دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: گیاهان: کشاورزی و جنگلداری ویرایش: نویسندگان: Asif Iqbal, Mazhar Iqbal, Madeeha Alamzeb, Song Meizhen, Zhang Xiling, Muhammad Arif, Xiongming Du, Eric Lichtfouse سری: ISBN (شابک) : 3031161548, 9783031161544 ناشر: Springer سال نشر: 2022 تعداد صفحات: 250 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Sustainable Agriculture Reviews 58: Phosphorus Use Efficiency for Sustainable Agriculture به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بررسی های کشاورزی پایدار 58: کارایی استفاده از فسفر برای کشاورزی پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents About the Editors Contributors Chapter 1: Permaculture Principles, Practices, and Environmentalism 1.1 Introduction 1.2 Permaculture Ethics and Design Principles 1.3 Permaculture Practices Applied in Varying Spatial Scales 1.3.1 Food Production in Harmony with Nature 1.3.2 Low-Impact Housing 1.3.3 Permaculture Implementation at the Community Level 1.3.4 Permaculture Beyond a Geographically Confined Community 1.4 Permaculture Environmentalism 1.5 Conclusions References Chapter 2: Sources and Solubilization of Phosphatic Fertilizers 2.1 Introduction 2.2 Phosphorus Forms 2.3 Phosphorus Shortage 2.4 Solubilization of Rock Phosphate 2.5 Availability of Phosphorus and Implications on Agriculture Systems 2.6 Rock Phosphate as a Natural Fertilizer 2.7 Processing Affect Phosphorus Availability for Plants 2.7.1 Phosphate Mineralization 2.7.2 Adsorption and Desorption 2.7.3 Weathering, Precipitation, and Dissolution 2.8 Factors Influence Availability of Phosphorus 2.9 Biodiversity of Phosphate Dissolving Microorganisms 2.10 Manufacture of P Fertilizers 2.10.1 Nano Fertilizers 2.11 Conclusion References Chapter 3: Organic Phosphorous as an Alternative to Mineral Phosphatic Fertilizers 3.1 Introduction 3.2 Global Inorganic Phosphorous Status and Challenges 3.3 Phosphorus in the Soil Agriculture System 3.4 Organic Phosphorus Fertilizer 3.5 Testing Techniques of Organic Phosphorous 3.6 Impact of Organic Phosphorous on Soil 3.7 Impact of Organic Phosphorous on Crops 3.8 Conclusion References Chapter 4: Adaptive Responses of Crop Species Against Phosphorus Deficiency 4.1 Introduction 4.2 Crops Adaptive Responses to Phosphorus Starvation 4.2.1 Modifications of Root Architecture 4.2.2 Root Associated-Microbial Modulation 4.2.3 Gene Expression Induced by Phosphorus Starvation 4.3 Mechanisms of Phosphorus Acquisition and Homeostasis 4.3.1 Phosphorus Acquisition 4.3.2 Phosphorus Translocation 4.3.3 Phosphorus Re-Mobilization 4.4 Plant Root Exudation Under Phosphorus Deficiency 4.5 Microbial Symbiotic Associations 4.6 Microbial Communities Mediated Phosphorus Dynamics 4.7 Conclusion References Chapter 5: Biochar for Sustainable Phosphorus Management in Agroecosystems 5.1 Introduction 5.2 Phosphorus Dynamics in Soils 5.3 Biochar as a Soil Amendment 5.4 Biochar and Soil Phosphorus Dynamics 5.4.1 Biochar-Mediated Effects on the Soil Phosphorus Cycle 5.4.2 Effects of Biochar and Phosphorus on Crop Productivity 5.4.3 Effects of Biochar on Soil Phosphorus Dynamics 5.4.4 Interactions of Biochar with Organic and Inorganic Phosphorus Fertilizers 5.5 Biochar, Phosphorus Use Efficiency and Crop Productivity 5.6 Conclusion References Chapter 6: Phenotyping for Assessing Genotypic Variation in Phosphorus Use Efficiency 6.1 Introduction 6.2 Shoots 6.3 Roots 6.4 Rhizosphere 6.5 Different Sensors for Plant Phenotyping 6.5.1 Multispectral Imaging Cameras 6.5.2 Hyperspectral Imaging Cameras 6.5.3 Thermal Infrared Imaging Cameras 6.6 Application of Plant Phenotyping 6.6.1 Yield Phenotyping 6.6.2 Biomass Phenotyping 6.6.3 Plant Height Phenotyping 6.6.4 Leaf Area Index Phenotyping 6.6.5 Chlorophyll Phenotyping 6.6.6 Phenotyping of Other Traits 6.7 Conclusion References Chapter 7: Advanced Biotechnological Tools for Improving Phosphorus Use Efficiency 7.1 Introduction 7.2 Definition of Phosphorus Use Efficiency 7.3 Important Traits for Enhancing Phosphorus Use Efficiency 7.4 Physiological Traits Related to Phosphorus Use Efficiency 7.4.1 Utilization of Phosphate Transporters for Breeding Phosphorous Efficient Plants 7.4.2 Membrane Lipid Remodeling to Drive Phosphorous Remobilization 7.4.3 Signaling Pathways 7.5 Phenotyping 7.6 Genetics and Breeding to Improve the Phosphorus Use Efficiency 7.6.1 Mapping Populations 7.6.2 Molecular Marker and Genetic Linkage Map 7.6.3 Breeding of Phosphorous-Efficient Crop Varieties 7.7 Genes Related to Phosphorus Use Efficiency 7.8 Microbial Inoculants, Biofertilization and Phosphate Fertilizers 7.9 Conclusion References Chapter 8: Role of Arbuscular Mycorrhizal Fungi in Plant Phosphorus Acquisition for Sustainable Agriculture 8.1 Introduction 8.2 Soil Phosphorus and Acquisition by Plant Roots 8.2.1 Microorganism in the Acquisition of Phosphorus 8.2.2 Role of Arbuscular Mycorrhizal Fungi in the Acquisition of Phosphorus 8.2.3 Arbuscular Mycorrhizal Fungi Effect on the Roots of Mycorrhizal Plants 8.2.4 Uptake Mechanism of Soil Phosphorus by Mycelium 8.2.5 Arbuscular Mycorrhizal Fungi Modulate the Expression of Phosphorus Related Genes 8.3 Conclusion References Chapter 9: Phosphorus Cycle Enzymes to Remedy Soil Phosphorus Deficiency 9.1 Introduction 9.2 Soil Enzymes 9.2.1 Soil Enzymes and Enzyme Activity 9.2.2 Nitrogen Cycle Enzymes 9.2.2.1 Ureases 9.2.2.2 Amidase 9.2.2.3 L-Asparaginase 9.2.2.4 L-Glutaminase 9.2.2.5 Proteases 9.3 Phosphorus Cycle Enzymes 9.3.1 Phosphomonoesterases 9.3.1.1 Acid and Alkaline Phosphatases Acid Phosphatase Alkaline Phosphatase 9.3.1.2 Soil Phosphatase Activity 9.3.2 Role of Fertilizer Phosphorus in Biological Nitrogen Fixation 9.4 Biological Nitrogen Fixation 9.4.1 The Nitrogen Fixation Process 9.4.2 Significance of Biological Nitrogen Fixation to Soil Fertility 9.4.3 Nitrogen-Fixing Organisms 9.4.4 Factors Limiting Biological Nitrogen Fixation 9.4.4.1 Physical Constraints 9.4.4.2 Chemical Constraints 9.4.4.3 Biological Constraints 9.5 Nitrogen-Phosphorus Dynamics and Root Nodulation 9.5.1 Root and Root Nodules 9.5.2 Chlorophyll Content of Plant Leaf 9.6 Conclusion References Chapter 10: Phosphorus Nutrition Enhancement of Biological Nitrogen Fixation in Pastures 10.1 Introduction 10.2 Potentials of Biological Nitrogen Fixation in Pasture Swards 10.2.1 Types of Biological Nitrogen Fixation 10.2.1.1 Symbiotic Biological Nitrogen Fixation 10.2.2 Non-symbiotic Biological Nitrogen Fixation in Pastures 10.3 Optimization of Biological Nitrogen Fixation in Low-Input Agriculture 10.3.1 Optimizing Biological Nitrogen Fixation via Intercropping and Crop Rotation Systems 10.4 Optimizing Biological Nitrogen Fixation in Pastures via Ecofriendly Phosphorus Nutrition 10.4.1 Inclusion of Phosphorus-Mobilizing Species in Pasture Swards 10.4.2 Phosphorus Nutrition Through Arbuscular Mycorrhizal Fungi Associations for Improved Biological Nitrogen Fixation 10.5 Conclusion and Future Perspectives References Index