دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: William Nelson
سری:
ISBN (شابک) : 0367741210, 9780367741211
ناشر: CRC Press
سال نشر: 2023
تعداد صفحات: 312
[313]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 44 Mb
در صورت تبدیل فایل کتاب Sustainable Agricultural Chemistry in the 21st Century: Green Chemistry Nexus به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شیمی کشاورزی پایدار در قرن بیست و یکم: پیوند شیمی سبز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Explains the necessry role of agricultural chemistry in the sustainability of the world in the 21st century Recognizes past practices and future potential, guided by global demand and the four drivers: economic, scientific, regulatory and environmental Presents a much needed multi-dimensional approach to the subject Demonstrates that agricultural chemistries can and should be leading contributors in discussion on environmental science and chemistry Highlights new products, processes, applications and developments in green chemistry, which demonstrates how agriculture is adapting in the new age
Cover Half Title Title Page Copyright Page Table of Contents Preface Author Bio 1 Criteria for Sustainable Agricultural Chemistry 1.1 Environmental Science 1.1.1 Four Spheres 1.1.2 Dynamic Interaction Among Spheres 1.1.3 Foundation of Sustainability 1.2 Agricultural Chemistry 1.3 Components of Sustainable Agricultural Chemistry 1.3.1 Four Drivers 1.4 Contributing to the Success of Sustainability Through a Green Chemistry Nexus 1.4.1 Guidance From Green Chemistry 1.4.2 Response of Agricultural Chemistry to the World 1.4.3 Lithosphere References 2 Agricultural Chemistry in Global Sustainability 2.1 Sustainability and Sustainable Development 2.2 Agricultural Chemistry (AC) Through the Lens of the Four Spheres 2.2.1 Lithosphere 2.2.2 Role of Water (Hydrosphere) 2.2.3 Role of Air (Atmosphere) 2.2.4 Role of Humans (Biosphere) 2.3 Factors Challenging Sustainable Agriculture 2.3.1 Soil Integrity 2.3.2 Water 2.3.3 Carbon Footprint 2.3.4 Ecology/economy 2.3.5 Nutrients and Food Safety 2.3.6 Climate Change 2.4 Emerging Areas 2.4.1 Green Chemistry 2.4.2 World Health 2.4.3 Modeling Sustainability 2.4.4 Bioeconomy/biorefinery 2.4.5 Biochar 2.5 Conclusion and a Path Forward References 3 Forces in Agricultural Chemistry and the Need for Circularity 3.1 Agriculture and the Case for Circularity 3.1.1 Four Fields of Strategic Importance 3.1.2 Earth as a System 3.1.3 Identification of Issues 3.1.4 Closed Loop Toward Circular Agricultural Chemistry 3.2 Moving Agricultural Chemistry to Sustainability Through Chemistry 3.2.1 Food Systems 3.2.2 Problems Facing Agriculture 3.2.3 Economy, Society, and Culture 3.3 Circular Thinking in Agricultural Chemistry 3.3.1 Circular Economy 3.3.2 Agriculture and Chemistry 3.3.3 The Biorefinery and Biochar as Ways to Promote AC Sustainability 3.3.4 Life Cycle Analyses 3.4 Developing a New Paradigm References 4 Life Cycle Assessment With Circularity 4.1 Introduction 4.2 Life Cycle Assessment 4.2.1 Components 4.2.2 Purpose of LCA 4.2.3 Limitations of LCA 4.2.4 Cost of LCA 4.2.5 LCA and Sustainable Circularity 4.3 Circularity: Circular Economy and Circular Chemistry 4.3.1 Circular Thinking as a Complement to LCA 4.3.2 LCA Adapting to Agricultural Chemistry in the Twenty-First Century 4.3.2.1 Land Use 4.3.2.2 Crop Rotation 4.3.2.3 Biodiversity Loss 4.4 Agricultural Chemistry Responding to Needs of the Twenty-First Century 4.4.1 Agricultural Sustainability Through LCA 4.4.2 Agricultural Chemistry Expressed in the Biorefinery 4.4.3 LCA, AC, and Water 4.4.4 LCA, AC, and Energy 4.5 LCA, CIR, and the Bioeconomy References 5 Use of Natural Resources Affecting Sustainability 5.1 Agriculture in the Twenty-First Century 5.1.1 Three Roles of Agriculture 5.1.2 Global Partnerships 5.2 Systems of Cycles and Spheres 5.2.1 Importance of Soil for Agriculture and Global Issues 5.2.2 Advancing Food Security 5.3 The Earth as a System 5.3.1 Importance of Soil 5.3.2 Transport Processes 5.3.2.1 Energy and Material Flows 5.3.2.2 Biogeochemical Cycles 5.4 Sustainability Model 5.4.1 Material Circulation 5.4.2 Resources Recovery 5.5 Agriculture, Human Activity, and Global Sustainability 5.5.1 Anthropocene 5.5.2 Human Sustainability 5.6 Preservation of Necessary Resources Through Circular Chemistry 5.6.1 Introduction to SIA 5.6.2 Components of SIA 5.7 Agricultural Chemistry Contributions to Promoting Sustainability 5.7.1 Sustainable Biomass 5.7.2 Biochar 5.7.3 Plant Health Protection References 6 Programs and Processes That Define Agricultural Chemistry in the Twenty-First Century 6.1 Characteristics of Twenty-First Century Agricultural Chemistry 6.1.1 Smart 6.1.2 Intense 6.1.3 Green 6.1.4 Circular 6.1.5 Renewable 6.1.6 Sustainable 6.2 Centrality of Chemistry 6.2.1 Explaining Activities, Processes, and Transport in Spheres 6.2.2 Human Health and Agricultural Chemistry 6.2.3 Climate Instability 6.2.4 Energy Usage 6.2.5 Analytical Techniques That Open New Areas of Science 6.2.6 Microbe Chemistry 6.3 Existing Agricultural Structures 6.3.1 Small Scale Farming Methods 6.3.1.1 Characteristics of Small-Scale Farming[28,29] 6.3.1.2 Main Differences Between Small-Scale and Conventional Farming 6.3.1.3 Challenges and Problems 6.3.1.4 Greenhouse Farming 6.3.2 Industrial Intense Farming 6.3.2.1 Description 6.3.2.2 Problems 6.3.2.3 Solutions 6.3.3 Environment 6.3.4 Pesticides 6.4 New Face of Agricultural Chemistry 6.4.1 Genetically Modified Crops 6.4.2 Artificial Intelligence 6.4.3 Chemical Products From Agriculture 6.4.4 Green Chemistry 6.4.5 Sustainable Intense Agriculture 6.4.6 Circularity 6.5 Agricultural Chemistry in the Twenty-First Century References 7 Unsustainable Agricultural Waste Streams 7.1 Magnitude of Agricultural Waste 7.1.1 Types of FLW 7.1.2 Causes of Food Losses and Waste 7.1.3 Economic Consequences of Waste 7.1.4 Social Impacts/nutrition 7.1.5 Climate Change 7.2 Treatments 7.3 Valorization of Waste 7.3.1 Food Waste Management Gaps 7.4 Food Waste Management in the Twenty-First Century 7.4.1 Reusing and Recycling 7.4.2 Valorizing Waste 7.4.2.1 Biofuel 7.4.2.2 Valuable Biomaterials 7.4.2.3 Bioactive Compounds 7.4.2.4 Food Waste as Additives in Food Products 7.5 Food and Nutrition Security Through Waste Circularity 7.5.1 Biorefinery for Agricultural Food Waste 7.5.2 Circular Approaches 7.5.2.1 Digestate 7.5.2.2 Composting 7.5.2.3 Anaerobic Digestion 7.5.2.4 Land Applications 7.6 Concluding Remarks References 8 Agricultural Chemistry in the Food, Energy, and Water Nexus 8.1 The Nexus of Food, Energy, and Water (FEW) 8.1.1 What Is the FEW Nexus 8.1.2 Interaction Among Nexus 8.1.3 Dimensions of the FEW Nexus 8.1.4 Food 8.1.5 Circularity in the FEW Nexus 8.2 Chemistry 8.2.1 Past 8.2.2 Present 8.2.3 Future 8.3 Agricultural Chemistry Role 8.3.1 Water Availability and Scarcity 8.3.2 Water Reclamation 8.3.3 Water Quality 8.3.4 Impact of Contaminated Water On Food 8.3.5 Food and Biofuels 8.3.6 Renewable Sources of Energy 8.4 Food Security With FEW Nexus 8.4.1 Employing Sustainable Production Methods 8.4.2 Changing Diets 8.4.3 Reducing Food Loss and Waste 8.5 Sustainable Solutions References 9 Sustainable Intensive Agriculture 9.1 Background 9.1.1 Paradigm 9.1.2 Necessity for a Paradigm Shift 9.1.3 Criteria 9.1.4 Definition of Sustainable Intensive Agriculture (SIA) 9.2 Intensive Sustainable Practices for Human Needs 9.2.1 Sources of Practices 9.2.2 Biophysical Safe Space 9.2.3 Transforming the Anthropocene 9.2.4 Sustainable Examples With Intensive Agriculture (IA) 9.3 Sustainable Practices for the Four Spheres 9.3.1 Working With Nature 9.3.2 Managing Sustainable Increases 9.3.3 Twenty-First Century Production 9.4 The Way Forward 9.4.1 Transformation, Co-Design, and Learning References 10 Circularity: Environmental, Chemical, Agricultural 10.1 The Nature of Circularity 10.1.1 Circular Economy 10.1.2 Transitioning to a Circular Economy 10.1.3 Circularity Goals 10.2 Environmental Circularity – a Necessary First Step 10.2.1 Introduction 10.2.2 Linking Environmental and Agricultural Circularity 10.2.3 Areas of Environmental Circularity Applications 10.3 Chemical Circularity 10.3.1 Circular Chemistry to Enable a Circular Economy 10.3.2 Integrating Chemistry Into a Circular Economy 10.3.3 Examples 10.3.4 Afterthoughts On Circular Chemistry 10.4 Agricultural Chemistry Circularity 10.4.1 Introduction 10.4.2 Dimensions and Models for Agricultural Circularity 10.4.3 Examples of Agricultural Circularity 10.5 Conclusion References 11 Smart Agriculture Through Agricultural Chemistry 11.1 Introduction 11.1.1 Food Security 11.1.2 Smart Farming Technologies 11.1.3 Metrics for the Three Pillars of CSA 11.1.4 Environmental Impacts and Climate Change 11.2 Agricultural Sustainability and Climate Change 11.2.1 Current Situation 11.2.2 Consumers 11.2.3 Politics 11.3 Climate Smart Agriculture 11.3.1 Overview 11.3.2 Science in CSA 11.3.3 Impacts 11.3.4 Intensification Within the Constraints of CSA 11.4 Tools for Climate Smart Agriculture 11.4.1 Cloud Computing 11.4.2 Artificial Intelligence 11.4.3 Data Mining 11.4.4 Internet of Things (IoT) 11.5 Resources and Engineering That Comprise CSA 11.5.1 Monitoring 11.5.2 Nanomaterials for Fertilizers and Pesticides 11.5.3 Hydroponics 11.5.4 Biosensors 11.5.5 Genetic Engineering 11.5.6 Land Recovery 11.5.7 Diffusion 11.5.8 Scaling 11.6 Afterthoughts References 12 Crop Protection and Agricultural Green Chemistry 12.1 Introduction 12.2 Classes of CPCs Used in Twenty-First-Century Agriculture 12.2.1 Need for Innovation 12.2.2 Fungicides for Disease Control 12.2.3 Herbicides for Weed Control 12.2.4 Safeners for Weed Control 12.2.5 Insecticides for Pest Control 12.2.6 Nematicides 12.2.7 Managing Microbes 12.3 Principles of Green Chemistry Applied in Crop Protection 12.3.1 Prevent Waste 12.3.2 Maximize Atom Economy 12.3.3 Design Less Hazardous Synthesis of CPCs 12.3.4 Design Safer Chemicals and Products 12.3.5 Use Safer Solvents and Reaction Conditions 12.3.6 Design for Energy Efficiency and Production of Biofuel 12.3.7 Use Renewable Feedstocks 12.3.7.1 Biorefinery 12.3.7.2 CPC 12.3.7.3 Bioplastics 12.3.7.4 Biopolycarbonates 12.3.7.5 Oils 12.3.8 Avoid Derivatives in Synthesis Steps 12.3.9 Use Catalysis, Not Stoichiometric Reagents 12.3.9.1 Chemical Reactions 12.3.9.2 Catalysts From Waste 12.3.9.3 Asymmetric Synthesis 12.3.9.4 Enzymes 12.3.10 Design Products to Degrade After Use 12.3.11 Analyze in Real Time 12.3.11.1 Manufacturing 12.3.11.2 Pesticide Analyses 12.3.11.3 Field Analyses/Smart Agriculture 12.3.12 Minimize Potential for Accidents 12.3.12.1 Personal Protection Equipment 12.3.12.2 Phytomanagement 12.4 Conclusion References 13 Sustainable Agricultural Chemistry: The Biorefinery 13.1 Biorefinery Overview 13.1.1 Principles of a Sustainable Biorefinery 13.1.2 Global Drivers 13.1.3 Types of Biorefineries 13.1.4 Pretreatment Processes 13.1.5 Separation and Recovery Technologies 13.1.6 Role of Enzymes 13.1.7 Microorganisms 13.1.8 Biorefinery and Circular Economy 13.1.9 Green Biorefineries 13.2 Connection to Agriculture 13.2.1 Lignocellulosic Biorefinery (LBR) 13.2.2 Food Waste 13.2.3 Biomass 13.2.4 Fruit 13.2.5 Rice 13.2.6 Corn 13.3 Role of Agricultural Chemistry in the Biorefinery 13.3.1 Food Waste Biorefineries (FWB) 13.3.2 Modeling Biowaste Biorefineries 13.3.3 Integrated Biorefineries of Agricultural Waste 13.3.4 Challenges in Integrated Biorefinery of Agricultural Waste 13.4 Sustainability Contributions By Biorefineries 13.4.1 Wastewater 13.4.2 Energy 13.4.3 Biowaste 13.4.4 Chemical Production 13.4.5 Circular Economy References 14 Epilogue: Building a Sustainable Agricultural Chemistry 14.1 Challenge of Building Sustainable Agricultural Chemistry 14.1.1 Agricultural Chemistry as a Tangled Ball of Yarn 14.1.2 Necessary Methodology 14.1.3 Importance of Agricultural Chemistry 14.2 Problems Affecting Sustainability 14.2.1 Intensification 14.2.2 Dietary Challenges 14.2.3 Land Use 14.2.4 Climate Change 14.2.5 Smart Agriculture 14.2.6 Disappearing Water 14.2.7 Societal Education 14.3 Integration of Solutions 14.3.1 Improving Policy Environment/education 14.3.2 New Practices and Technologies 14.3.3 Fertilizers/crop Protection 14.3.4 Improve Seed Growth 14.3.5 Valorizing Waste 14.3.6 Smart Agriculture Through IoT 14.3.7 Biorefinery 14.4 From this Day Forward… References Index