perfected Chemical Fertilizers for Sustainable Crop Growth 14.1 Introduction 14.2 Chemicals Vs. Biologicals 14.2.1 Microbial Consortia in Lowering of Chemical Fertilizers 14.2.2 Microbial Consortia in Salinity Stress Conditions 14.2.3 Effect of Microbial Cocktail 14.3 Microbial Consortia in Soil Management 14.4 Consortia Constructions and Applications 14.5 Conclusions References Chapter 15: Bioencapsulation of Biocontrol Agents as a Management Strategy for Plant Pathogens 15.1 Introduction 15.2 Progress in Encapsulation Technology to Sustain BCA Viability 15.3 Encapsulation of BCAs in Plant Disease Management 15.4 Potential Challenges and Future Research Directions 15.4.1 Choice of Microbes 15.4.2 Alternative Low-Cost Carrier Materials 15.4.3 Features of Capsules 15.4.4 Scaling Up of Encapsulated Microbes 15.5 Conclusions References Chapter 16: Designing Tailored Bioinoculants for Sustainable Agrobiology in Multi-stressed Environments 16.1 Introduction 16.2 Plant Allies: How Do They Work? 16.2.1 Improving Nutrient Acquisition 16.2.1.1 Dinitrogen Fixation 16.2.1.2 Phosphate Solubilization 16.2.1.3 Potassium Solubilization 16.2.1.4 Promotion of Plant Growth and Development Via Phytohormones 16.2.2 Indirect Mechanisms 16.2.2.1 ACC Deaminase Activity 16.2.2.2 Production of Siderophores 16.2.2.3 Other PGP Properties 16.2.3 Tolerance of Bacterial Inoculants Toward Abiotic Stresses 16.2.4 Competition in the Rhizosphere and Root Colonization 16.3 How Can Omics Help Designing Inoculants? 16.3.1 Traits for Resistance Toward Abiotic Stresses 16.3.2 Traits for PGP Properties 16.3.3 Traits Related to Competition in the Rhizosphere and Root Colonization 16.4 Designing Inoculants Adapted to Poly-Stress Situations: The Core-Microbiome Approach 16.5 Bottlenecks to Commercialization: Stability, Competitiveness, Regulatory Issues 16.6 Concluding Remarks References Part V: Conclusion: A Future Perspective Chapter 17: Development and Application of Consortia-Based Microbial Bioinoculants for Sustainable Agriculture References