ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Sustainable Agrobiology: Design and Development of Microbial Consortia

دانلود کتاب آگروبیولوژی پایدار: طراحی و توسعه کنسرسیوم های میکروبی

Sustainable Agrobiology: Design and Development of Microbial Consortia

مشخصات کتاب

Sustainable Agrobiology: Design and Development of Microbial Consortia

ویرایش:  
نویسندگان:   
سری: Microorganisms for Sustainability, 43 
ISBN (شابک) : 9811995699, 9789811995699 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 407
[408] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 Mb 

قیمت کتاب (تومان) : 34,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Sustainable Agrobiology: Design and Development of Microbial Consortia به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب آگروبیولوژی پایدار: طراحی و توسعه کنسرسیوم های میکروبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
Contents
Editors and Contributors
Part I: Basic and Fundamentals: Microbial Consortia
	Chapter 1: An Overall Insight Into the Attributes, Interactions, and Future Applications of ``Microbial Consortium´´ for Plant...
		1.1 Introduction
		1.2 Microbe-Microbe Interactions
		1.3 Microbial Consortia
			1.3.1 Definition and Design
			1.3.2 Types, Process, and Development
		1.4 Formulations: Difficulties and Success
		1.5 Root Colonization and Biofilm Formation
		1.6 Abiotic Stress: Action and Mechanism
		1.7 Metagenomics and Biotechnological Approach to Increase Efficiency of Microbial Consortium for Plant Growth Promotion
			1.7.1 Microbiome Engineering
			1.7.2 Molecular Tools to Increase Efficiency of Microbiome Engineering
			1.7.3 Next-Generation Microbial Synthetic Communities (SynComs) for Plant Yield Promotion
		1.8 Application: Microbial Inoculation and Soil Community
		1.9 Conclusions
		References
	Chapter 2: Beneficial Microbial Mixtures for Efficient Biocontrol of Plant Diseases: Impediments and Success
		2.1 Introduction
		2.2 Protocol Strategy: Artificial Microbial Consortia, Construction, and Mode of Applications
			2.2.1 Cocktail and Combined Effect
			2.2.2 Co-inoculation
		2.3 Biofilm and Quorum Sensing
		2.4 Factors Affecting the Efficacy of Consortia
		2.5 Reason for Failure
		2.6 Success Stones and Bottlenecks
		References
	Chapter 3: Rhizobacterial-Mediated Interactions for Enhanced Symbiotic Performance of the Root Nodule Rhizobia in Legumes
		3.1 Introduction
		3.2 Rhizobacterial Interaction in the Initiation of Symbiotic Nitrogen-Fixing Systems
			3.2.1 Initiation of Nodule Formation and Development
			3.2.2 Induction of Flavonoid Secretion and Symbiotic Effectiveness
		3.3 Nutrient Acquisition and Abiotic Stress Tolerance
			3.3.1 Induced Systemic Tolerance (IST) in the Legume-Rhizobium Symbiosis
			3.3.2 Rhizosphere Interaction for Iron (Fe+3) Acquisition
			3.3.3 Phosphorus Acquisition for SNF
		3.4 Concluding Summary
		References
	Chapter 4: Plant Growth-Promoting Bacterial Consortia Render Biological Control of Plant Pathogens: A Review
		4.1 Introduction
		4.2 Plant Growth-Promoting Bacterial Consortia
		4.3 Plant Growth-Promoting Bacterial Consortia-Mediated Biocontrol Mechanisms
		4.4 Plant Growth-Promoting Bacterial Consortia Against Bacterial Pathogens
		4.5 Plant Growth-Promoting Bacterial Consortia Against Fungal Pathogens
		4.6 Conclusions and Future Perspectives
		References
	Chapter 5: Phytohormonal Role of Microorganisms Involved in Bioinoculants
		5.1 Introduction
		5.2 Bioinoculant: Uses and Practices
		5.3 Phytohormones Produced by Soil Microorganisms
		5.4 Role of Phytohormones in the PGPB-Plant Relationship
		5.5 Yield Increase and Environmental Advantages: Phytohormonal Bioinoculants
		5.6 Concluding Remarks
		References
	Chapter 6: The Bacterial-Fungal Consortia: Farmer´s Needs, Legal and Scientific Opportunities, and Constraints
		6.1 Introduction
		6.2 The Farmer´s Need
			6.2.1 Biopesticides
			6.2.2 Biostimulants
			6.2.3 Soil Conditioners
			6.2.4 Biofertilizers
		6.3 Legal Framework
		6.4 Scientific Opportunities and Constraints
		References
Part II: Contribution to Agriculture and Sustainability
	Chapter 7: Sustainable Improvement of Productivity and Quality of Agricultural Crops Using a Microbial Consortium
		7.1 Introduction
		7.2 Soil Microbial Consortia
		7.3 Mechanism of Microbial Consortia in the Improvement of Productivity and Quality of Agricultural Crops
			7.3.1 Biofertilization
				7.3.1.1 Nitrogen Fixation
				7.3.1.2 Improvement of the Nutrient Bio-availability
			7.3.2 Phytostimulation
				7.3.2.1 Production of Plant Growth Regulators
				7.3.2.2 Production of ACC Deaminase
			7.3.3 Biocontrol
				7.3.3.1 Production of Antibiotics
				7.3.3.2 Cell Wall-Degrading Enzymes
				7.3.3.3 Production of Siderophore
				7.3.3.4 Hydrogen Cyanide Production
				7.3.3.5 Induced Systemic Resistance
			7.3.4 Multiple Mechanisms of Action
		7.4 Effect of Soil Microbial Consortia on Productivity and Quality of Agricultural Crops
		7.5 Future Considerations and Conclusion
		References
	Chapter 8: Consortia of Probiotic Bacteria and Their Potentials for Sustainable Rice Production
		8.1 Introduction
		8.2 Consortia of Probiotic Bacteria for Rice
			8.2.1 Probiotic Bacteria
			8.2.2 Consortia of Probiotic Bacteria
		8.3 Type of Rice Probiotic Bacteria
			8.3.1 Nitrogen-Fixing Probiotic Bacteria
			8.3.2 Phosphate-Solubilizing Probiotic Bacteria (PSPB)
			8.3.3 Potassium-Solubilizing Probiotic Bacteria (KSPB)
			8.3.4 Siderophore-Producing Probiotic Bacteria (SPPB)
			8.3.5 Accumulation of Nutrients
			8.3.6 Act as Biocontrol Agent
		8.4 Isolation and Identification of Rice Probiotic Bacteria
		8.5 Mode of Beneficial Effects of Probiotic
			8.5.1 Root Colonization by Probiotic Bacteria
			8.5.2 Nitrogen Fixation
			8.5.3 Enhanced Nutrient Accumulation
			8.5.4 Increased Plant Growth and Development
			8.5.5 Increased Root Growth
			8.5.6 Production of Phytohormone
			8.5.7 Production of Antibiotic
			8.5.8 Induction of Systemic Resistance (ISR) in Plant Life
			8.5.9 Production of Lipopeptides
		8.6 Conclusions and Future Perspective
		References
	Chapter 9: Strategies to Evaluate Microbial Consortia for Mitigating Abiotic Stress in Plants
		9.1 Introduction
		9.2 Strategies for the Development of Microbial Consortia/Rhizobacterial Consortia
			9.2.1 What Are Microbial Consortia?
				9.2.1.1 Step 1: Analysis of Traits of Plant Growth-Promoting Rhizobacteria
				9.2.1.2 Step 2: Compatibility Efficiency Studies
				9.2.1.3 Step 3: Sensitivity to Physical and Chemical Conditions
				9.2.1.4 Step 4: PGPR Growth and Mitotic Behavior
				9.2.1.5 Step 5: Design of Microbial Consortia
				9.2.1.6 Step 6a: Rapid Plant Bioassay
				9.2.1.7 Step 6b: Pot Experiments
		9.3 Microbial Consortia on Plant Roots: Scanning Electron Microscopy (SEM)/Transmission Electron Microscopy (TEM)
		9.4 Role of Microbial Consortia as Efficient Biofertilizer
		9.5 Mechanisms as Biofertilizer
		9.6 Role of Microbial Consortia to Remediate Abiotic Stress
			9.6.1 Abiotic Stress Affecting Crop
		9.7 Conclusions
		References
Part III: Contributions to Ecosystem and Crop Production
	Chapter 10: Co-inoculation of Rhizobacteria in Common Bean (Phaseolus vulgaris) Production in East Africa
		10.1 Introduction
		10.2 General Overview of the Modes of Action of PGPMs
			10.2.1 Nutrient Acquisition
			10.2.2 Alleviation of Abiotic Stress: Soil Moisture and Salinity
			10.2.3 Biological Control Against Pathogens
			10.2.4 Production of Growth Regulators/Promoters
		10.3 P. vulgaris Growth Response to Co-inoculation with PGPMs
			10.3.1 Effect of Co-inoculation with PGPM Consortia on Common Bean Growth Promotion
			10.3.2 PGPM Consortia Inoculation on Nutrient Acquisition for Common Beans
			10.3.3 Co-inoculation Effect of PGPM Consortia on Biological Control of Root-Knot Nematodes
			10.3.4 Alleviation of Moisture Stress in Common Beans by Co-inoculation with PGPM Consortia
		10.4 Formulation and Survival of the PGPM Biofertilizers
		10.5 Commercialization of PGPM Strains´ Biofertilizers
		10.6 Conclusions
		Glossary
		References
	Chapter 11: Management of Sustainable Vegetable Production Using Microbial Consortium
		11.1 Introduction
		11.2 Role of Microbial Consortium in Sustainable Vegetable Production
		11.3 Types of Microbial Consortia
			11.3.1 Bacteria-Bacteria Consortia
			11.3.2 Fungus-Bacteria Consortia
		11.4 Microbial Consortium as Plant Biostimulants
		11.5 Microbial Consortium as a Biocontrol Agent (BCA)
		11.6 Microbial Consortium-Mediated Plant Defense
		11.7 Microbial Consortium as Biofertilizer
		11.8 Challenges with Microbial Consortium
		11.9 Conclusive Remarks and Future Perspectives
		References
	Chapter 12: Consort Interactions of the Root Endophytes Serendipita spp. (Sebacinales, Agaricomycetes, Basidiomycota) with Cro...
		12.1 Introduction
		12.2 Inoculum and Root Colonization
			12.2.1 Measures of Assessing Mycorrhization
			12.2.2 PRC Vs. Inoculum Density
			12.2.3 Inoculum Quantity and the Outcome of the Interaction
			12.2.4 Inoculum Types and Sources
			12.2.5 Inoculum Quantity and Nutritional Conditions of the Substrate
			12.2.6 Inconsistent Choice of Inoculum Quantity
		12.3 Inoculation Methods
			12.3.1 Inoculation Based on Weight/Volume Ratio
				12.3.1.1 Mycelial Plugs as the Source of Inoculum
				12.3.1.2 Other Inoculation Methods
			12.3.2 Improving the Reproducibility of the Inoculation Technique
		12.4 Multipartner Symbioses
			12.4.1 Consortium of S. indica and/or S. vermifera with Other Microorganisms
				12.4.1.1 Consortium with Trichoderma spp.
				12.4.1.2 Consortia with Bacteria and AM Fungi
			12.4.2 Antagonisms/Synergisms in Multicomponent Systems
		12.5 Development of Carrier-Based Formulation
			12.5.1 Carrier-Based Formulations of S. indica and S. vermifera
		12.6 Conclusions
		References
	Chapter 13: Applications of Microbial Consortia and Microbiome Interactions for Augmenting Sustainable Agrobiology
		13.1 Introduction
		13.2 Overview of the Soil Microbiome
			13.2.1 Major Types of Soil Microbiome
			13.2.2 Factors Influencing the Growth, Survival, and Diversity of Soil Microbiome
			13.2.3 Overview of the Role of the Microbiome in Sustainable Agriculture
		13.3 Rhizosphere and Its Importance in Plant Systems
			13.3.1 Major Types of Interactions in the Soil
				13.3.1.1 Plant-Microbiome Interactions
				13.3.1.2 Root-Root Interactions
				13.3.1.3 Microbe-Microbe Interactions
		13.4 Modern Technology Used in Sustainable Agriculture: Major Goals and Concepts
			13.4.1 Data Science Concepts Involved in Agrobiology
				13.4.1.1 Genomics and Metagenomics
				13.4.1.2 Proteomics and Transcriptomics
				13.4.1.3 Metabolomics
		13.5 Scope of Data Sciences for the Analysis of Interactions in the Soil Microbiome
			13.5.1 Soil Metagenomics and Their Applications
				13.5.1.1 Soil Health
				13.5.1.2 Discovery of Antibiotics
				13.5.1.3 Industrial Use
				13.5.1.4 Bioremediation
				13.5.1.5 Sustainable Agriculture
		13.6 Scope of Next-Generation Sequencing in Agrobiology
			13.6.1 Single and Multiple Species Genomics in Agriculture
			13.6.2 Impact of NGS on Agrobiology
			13.6.3 NGS and Omics Approaches
			13.6.4 Revolution of Omics and Impact on Bioinformatics Research
		13.7 Challenges of Chemical Pesticides and Fertilizers in Agrobiology
		13.8 Alternative Approaches: Design and Development of Novel Microbial Consortia for Enhancing Plant Productivity
			13.8.1 Principles Involved in Formulating Microbial Consortia
			13.8.2 Methods for Formulating Microbial Consortia
			13.8.3 General Applications and Recent Case Studies of Designed Microbial Consortia
		13.9 Major Types of Microbial Consortia Responsible for Sustainable and Balanced Agrobiology
			13.9.1 Bacterial Consortia and Their Interactions
			13.9.2 Bacteria-Fungi Consortia and Their Interactions
		13.10 Merits and Demerits of Microbial Consortia-Based Approaches
			13.10.1 Merits
			13.10.2 Demerits
		13.11 Computational Biology and Bioinformatics Tools and Resources for the Design and Formulation of Novel Microbial Consortia
			13.11.1 Dynamic Modeling Tools
			13.11.2 Steady-State Modeling Tools
		13.12 Successful Applications of Data Sciences and Microbial Consortia-Based Approaches in Agrobiology
		13.13 Future Perspectives
		13.14 Concluding Remarks
		References
Part IV: Biofertilizer, Biocontrol Agents, and Crop Growth
	Chapter 14: Effect of Microbial Consortium Vs. Perfected Chemical Fertilizers for Sustainable Crop Growth
		14.1 Introduction
		14.2 Chemicals Vs. Biologicals
			14.2.1 Microbial Consortia in Lowering of Chemical Fertilizers
			14.2.2 Microbial Consortia in Salinity Stress Conditions
			14.2.3 Effect of Microbial Cocktail
		14.3 Microbial Consortia in Soil Management
		14.4 Consortia Constructions and Applications
		14.5 Conclusions
		References
	Chapter 15: Bioencapsulation of Biocontrol Agents as a Management Strategy for Plant Pathogens
		15.1 Introduction
		15.2 Progress in Encapsulation Technology to Sustain BCA Viability
		15.3 Encapsulation of BCAs in Plant Disease Management
		15.4 Potential Challenges and Future Research Directions
			15.4.1 Choice of Microbes
			15.4.2 Alternative Low-Cost Carrier Materials
			15.4.3 Features of Capsules
			15.4.4 Scaling Up of Encapsulated Microbes
		15.5 Conclusions
		References
	Chapter 16: Designing Tailored Bioinoculants for Sustainable Agrobiology in Multi-stressed Environments
		16.1 Introduction
		16.2 Plant Allies: How Do They Work?
			16.2.1 Improving Nutrient Acquisition
				16.2.1.1 Dinitrogen Fixation
				16.2.1.2 Phosphate Solubilization
				16.2.1.3 Potassium Solubilization
				16.2.1.4 Promotion of Plant Growth and Development Via Phytohormones
			16.2.2 Indirect Mechanisms
				16.2.2.1 ACC Deaminase Activity
				16.2.2.2 Production of Siderophores
				16.2.2.3 Other PGP Properties
			16.2.3 Tolerance of Bacterial Inoculants Toward Abiotic Stresses
			16.2.4 Competition in the Rhizosphere and Root Colonization
		16.3 How Can Omics Help Designing Inoculants?
			16.3.1 Traits for Resistance Toward Abiotic Stresses
			16.3.2 Traits for PGP Properties
			16.3.3 Traits Related to Competition in the Rhizosphere and Root Colonization
		16.4 Designing Inoculants Adapted to Poly-Stress Situations: The Core-Microbiome Approach
		16.5 Bottlenecks to Commercialization: Stability, Competitiveness, Regulatory Issues
		16.6 Concluding Remarks
		References
Part V: Conclusion: A Future Perspective
	Chapter 17: Development and Application of Consortia-Based Microbial Bioinoculants for Sustainable Agriculture
		References




نظرات کاربران