دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2021]
نویسندگان: John O'Quigley
سری:
ISBN (شابک) : 3030334384, 9783030334383
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 491
[476]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 Mb
در صورت تبدیل فایل کتاب Survival Analysis: Proportional and Non-Proportional Hazards Regression (Springer the Data Sciences) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل بقا: رگرسیون خطرات متناسب و غیر متناسب (Springer the Data Sciences) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Summary of main notation 1 Introduction 1.1 Chapter summary 1.2 Context and motivation 1.3 Some examples 1.4 Main objectives 1.5 Neglected and underdeveloped topics 1.6 Model-based prediction 1.7 Data sets 1.8 Use as a graduate text 1.9 Classwork and homework 2 Survival analysis methodology 2.1 Chapter summary 2.2 Context and motivation 2.3 Basic tools 2.4 Some potential models 2.5 Censoring 2.6 Competing risks 2.7 Classwork and homework 3 Survival without covariates 3.1 Chapter summary 3.2 Context and motivation 3.3 Parametric models for survival functions 3.4 Empirical estimate (no censoring) 3.5 Kaplan-Meier (empirical estimate with censoring) 3.6 Nelson-Aalen estimate of survival 3.7 Model verification using empirical estimate 3.8 Classwork and homework 3.9 Outline of proofs 4 Proportional hazards models 4.1 Chapter summary 4.2 Context and motivation 4.3 General or non-proportional hazards model 4.4 Proportional hazards model 4.5 Cox regression model 4.6 Modeling multivariate problems 4.7 Classwork and homework 5 Proportional hazards models in epidemiology 5.1 Chapter summary 5.2 Context and motivation 5.3 Odds ratio, relative risk, and 2times2 tables 5.4 Logistic regression and proportional hazards 5.5 Survival in specific groups 5.6 Genetic epidemiology 5.7 Classwork and homework 6 Non-proportional hazards models 6.1 Chapter summary 6.2 Context and motivation 6.3 Partially proportional hazards models 6.4 Partitioning of the time axis 6.5 Time-dependent covariates 6.6 Linear and alternative model formulations 6.7 Classwork and homework 7 Model-based estimating equations 7.1 Chapter summary 7.2 Context and motivation 7.3 Likelihood solution for parametric models 7.4 Semi-parametric estimating equations 7.5 Estimating equations using moments 7.6 Incorrectly specified models 7.7 Estimating equations in small samples 7.8 Classwork and homework 7.9 Outline of proofs 8 Survival given covariate information 8.1 Chapter summary 8.2 Context and motivation 8.3 Probability that Ti is greater than Tj 8.4 Conditional survival given ZinH 8.5 Other relative risk forms 8.6 Informative censoring 8.7 Classwork and homework 8.8 Outline of proofs 9 Regression effect process 9.1 Chapter summary 9.2 Context and motivation 9.3 Elements of the regression effect process 9.4 Univariate regression effect process 9.5 Regression effect processes for several covariates 9.6 Iterated logarithm for effective sample size 9.7 Classwork and homework 9.8 Outline of proofs 10 Model construction guided by regression effect process 10.1 Chapter summary 10.2 Context and motivation 10.3 Classical graphical methods 10.4 Confidence bands for regression effect process 10.5 Structured tests for time dependency 10.6 Predictive ability of a regression model 10.7 The R2 estimate of Ω2 10.8 Using R2 and fit to build models 10.9 Some simulated situations 10.10 Illustrations from clinical studies 10.11 Classwork and homework 10.12 Outline of proofs 11 Hypothesis tests based on regression effect process 11.1 Chapter summary 11.2 Context and motivation 11.3 Some commonly employed tests 11.4 Tests based on the regression effect process 11.5 Choosing the best test statistic 11.6 Relative efficiency of competing tests 11.7 Supremum tests over cutpoints 11.8 Some simulated comparisons 11.9 Illustrations 11.10 Some further thoughts 11.11 Classwork and homework 11.12 Outline of proofs A Probability A.1 Essential tools for survival problems A.2 Integration and measure A.3 Random variables and probability measure A.4 Convergence for random variables A.5 Topology and distance measures A.6 Distributions and densities A.7 Multivariate and copula models A.8 Expectation A.9 Order statistics and their expectations A.10 Approximations B Stochastic processes B.1 Broad overview B.2 Brownian motion B.3 Counting processes and martingales B.4 Inference for martingales and stochastic integrals C Limit theorems C.1 Empirical processes and central limit theorems C.2 Limit theorems for sums of random variables C.3 Functional central limit theorem C.4 Brownian motion as limit process C.5 Empirical distribution function D Inferential tools D.1 Theory of estimating equations D.2 Efficiency in estimation and in tests D.3 Inference using resampling techniques D.4 Conditional, marginal, and partial likelihood E Simulating data under the non-proportional hazards model E.1 Method 1—Change-point models E.2 Method 2—Non-proportional hazards models Further exercises and proofs Bibliography Index