ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Sustainable Agricultural Chemistry in the 21st Century: Green Chemistry Nexus

دانلود کتاب شیمی کشاورزی پایدار در قرن بیست و یکم: پیوند شیمی سبز

Sustainable Agricultural Chemistry in the 21st Century: Green Chemistry Nexus

مشخصات کتاب

Sustainable Agricultural Chemistry in the 21st Century: Green Chemistry Nexus

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0367741210, 9780367741211 
ناشر: CRC Press 
سال نشر: 2023 
تعداد صفحات: 312
[313] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 44 Mb 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Sustainable Agricultural Chemistry in the 21st Century: Green Chemistry Nexus به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شیمی کشاورزی پایدار در قرن بیست و یکم: پیوند شیمی سبز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب شیمی کشاورزی پایدار در قرن بیست و یکم: پیوند شیمی سبز




توضیحاتی درمورد کتاب به خارجی

Explains the necessry role of agricultural chemistry in the sustainability of the world in the 21st century Recognizes past practices and future potential, guided by global demand and the four drivers: economic, scientific, regulatory and environmental Presents a much needed multi-dimensional approach to the subject Demonstrates that agricultural chemistries can and should be leading contributors in discussion on environmental science and chemistry Highlights new products, processes, applications and developments in green chemistry, which demonstrates how agriculture is adapting in the new age



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
Author Bio
1 Criteria for Sustainable Agricultural Chemistry
	1.1 Environmental Science
		1.1.1 Four Spheres
		1.1.2 Dynamic Interaction Among Spheres
		1.1.3 Foundation of Sustainability
	1.2 Agricultural Chemistry
	1.3 Components of Sustainable Agricultural Chemistry
		1.3.1 Four Drivers
	1.4 Contributing to the Success of Sustainability Through a Green Chemistry Nexus
		1.4.1 Guidance From Green Chemistry
		1.4.2 Response of Agricultural Chemistry to the World
		1.4.3 Lithosphere
	References
2 Agricultural Chemistry in Global Sustainability
	2.1 Sustainability and Sustainable Development
	2.2 Agricultural Chemistry (AC) Through the Lens of the Four Spheres
		2.2.1 Lithosphere
		2.2.2 Role of Water (Hydrosphere)
		2.2.3 Role of Air (Atmosphere)
		2.2.4 Role of Humans (Biosphere)
	2.3 Factors Challenging Sustainable Agriculture
		2.3.1 Soil Integrity
		2.3.2 Water
		2.3.3 Carbon Footprint
		2.3.4 Ecology/economy
		2.3.5 Nutrients and Food Safety
		2.3.6 Climate Change
	2.4 Emerging Areas
		2.4.1 Green Chemistry
		2.4.2 World Health
		2.4.3 Modeling Sustainability
		2.4.4 Bioeconomy/biorefinery
		2.4.5 Biochar
	2.5 Conclusion and a Path Forward
	References
3 Forces in Agricultural Chemistry and the Need for Circularity
	3.1 Agriculture and the Case for Circularity
		3.1.1 Four Fields of Strategic Importance
		3.1.2 Earth as a System
		3.1.3 Identification of Issues
		3.1.4 Closed Loop Toward Circular Agricultural Chemistry
	3.2 Moving Agricultural Chemistry to Sustainability Through Chemistry
		3.2.1 Food Systems
		3.2.2 Problems Facing Agriculture
		3.2.3 Economy, Society, and Culture
	3.3 Circular Thinking in Agricultural Chemistry
		3.3.1 Circular Economy
		3.3.2 Agriculture and Chemistry
		3.3.3 The Biorefinery and Biochar as Ways to Promote AC Sustainability
		3.3.4 Life Cycle Analyses
	3.4 Developing a New Paradigm
	References
4 Life Cycle Assessment With Circularity
	4.1 Introduction
	4.2 Life Cycle Assessment
		4.2.1 Components
		4.2.2 Purpose of LCA
		4.2.3 Limitations of LCA
		4.2.4 Cost of LCA
		4.2.5 LCA and Sustainable Circularity
	4.3 Circularity: Circular Economy and Circular Chemistry
		4.3.1 Circular Thinking as a Complement to LCA
		4.3.2 LCA Adapting to Agricultural Chemistry in the Twenty-First Century
			4.3.2.1 Land Use
			4.3.2.2 Crop Rotation
			4.3.2.3 Biodiversity Loss
	4.4 Agricultural Chemistry Responding to Needs of the Twenty-First Century
		4.4.1 Agricultural Sustainability Through LCA
		4.4.2 Agricultural Chemistry Expressed in the Biorefinery
		4.4.3 LCA, AC, and Water
		4.4.4 LCA, AC, and Energy
	4.5 LCA, CIR, and the Bioeconomy
	References
5 Use of Natural Resources Affecting Sustainability
	5.1 Agriculture in the Twenty-First Century
		5.1.1 Three Roles of Agriculture
		5.1.2 Global Partnerships
	5.2 Systems of Cycles and Spheres
		5.2.1 Importance of Soil for Agriculture and Global Issues
		5.2.2 Advancing Food Security
	5.3 The Earth as a System
		5.3.1 Importance of Soil
		5.3.2 Transport Processes
			5.3.2.1 Energy and Material Flows
			5.3.2.2 Biogeochemical Cycles
	5.4 Sustainability Model
		5.4.1 Material Circulation
		5.4.2 Resources Recovery
	5.5 Agriculture, Human Activity, and Global Sustainability
	5.5.1 Anthropocene
		5.5.2 Human Sustainability
	5.6 Preservation of Necessary Resources Through Circular Chemistry
		5.6.1 Introduction to SIA
		5.6.2 Components of SIA
	5.7 Agricultural Chemistry Contributions to Promoting Sustainability
		5.7.1 Sustainable Biomass
		5.7.2 Biochar
		5.7.3 Plant Health Protection
	References
6 Programs and Processes That Define Agricultural Chemistry in the Twenty-First Century
	6.1 Characteristics of Twenty-First Century Agricultural Chemistry
		6.1.1 Smart
		6.1.2 Intense
		6.1.3 Green
		6.1.4 Circular
		6.1.5 Renewable
		6.1.6 Sustainable
	6.2 Centrality of Chemistry
		6.2.1 Explaining Activities, Processes, and Transport in Spheres
		6.2.2 Human Health and Agricultural Chemistry
		6.2.3 Climate Instability
		6.2.4 Energy Usage
		6.2.5 Analytical Techniques That Open New Areas of Science
		6.2.6 Microbe Chemistry
	6.3 Existing Agricultural Structures
		6.3.1 Small Scale Farming Methods
			6.3.1.1 Characteristics of Small-Scale Farming[28,29]
			6.3.1.2 Main Differences Between Small-Scale and Conventional Farming
			6.3.1.3 Challenges and Problems
			6.3.1.4 Greenhouse Farming
		6.3.2 Industrial Intense Farming
			6.3.2.1 Description
			6.3.2.2 Problems
			6.3.2.3 Solutions
		6.3.3 Environment
		6.3.4 Pesticides
	6.4 New Face of Agricultural Chemistry
		6.4.1 Genetically Modified Crops
		6.4.2 Artificial Intelligence
		6.4.3 Chemical Products From Agriculture
		6.4.4 Green Chemistry
		6.4.5 Sustainable Intense Agriculture
		6.4.6 Circularity
	6.5 Agricultural Chemistry in the Twenty-First Century
	References
7 Unsustainable Agricultural Waste Streams
	7.1 Magnitude of Agricultural Waste
		7.1.1 Types of FLW
		7.1.2 Causes of Food Losses and Waste
		7.1.3 Economic Consequences of Waste
		7.1.4 Social Impacts/nutrition
		7.1.5 Climate Change
	7.2 Treatments
	7.3 Valorization of Waste
		7.3.1 Food Waste Management Gaps
	7.4 Food Waste Management in the Twenty-First Century
		7.4.1 Reusing and Recycling
		7.4.2 Valorizing Waste
			7.4.2.1 Biofuel
			7.4.2.2 Valuable Biomaterials
			7.4.2.3 Bioactive Compounds
			7.4.2.4 Food Waste as Additives in Food Products
	7.5 Food and Nutrition Security Through Waste Circularity
		7.5.1 Biorefinery for Agricultural Food Waste
		7.5.2 Circular Approaches
			7.5.2.1 Digestate
			7.5.2.2 Composting
			7.5.2.3 Anaerobic Digestion
			7.5.2.4 Land Applications
	7.6 Concluding Remarks
	References
8 Agricultural Chemistry in the Food, Energy, and Water Nexus
	8.1 The Nexus of Food, Energy, and Water (FEW)
		8.1.1 What Is the FEW Nexus
		8.1.2 Interaction Among Nexus
		8.1.3 Dimensions of the FEW Nexus
		8.1.4 Food
		8.1.5 Circularity in the FEW Nexus
	8.2 Chemistry
		8.2.1 Past
		8.2.2 Present
		8.2.3 Future
	8.3 Agricultural Chemistry Role
		8.3.1 Water Availability and Scarcity
		8.3.2 Water Reclamation
		8.3.3 Water Quality
		8.3.4 Impact of Contaminated Water On Food
		8.3.5 Food and Biofuels
		8.3.6 Renewable Sources of Energy
	8.4 Food Security With FEW Nexus
		8.4.1 Employing Sustainable Production Methods
		8.4.2 Changing Diets
		8.4.3 Reducing Food Loss and Waste
	8.5 Sustainable Solutions
	References
9 Sustainable Intensive Agriculture
	9.1 Background
		9.1.1 Paradigm
		9.1.2 Necessity for a Paradigm Shift
		9.1.3 Criteria
		9.1.4 Definition of Sustainable Intensive Agriculture (SIA)
	9.2 Intensive Sustainable Practices for Human Needs
		9.2.1 Sources of Practices
		9.2.2 Biophysical Safe Space
		9.2.3 Transforming the Anthropocene
		9.2.4 Sustainable Examples With Intensive Agriculture (IA)
	9.3 Sustainable Practices for the Four Spheres
		9.3.1 Working With Nature
		9.3.2 Managing Sustainable Increases
		9.3.3 Twenty-First Century Production
	9.4 The Way Forward
		9.4.1 Transformation, Co-Design, and Learning
	References
10 Circularity: Environmental, Chemical, Agricultural
	10.1 The Nature of Circularity
		10.1.1 Circular Economy
		10.1.2 Transitioning to a Circular Economy
		10.1.3 Circularity Goals
	10.2 Environmental Circularity – a Necessary First Step
		10.2.1 Introduction
		10.2.2 Linking Environmental and Agricultural Circularity
		10.2.3 Areas of Environmental Circularity Applications
	10.3 Chemical Circularity
		10.3.1 Circular Chemistry to Enable a Circular Economy
		10.3.2 Integrating Chemistry Into a Circular Economy
		10.3.3 Examples
		10.3.4 Afterthoughts On Circular Chemistry
	10.4 Agricultural Chemistry Circularity
		10.4.1 Introduction
		10.4.2 Dimensions and Models for Agricultural Circularity
		10.4.3 Examples of Agricultural Circularity
	10.5 Conclusion
	References
11 Smart Agriculture Through Agricultural Chemistry
	11.1 Introduction
		11.1.1 Food Security
		11.1.2 Smart Farming Technologies
		11.1.3 Metrics for the Three Pillars of CSA
		11.1.4 Environmental Impacts and Climate Change
	11.2 Agricultural Sustainability and Climate Change
		11.2.1 Current Situation
		11.2.2 Consumers
		11.2.3 Politics
	11.3 Climate Smart Agriculture
		11.3.1 Overview
		11.3.2 Science in CSA
		11.3.3 Impacts
		11.3.4 Intensification Within the Constraints of CSA
	11.4 Tools for Climate Smart Agriculture
		11.4.1 Cloud Computing
		11.4.2 Artificial Intelligence
		11.4.3 Data Mining
		11.4.4 Internet of Things (IoT)
	11.5 Resources and Engineering That Comprise CSA
		11.5.1 Monitoring
		11.5.2 Nanomaterials for Fertilizers and Pesticides
		11.5.3 Hydroponics
		11.5.4 Biosensors
		11.5.5 Genetic Engineering
		11.5.6 Land Recovery
		11.5.7 Diffusion
		11.5.8 Scaling
	11.6 Afterthoughts
	References
12 Crop Protection and Agricultural Green Chemistry
	12.1 Introduction
	12.2 Classes of CPCs Used in Twenty-First-Century Agriculture
		12.2.1 Need for Innovation
		12.2.2 Fungicides for Disease Control
		12.2.3 Herbicides for Weed Control
		12.2.4 Safeners for Weed Control
		12.2.5 Insecticides for Pest Control
		12.2.6 Nematicides
		12.2.7 Managing Microbes
	12.3 Principles of Green Chemistry Applied in Crop Protection
		12.3.1 Prevent Waste
		12.3.2 Maximize Atom Economy
		12.3.3 Design Less Hazardous Synthesis of CPCs
		12.3.4 Design Safer Chemicals and Products
		12.3.5 Use Safer Solvents and Reaction Conditions
		12.3.6 Design for Energy Efficiency and Production of Biofuel
		12.3.7 Use Renewable Feedstocks
			12.3.7.1 Biorefinery
			12.3.7.2 CPC
			12.3.7.3 Bioplastics
			12.3.7.4 Biopolycarbonates
			12.3.7.5 Oils
		12.3.8 Avoid Derivatives in Synthesis Steps
		12.3.9 Use Catalysis, Not Stoichiometric Reagents
			12.3.9.1 Chemical Reactions
			12.3.9.2 Catalysts From Waste
			12.3.9.3 Asymmetric Synthesis
			12.3.9.4 Enzymes
		12.3.10 Design Products to Degrade After Use
		12.3.11 Analyze in Real Time
			12.3.11.1 Manufacturing
			12.3.11.2 Pesticide Analyses
			12.3.11.3 Field Analyses/Smart Agriculture
		12.3.12 Minimize Potential for Accidents
			12.3.12.1 Personal Protection Equipment
			12.3.12.2 Phytomanagement
	12.4 Conclusion
	References
13 Sustainable Agricultural Chemistry: The Biorefinery
	13.1 Biorefinery Overview
		13.1.1 Principles of a Sustainable Biorefinery
		13.1.2 Global Drivers
		13.1.3 Types of Biorefineries
		13.1.4 Pretreatment Processes
		13.1.5 Separation and Recovery Technologies
		13.1.6 Role of Enzymes
		13.1.7 Microorganisms
		13.1.8 Biorefinery and Circular Economy
		13.1.9 Green Biorefineries
	13.2 Connection to Agriculture
		13.2.1 Lignocellulosic Biorefinery (LBR)
		13.2.2 Food Waste
		13.2.3 Biomass
		13.2.4 Fruit
		13.2.5 Rice
		13.2.6 Corn
	13.3 Role of Agricultural Chemistry in the Biorefinery
		13.3.1 Food Waste Biorefineries (FWB)
		13.3.2 Modeling Biowaste Biorefineries
		13.3.3 Integrated Biorefineries of Agricultural Waste
		13.3.4 Challenges in Integrated Biorefinery of Agricultural Waste
	13.4 Sustainability Contributions By Biorefineries
		13.4.1 Wastewater
		13.4.2 Energy
		13.4.3 Biowaste
		13.4.4 Chemical Production
		13.4.5 Circular Economy
	References
14 Epilogue: Building a Sustainable Agricultural Chemistry
	14.1 Challenge of Building Sustainable Agricultural Chemistry
		14.1.1 Agricultural Chemistry as a Tangled Ball of Yarn
		14.1.2 Necessary Methodology
		14.1.3 Importance of Agricultural Chemistry
	14.2 Problems Affecting Sustainability
		14.2.1 Intensification
		14.2.2 Dietary Challenges
		14.2.3 Land Use
		14.2.4 Climate Change
		14.2.5 Smart Agriculture
		14.2.6 Disappearing Water
		14.2.7 Societal Education
	14.3 Integration of Solutions
		14.3.1 Improving Policy Environment/education
		14.3.2 New Practices and Technologies
		14.3.3 Fertilizers/crop Protection
		14.3.4 Improve Seed Growth
		14.3.5 Valorizing Waste
		14.3.6 Smart Agriculture Through IoT
		14.3.7 Biorefinery
	14.4 From this Day Forward…
	References
Index




نظرات کاربران