دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: JOHN AWANGE JOSEPH WALKER
سری:
ISBN (شابک) : 9783030458034, 3030458032
ناشر: SPRINGER NATURE
سال نشر: 2020
تعداد صفحات: [434]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 Mb
در صورت تبدیل فایل کتاب SURVEYING FOR CIVIL AND MINE ENGINEERS acquire the skills in weeks. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نقشه برداری برای مهندسان عمران و معدن این مهارت ها را در چند هفته به دست می آورد. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این نسخه به روز شده و توسعه یافته کتاب شامل چهار فصل اضافی در مورد کارهای خاکی در سایت های شیبدار است. منحنی های انتقالی و ارتفاع فوق العاده؛ محاسبات ارتفاعات فوق العاده در منحنی های مرکب. و بررسی معادن زیرزمینی به طور غنی با نمودارها، معادلات و جداول و همچنین نمونه هایی از وظایف نظرسنجی روزانه نشان داده شده است. همچنین موضوعات جدیدی مانند سیستم جهانی ناوبری ماهواره ای (Real Time Kinematic-RTK) را پوشش می دهد که به طور فزاینده ای در طیف گسترده ای از کاربردهای مهندسی روزمره استفاده می شود.
This updated and expanded edition of the book includes four additional chapters on earthwork on sloping sites; transitional curves and super elevation; calculations of super elevations on composite curves; and underground mine surveying. Richly illustrated with diagrams, equations and tables as well as examples of every day survey tasks. It also covers new topics, such as the global navigation satellite system’s (Real Time Kinematic-RTK), which are increasingly used in a wide range of everyday engineering applications.
Foreword Acknowledgements Preface Acknowledgement TABLE OF CONTENTS Chapter 1 Fundamental Surveying 1.1 Introductory Remarks 1.2 Definitions 1.2.1 Surveying 1.2.2 Engineering and Mine Surveying 1.3 Plane and Geodetic Surveying 1.4 Measuring Techniques 1.4.1 Plane Surveying Measurements and Instruments 1.4.2 Geodetic Measuring Techniques 1.4.3 Basic Measuring Principles and Error Management 1.5 Measurement Types 1.5.1 Linear Measurements 1.5.2 Traversing 1.6 Concluding Remarks 1.7 Reference for Chapter 1 Chapter 2 Levelling 2.1 Introductory Remarks 2.2 Definitions of Levelling Terminologies 2.3 Example: The Australian Height Datum (AHD) 2.4 Instrumentation: Automatic Level and Staff 2.4.1 Setting the instrument for area levelling Leica manual, page 11. “Setting up the tripod”. 2.4.2 Levelling the Instrument Leica manual, page 12. “Levelling up”. 2.4.3 Focusing the Instrument Leica manual, page 13. “Focusing telescope”. 2.4.3.1 Eyepiece focus 2.4.3.2 Object focus 2.4.3.3 Backsights and Foresights 2.4.4 Reading the Staff Interval Leica manual, page 15. “Height reading”. 2.4.4.1 Staff reading 2.4.4.2 Staff handling 2.4.5 Collimation Checks (Two peg test) Leica manual, page 21. “Checking and adjusting line-of-sight”. 2.5 Measuring and Reduction Techniques 2.5.1 Basic Rules of Levelling 2.5.2 Levelling Specifications in Australia 2.5.3 Differential Levelling: The “Rise and Fall” Method Levelling procedure: 2.5.4 Booking and Field Reduction Procedures for Levelling 2.5.5 Rise and Fall Booking and Reduction Procedures 2.5.5.1 Three wire booking: using the stadia wiresLeica manual, page 16. “Line levelling”. 2.5.6 Area Levelling: The “Rise and Fall” Method 2.5.7 Area Levelling: The “Height of Collimation” Method 2.5.7.1 Using HC to set out design levels. 2.6 Examples of Levelling for Height Control 2.6.1 Civil Engineering for a Road Excavation Exercise 2.6.2 Mining Engineering Surveying for a Site Development 2.6.3 Grid Layout for levelling 2.6.4 Orthogonal Grid Layout Methods 2.6.5 Height from Vertical Inclination 2.7 Errors in Levelling and Management Strategies 2.7.1 Systematic Errors in Level Observations 2.7.2 Random Errors in Level Observations 2.7.3 Observation Blunders and Mistakes 2.8 Concluding Remarks 2.9 References to Chapter 2 Chapter 3 Relief and Vertical Sections 3.1 Introductory Remarks 3.2 Definitions 3.3 Application: Road Design 3.4 Calculation of Road Cross Sections in Cut and Fill Operations 3.4.1 Calculation of Cut Formation Width WL, and, WR, Flat Ground 3.4.2 Calculation of Formation Width, WL, and, WR, Incorporating Cross Fall. Sloping Ground 3.4.2.1 Formation width with constant cross fall 3.4.2.2 Unified formula using sign of k 3.4.3 Calculation of Formation Width, WL, and, WR, Constant Cross Fall Ground 3.4.4 Calculation of Formation Width, WL, and WR, Varying Cross Fall Ground 3.4.5 Batter Width Falls Outside the First Cross Section 3.4.6 Derivation of AREA Formula using Formation Widths 3.4.7 Area by Coordinates 3.5 Calculation of Embankment Volume from Road Cross Sections in Cut and Fill Operations 3.6 Plan Scale, Horizontal and Vertical 3.7 Plan Sketching and Drawing 3.7.1 Plotting radiations 3.7.2 Vertical Exaggeration 3.8 Calculation of Embankment Volume from Batter Slopes: Mining 3.8.1 Batters, Ramps and Benches 3.8.2 Calculate Cross Section Areas for Volume: Mining 3.8.2.1 Generate Cross Sections 3.8.2.2 Area by matrix cross multiplication 3.8.2.3 Batter slope at 7500N 3.8.3 Cross Section Area by Trapezium 3.8.4 Block Volume 3.8.4.1 Block volume method 3.8.4.2 Block volume value 3.8.4.3 Pyramid volume for batter calculations 3.8.4.3.1 Compare methods 3.8.5 Volume by Contour 3.8.6 Missing Grid Data 3.8.7 Stockpile Volumes Angle of repose for free stockpiles. 3.9 Mass Haul Diagram 3.9.1 Definitions 3.9.2 Basic Mass Haul Concepts 3.9.3 Generation of a Mass Haul Diagram 3.9.3.1 Route survey and grade design 3.9.3.2 Bulk and shrink in cut and fill 3.9.3.3 Calculating haul in station metres 3.9.3.4 Balancing lines 3.9.3.4.1 Worked example 3.1 3.9.3.5 Auxiliary balance lines 3.9.4 The Economies of Haul 3.9.4.1 Scraper capacity 3.9.4.2 Track dozer capacity 3.9.4.3 Earthmoving performance reference 3.10 Concluding Remarks 3.11 Reference to Chapter 3 Chapter 4 Total Station: Measurements and Computations 4.1 Introductory Remarks 4.2 Instrumentation and Operation 4.2.1 The Total Station 4.2.2 Setting over a Point Using the Optical or Laser Plummet 4.2.3 Preparing Trimble M3 DR 5” for Survey Observations 4.2.4 Preparing Sokkia SET530RK3 for Survey Observations 4.2.4.1 Preparing the instrument for observations 4.2.4.2 Setting the Horizontal Angle Reading 4.2.4.3 Setting initial direction using a tubular (trough) compass 4.3 Measurements 4.3.1 Distance Measurements 4.3.1.1 Phase difference method 4.3.1.2 Pulse method 4.3.1.3 Reflector-less EDM 4.3.2 Prisms 4.4 Prism Constant, Why All the Fuss? 4.4.1 How a Prism is Measured, and its PC is Determined? 4.4.1.1 Examples: Typical 62mm diameter prism 4.4.2 The Leica Geosystems Total Station Prism Constant Conundrum 4.4.3 Prism Constant Calibration: 4.4.3.1 Scale error 4.4.3.2 Atmospheric effects 4.4.3.2.1 Sokkia SET 530RK3 atmospheric correction factor example 4.4.3.3 Periodic (Cyclic) errors 4.4.4 Summary of Major Error Sources 4.5 Angular Measurements 4.6 Combined Total Station Measurements 4.6.1 Station Records 4.6.2 Recording Observations 4.6.3 Example Recording of Observations from an Initial Station (Table 4-2) 4.7 Computations 4.7.1 Manipulating VECTORS Coordinate system calculations. 4.7.1.1 The Join calculation 4.7.1.1.1 From the arctangent angle, find the bearing of AB in all 4 quadrants? 4.7.1.1.2 Illustrating the bearing of AB in all 4 quadrants. Eqn 4-6, Figure 4-23 - Figure 4-26 4.7.1.1.3 Join calculation example 4.7.1.1.4 Worked example 4.1 4.7.1.2 The Polar calculation 4.7.1.2.1 Worked example 4.2 4.7.2 Using the POLAR and RECTANGULAR Function on a Calculator 4.7.3 Reduction of Electronically Measured Distance to the Spheroid 4.7.3.1 Reduction to the plane 4.7.3.2 Reduction to the ellipsoid 4.8 Observation Blunders and Mistakes 4.9 Concluding Remarks 4.10 Reference to Chapter 4 Chapter 5 Traversing 5.1 Introductory Remarks 5.2 Definition and Applications 5.3 Traverse Procedure 5.4 Field Notes Reduction 5.4.1 Angular Misclose 5.4.2 Bearing and Coordinates Computations 5.4.3 Traverse Misclose: Bowditch Adjustment 5.4.4 Area Computations 5.4.5 Summary of the Traverse Computation. 5.5 Worked Example 5.1: Set-out and Adjustment of Control Points for Site Control 5.5.1 Field Book Observations and Reduction 5.5.2 Network Adjustment Method 5.5.3 Angular Misclose Correction 5.5.4 Adjusted Coordinates using the Bowditch Adjustment 5.5.5 Calculation of AREA by Coordinates Method 5.5.6 Calculation of Area by Double Longitude Coordinates 5.5.7 Bowditch Adjustment of an Open Linked Traverse 5.5.7.1 Methods to determine angular misclose and corrections distribution 5.5.7.2 Adjust observed angles, calculate adjusted bearings 5.5.7.3 Check for scale factor in horizontal distances 5.5.7.4 Determine coordinate misclose and distribute corrections proportionally 5.5.7.5 Calculate final adjusted coordinates 5.5.8 Traverse calculation form 5.5.9 Example Field Calculations. Field Practical in Appendix A2-3. 5.5.10 The “eccy” Station. Missing the Point? 5.6 Sources of Errors in Traversing 5.7 Concluding Remarks 5.8 Reference for Chapter 5 Chapter 6 Total Station Differential Levelling 6.1 Introductory Remarks 6.1.1 Allowable misclose: 6.1.2 Equipment: 6.1.3 Observation Techniques: 6.2 Errors Propagation in Trigonometric Levelling 6.2.1 Systematic Errors in Level Observations 6.2.2 Random Errors in Observations 6.3 Calculation of Three Dimensional Coordinates from Observations 6.3.1 Capture of points for a digital elevation model (DEM). “Resection by distances.” 6.3.2 Calculation of Observed Distances 6.3.3 Direct Calculation of Horizontal X, Y Coordinates by Intersection of Horizontal Distances to Known Points 6.3.3.1 An alternate method, avoiding bearings calculations 6.3.3.2 Worked example 6.1 6.3.4 Orientation of a Local Coordinate System to a Grid System 6.3.5 Observation, Booking and Calculation of Terrain Points for DTM. 6.3.6 Feature Codes for Point and Line Pickup 6.3.7 DTM File Output for CAD Processing 6.4 Concluding remarks 6.5 Reference to Chapter 6 Chapter 7 Underground Mining Survey: Transferring Traversing and Levelling Measurements 7.1 Introductory Remarks 7.1.1 Western Australian Mines Act and Regulations 7.2 Mines Survey Compilation and Tolerances 7.2.1 Survey Compilation (COP §1.3, Compilation. §1.4 Conversion to MGA2020) 7.2.2 Baselines 7.2.3 Accuracy 7.2.3.1 Instruments at Curtin 7.2.4 Connecting Surface and Underground Surveys 7.2.5 Levelling 7.3 Establishment of Control Points for Traversing 7.3.1 Backs 7.3.2 Wall Brackets 7.3.3 Wall Stations 7.4 Wall Stations in Mining Traversing 7.4.1 Position by Resection. Also Known as a Free Station Position 7.4.1.1 Resection to ground control points 7.4.1.2 Resection to wall stations 7.4.2 Projecting from a Floating Point to the Sleeve 7.4.2.1 Two-point offset station observations 7.4.2.2 Designing a two-prism target pole for wall station sleeves 7.4.2.3 Direction cosines to the rescue 7.4.2.3.1 Direction cosines? Didn’t tell me about them at school! 7.4.2.4 Simulation of solution 7.4.2.5 Repeating the observations with 1 × GLS115 pole 7.4.3 General Procedure in the Field 7.4.3.1 Comments on wall station traversing 7.5 Azimuth Transfer from the Surface Coordinate Frame 7.5.1 Physics of the Suspension Wire 7.5.1.1 Telescope reticule markings 7.5.2 Student Practical Sessions in Mine Surveying 7.6 Azimuth Transfer Methods 7.6.1 Single Wire 7.6.2 The Weisbach Triangle 7.6.2.1 Measuring the Weisbach triangle 7.6.2.1.1 Worked example 7.1 7.6.2.2 Error analysis of the calculated angle angle β 7.6.3 The Weiss Quadrilateral 7.6.3.1 Calculating the underground coordinates 7.6.3.2 Connecting to the surface 7.6.3.2.1 Calculate coordinates of W1 and W2 7.6.3.2.2 Rotate underground figure around W1 7.6.3.3 Continuing the underground traverse 7.6.3.3.1 Reducing the observations 7.6.3.4 Accuracy of azimuth transfer 7.6.3.4.1 Comparison of error ellipse between Figure 7-31 and Figure 7-32 7.6.3.5 Air currents, spiral set and scale reading errors 7.6.4 Azimuth by Gyroscope 7.7 Vertical Control Transfer by Shaft Plumbing 7.7.1 Taping 7.7.1.1 Temperature correction 7.7.1.2 Tension correction, horizontal 7.7.1.3 Tension correction in vertical shafts 7.7.1.3.1 Worked example 7.2 7.7.1.3.2 Worked example 7.3 7.7.2 EDM in Vertical Shafts. 7.8 Chapter 7 References 7.8.1 Essential references 7.9 End notes Chapter 8 Strike And Dip to an Embedded Plane 8.1 Introductory Remarks 8.2 Strike and Dip 8.3 Strike and Dip to a Plane 8.4 Deriving Strike and Dip of a Plane 8.4.1 Strike and Dip of a Plane, Worked Example 8.1 by Calculation 8.4.1.1 Calculate the strike and dip of the seam 8.4.1.2 Calculate the strike and dip directions 8.4.1.3 Calculate the full dip angle 8.4.2 Strike and Dip of a Plane, the Graphical Solution 8.4.3 Outlier Problems 8.4.3.1 The case of included angle>90º 8.4.3.2 Maximum dip “outside” apparent dip lines 8.5 Depth to Seam 8.5.1 Worked Example 8.2 8.6 Seam Thickness 8.6.1 Worked Example 8.3 8.7 Direction of Any Slope Over the Dipping Surface 8.8 Horizontal Angles Projected on to an Inclined Plane 8.8.1 Worked Example 8.4 8.8.2 Worked Example 8.5 8.9 Concluding Remarks 8.10 Reference for Chapter 7 Chapter 9 Earthworks on a sloping site 9.1 Revisit Earthworks 9.1.1 Introduction 9.1.2 Basic equation diagrams 9.1.3 Revision of basic formula 9.1.3.1 Formation width 9.1.3.2 Crest and toe heights 9.1.4 Cut and Fill on a Flat Surface 9.1.4.1 Fill on flat. See Figure 9-6 9.1.4.2 Cut in flat. See Figure 9-7 9.1.5 The Effect of a Sloping Surface 9.1.5.1 Full fill calculations. Figure 9-8 9.1.5.2 Full cut calculations 9.1.6 Heights to Toes or Crests 9.1.6.1 Calculating using surveyed centreline ground level (GL) and ground slopes (k) 9.1.6.2 Calculating using the formation design level (FL) and batter slope (m) 9.1.7 Cross Section Area Calculations 9.1.7.1 Derived area from formula or from coordinates 9.1.7.2 Notes on area calculations 9.1.7.3 Following the formation surface, what happens? 9.1.8 Combined Cut and Fill in a Cross Section 9.1.8.1 Minimum h for full cut. Figure 9-14 9.1.8.2 Minimum h for full fill. Figure 9-14 9.1.8.3 Cut/Fill area calculations 9.1.8.4 Cut and fill on grade, h = 0. Figure 9-17 9.1.8.5 A small cut, between h = 0 and h = –0.67 9.1.8.6 A small fill, between h = 0 and h = +0.5 9.1.9 Summary of Cross Section Area Calculations on Simple Formation Design 9.1.10 Intersection of Two Lines 9.1.10.1 Traditional line-line intersection method using points and slopes 9.1.10.2 Illustration of solving the intersection of the two lines 9.1.10.3 Comparing the line-line intersection with Eqn 9-2 9.1.10.4 Line-line intersection method using 2 sets of points on each line 9.1.10.5 Line intercepts by matrix determinant 9.1.11 Design Profile Imposed on the Ground Surface Why use coordinates? 9.1.11.1 Intersections at h = 0 9.1.11.2 Intersection at h = –2The design profile has a cut of h 9.1.11.3 Intersection at h = +2 9.2 Circular Earthworks on a Sloping Site 9.2.1 Reprise of Strike and Dip 9.2.2 The Sign of Things 9.3 Volume in circular embankments 9.3.1 Segment Areas. Area between Dip Plane and Plane of the Embankment 9.3.2 End Area Volume, finding dh 9.3.2.1 Generate the table of values.Strike on pad centre, h = 0. 9.3.3 Strike through Back of Pad. h = R/k 9.3.3.1 Volume from segment areas. >90° 9.3.3.2 Fixed dh intervals for contour lines 9.3.4 Pad in Full Fill from Strike Line 9.3.4.1 Comparative table of embankment volumes 9.3.5 Full Fill versus Cut and Fill 9.3.6 Earthworks Construction, Calculations on Compaction 9.3.6.1 Work comparison on a 20m diameter pad 9.3.6.2 Solution of compaction works using unit radius, Rf = 1 9.3.6.3 Solution of compaction works using radius, Rf =10 9.3.6.4 Illustration of full fill versus cut/fill of a 20m circular pad on a sloping site. 9.4 Earthworks for Water Storage 9.4.1 The Turkey’s Nest Concept 9.4.2 The equations for a frustum and an annulus: 9.4.3 Turkey’s Nest Parameters 9.4.4 Design Premises 9.4.5 Basic Equations 9.4.5.1 Excavation volume, below level ground 9.4.5.2 Embankment volume, above level ground 9.4.5.3 Optimising bund fill volume 9.4.5.3.1 Storage capacity at the lower bund height 9.4.5.4 Applying ground slope to the bund 9.4.5.4.1 Slope intersection with bund walls 9.4.5.5 Bund volume by annulus, slicing into lifts 9.4.5.5.1 Volume of an annulus. End area 9.4.5.5.2 Volume by rotation of cross section area at the centroid radius 9.4.5.6 Compaction layers, area and fill volume 9.4.5.6.1 Area of a partial annulus 9.4.6 Lining the Dam (frustum) Wall 9.4.6.1 The equation for the frustum surface area 9.4.6.2 Clay and Bentonite Lining 9.4.6.3 Lining with geofabric material 9.4.7 Setting a Dam Out. The Survey Aspects 9.4.7.1 Initial measurements 9.4.7.2 Toe distances and levels on the sloping site 9.4.8 Dam Control and Survey Set-out 9.4.8.1 Running the job 9.4.8.2 Check measurements of slope utilise a method of in-situ measurement 9.4.9 References Chapter 10 Circular Curves 10.1 Introductory Remarks 10.2 Generating a Circular Curve - A Process of Visualisation 10.2.1 Basic Formulae. Arc length 10.2.2 The Tangent Distance 10.2.3 The Long Chord 10.2.4 Other Chords 10.2.5 The Chord Deflection Angle 10.2.5.1 Worked example 10.1 10.2.6 Chainage 10.2.7 In, Through and Out Arcs. Setout and Checking Tools 10.2.8 Calculating a Circular Curve: Definitions and Equations 10.3 Laying Out of Circular Curves 10.3.1 Setting Steps using Deflection Angle and Chord Method (Figure 10-14): 10.3.1.1 Checks – Deflection/Chord method 10.3.2 Setting Steps using Coordinates Method (Figure 10-15): 10.3.2.1 Checks – Coordinates method 10.4 Setting Out Road Sumps and Drains 10.4.1 Offset by Calculation of Coordinates 10.4.1.1 Worked example 10.1 10.4.2 In Field Offset by Taping 10.4.3 Opinion on Field Methods for Set-outs 10.5 Calculations for a Field Practical Exercise 10.5.1 Calculation of a Design Curve 10.5.2 Curve Radius from Design Profile 10.5.3 Initial Curve Calculations 10.5.3.1 Curve M1, centre line calculations 10.5.3.2 In, through and out arcs for Curve M1 10.5.4 Roads in Mining Operations 10.5.5 Haul Road Example 10.5.6 Curve T5, centre line calculations 10.5.6.1 Set-out table for Curve T5 10.5.6.2 In, through and out Arcs for Curve T5 10.5.6.3 Resulting tangent and arc distances for the T5 formation 10.6 Concluding Remarks 10.7 References to Chapter Chapter 11. Transition curves and superelevation 11.1 Road Design incorporating Transition Curves and Superelevation 11.1.1 Introduction 11.1.2 The Fundamentals of Uniform Circular Motion 11.1.3 Forces Involved in Uniform Circular Motion 11.1.4 The Forces on a Body in Uniform Circular Motion 11.1.5 Forces on a Canted Surface 11.1.6 Coefficients of Friction 11.1.7 Practical Design Considerations for Circular Road Curves 11.1.8 Recommended Values for Coefficient of Static Friction 11.1.8.1 Side friction values 11.1.9 Recommended Minimum Radii Values of Horizontal Curves 11.1.9.1 Minimum radii values of horizontal curves 11.1.10 Superelevation. Road Profile on a Composite Curve 11.1.10.1 Developing superelevation between the straight and circular curve 11.1.10.2 Length of development of superelevation based on rate of rotation 11.1.10.3 Length of superelevation development based on rate of rotation 11.1.10.4 Caution. Use of Table 11-1 to Table 11-3 11.2 The Transition or Spiral Curve 11.2.1 Introduction to Transition Curves 11.2.2 Introducing the Transition Spiral 11.2.3 Equations for the Clothoid 11.2.4 Developing the Spiral Angle 11.2.5 Cartesian Coordinates of a Point on the Spiral 11.2.5.1 Worked example 11.1: 11.3 Design and Set-out of Full Transition Curve. Worked Example 11.2 11.3.1 Length of Transition Spiral 11.3.1.1 Calculate transition spiral length 11.3.1.2 The spiral angle 11.3.1.3 Cartesian coordinates of spiral to curve point, SC, on the spiral 11.3.1.4 The shift distance 11.3.1.5 Derivation of the shift distance approximation 11.3.1.6 Tangent distance; TS to PI 11.3.1.7 Circular distance: SC to CS 11.3.1.8 Tangential components of transition curve: TS to SC 11.3.1.9 Chainages from TS to ST 11.3.2 Set out Calculations for the Spiral and the Arc 11.3.2.1 Deflection calculations for the spiral and the arc 11.3.2.1.1 Spiral arc 11.3.2.1.2 Circular ar 11.3.2.2 Setout Calculations for the shifted PI and shifted crown 11.3.3 Diagram of a Circular Arc with Two Spirals 11.4 Worked Example 11.3. Circular Curve with Transition Spirals 11.5 Step by Step Solution: 11.5.1 Transition Curve Length 11.5.2 Spiral angle 11.5.3 Length of Circular Curve 11.5.4 Tangent Distance 11.5.5 Find Through Chainages: Figure 11-28 11.5.6 Determine 20m Chainage Points on First Spiral: 11.5.6.1 Chainage points on spiral curve, T to T1 11.5.7 Determine 20m Chainage Points on Circular Curve, T1 – T2 11.5.7.1 Chainage points on circular curve T1 to T2 11.5.8 Determine 20m Chainage Points on Second Spiral, T2 to U: 11.5.8.1 Chainage points on spiral curve T2 to U 11.5.9 Set-out of Common Tangents, T, T1, T2 and U: 11.5.9.1 Calculate the bearings of thetangents and chords: 11.5.9.2 Calculate a traverse sheet: I, T, T1, T2, U, I 11.5.10 Calculation of Chainage Station Coordinates: 11.5.10.1 For the first spiral, T to T1 11.5.10.2 For the circular arc, T1 to T2 11.5.10.3 For the second spiral, T2 to U 11.5.11 Set-out of Chainage Coordinates from Other Control Points 11.6 Equations for the Clothoid Spiral Curve 11.6.1 General Formula 11.6.2 Spiral Deflections and Chords 11.6.3 Circular Deflections and Chords 11.7 Tutorial Exercises 11.1 11.7.1 Answers to Tutorial Exercises 11.1: 11.8 References to Chapter 11 Chapter 12. Calculations of Superelevation on a Composite Curve 12.1 Superelevation. Road Profile on a Composite Curve 12.1.1 Developing Superelevation between the Straight and Circular Curve 12.1.1.1 The length of superelevation development: 12.2 Worked Example 12.1 Superelevation on a Transition Curve 12.3 Comments on superelevation calculation. 12.4 References to Chapter 12 Chapter 13. Vertical Curves 13.1 Introductory Remarks 13.1.1 Definition 13.1.2 Uses 13.1.3 Components of a Vertical Curve 13.2 Elements of the Vertical Curve 13.2.1 Two Properties of a Parabola: 13.2.2 Sign of r 13.3 Calculus of the Parabola 13.3.1 Developing the General Equation 13.3.2 Deriving Data from the General Equation 13.3.3 High or Low Point of the Vertical Curve 13.3.4 Level of High or Low Point of the Vertical Curve 13.3.4.1 Worked Example 13.1 13.3.5 The Midpoint of the Vertical Curve 13.3.5.1 Worked Example 13.2 13.3.6 Pass a Curve Through a Fixed Point 13.3.6.1 Worked Example 13.3 13.4 Calculate the RLs of Points Along the Vertical Curve 13.4.1 Worked Example 13.4. Single Vertical Curve 13.4.2 Worked Example 13.5. Multiple Vertical Curves 13.5 Vertical Curves in Rural Road Design 13.5.1 Effects of Grade on Vehicle Type 13.5.2 Grades in Rural Road Design 13.5.3 Length of Vertical Curves in Rural Road Design 13.5.4 “K” Value in Vertical Curve Design 13.5.4.1 Worked Example 13.6 13.5.5 Sight Distance in Vertical Curve Design 13.5.6 The Arc Length of the Vertical Curve 13.6 Concluding Remarks 13.7 References for Chapter 13 Chapter 14 Global Navigation Satellite System 14.1 Introductory Remarks 14.2 GNSS, A Revolution to Mine and Civil Engineering Industries 14.2.1 Measuring principle and GNSS Family 14.2.2 Applications to Mine and Civil Engineering Operations 14.3 GPS Design and Operation 14.3.1 Space Segment 14.3.2 Control Segment 14.3.3 User Segment 14.4 Errors in GPS Measurements 14.4.1 Ephemeris Errors 14.4.2 Clock Errors 14.4.3 Atmospheric Errors 14.4.4 Multipath 14.4.5 Satellite Constellation “Geometry” 14.4.6 Other Sources of Errors 14.5 GNSS measuring techniques useful to Engineering 14.5.1 Relative Kinematic (RK) 14.5.2 Real-time Kinematic (RTK) 14.5.3 Precise Point Positioning (PPP) 14.6 Concluding Remarks 14.7 Reference to Chapter 10 Chapter 15 Setting Out Of Engineering Structures 15.1 Introductory Remarks 15.2 Control Surveying 15.3 Undertaking an Engineering Construction Project 15.3.1 Personnel involved 15.3.2 Recording and Filing of Information 15.3.3 Plans 15.3.4 Setting out Methods and Procedures 15.3.4.1 Accuracy of the setting out 15.3.4.2 Procedure and Methods 15.3.4.3 Stages in Setting out: Horizontal control. 15.3.4.4 Coordinate Systems. 15.3.5 Methods for establishing horizontal control. 15.3.5.1 Intersection Worked Example 15.1: 15.3.5.2 Methods for setting out engineering structures 15.3.6 Stages in Setting out: Structural Horizontal Control. 15.3.6.1 Projecting offset horizontal control points 15.3.6.2 External multilevel control transfer 15.3.6.3 In-building multilevel control transfer 15.3.6.3.1 Optical plummets 15.3.6.3.2 Laser plummets 15.3.6.3.3 Total station plumbing 15.3.6.4 Free station control transfer 15.3.7 Stages in Setting out: Vertical Control. 15.3.7.1 Corrections to trigonometric heighting 15.3.7.2 Heighting accuracy 15.3.7.3 Differential versus trignometric heighting for vertical control 15.3.7.4 Intermediate distance trigonometric levelling 15.3.7.4.1 Worked example 15.2 15.3.8 Maintaining verticality in structures 15.3.8.1 Plumb bob and spirit level 15.3.8.2 Theodolites and total stations for vertical alignment 15.3.8.2.1 Errors due to mis-levelment of the trunnion axis 15.3.8.3 Laser levels in vertical and horizontal alignmen 15.3.8.3.1 Line laser 15.3.8.3.2 Rotating beam laser 15.3.8.3.3 Grade laser 15.3.9 A long straight line 15.3.10 Grade control and set out 15.3.10.1 Trench and pipelaying control 15.3.10.1.1 Drainage grade control. Worked Example 15.1 15.3.10.2 Cut/fill stakes for level 15.3.10.3 Staking for toe/crest profile 15.3.10.3.1 Setting a toe in fill 15.3.10.3.2 Setting the crest in cut 15.3.10.3.3 Comments on toe/crest pegging 15.3.10.4 Sight rails for batters in cut and fill 15.3.10.5 The total station in profile and slope set out 15.3.10.6 The pentaprism in large fill operations 15.3.10.6.1 The pentaprism on site, marking the batter line 15.4 Concluding Remarks 15.5 References to Chapter 15 Chapter 16 Coordinate Transformation And Least Squares Solutions 16.1 Introduction 16.2 Definitions 16.3 Transformation Methods 16.3.1 Block Shift 16.3.2 Conformal Transformation 16.3.2.1 Worked Example 16.1 16.3.2.1.1 Transform MGA2020 coordinates to the construction grid 16.3.2.1.2 Transform Construction grid coordinates to MGA2020 16.3.2.1.3 Transform another point 16.3.3 Matrix Method of Coordinate Transformations - the Unique Solution Transform mine grid coordinates to MGA2020. 16.3.3.1 Worked example 16.2. Matrix based conformal transformation 16.3.4 Least Squares Solution to Coordinate Transformation 16.3.5 Worked Example 16.3. Over-determined Least Squares Conformal Transformation 16.3.5.1 The use of MATLAB to solve the problems 16.4 Coordinate Translations – a VERY HELPFUL Technique 16.5 Resection to a Point by EDM – a Least Squares Solution 16.5.1 Resection by Observation from an Unknown Point to Two Known Points 16.5.1.1 Angle equation 16.5.1.2 Distance equation 16.6 Least Squares Solution of an Over-determined Trilateration Problem 16.6.1 Overdetermined Coordinate Example 16.6.1.1 Linearize non-linear functions 16.6.1.2 First Iteration, i0, Start with the estimates of Ax=b+v 16.6.1.3 Second Iteration, i1: 16.7 Affine Coordinate Transformation with Weights 16.7.1 Developing the Affine Transformation 16.7.2 Dealing with the Skew Angle 16.7.3 Worked example 16.4. Over-determined Least Squares Affine Transformation 16.7.4 Affine Transformation using MATLAB 16.7.5 MATLAB Script used for this Affine Adjustment 16.8 Concluding Remarks 16.9 References to Chapter 16 APPENDICES A1 Workshop Materials A1-1 Workshop 1 - Levelling A1-2 Workshop 2 – Earthworks: Relief Representation and Vertical Sections A1-3 Workshop 3 – Total Station and Angular Measurements A1-4 Workshop 4 – Traversing A1-5 Workshop 5 – Horizontal Curves A2 Field Practical Materials A2-1 Instructions for Field Practical Sessions A2-1-2 Conduct of Field Practical Sessions A2-1-3 Field Checks A2-1-4 Computations and Plan Drawings A2-1-5 Equipment A2-1-6 Hygiene, Safety and Dress A2-1-7 Workshops A2-1-8 Field Practical Instructions A2-1-9 Field Books and Data Recording A2-2 Establishment of Vertical Control and Vertical Sections for a Construction Site A2-2-1 Field Practical 1: Establishment of Vertical Control A2-2-2 Field Practical 2: Vertical Sections A2-3 Establishment of Horizontal Control for a Construction Site A2-3-1 Field Practical 3: Establishment of Horizontal Control A2-3-1 Field Practical 3: Establishment of Horizontal Control A2-3-2 Field Practical 4: Establishment and Adjustment of Construction Site Boundary Control A2-4 Establishment of Horizontal Curves Field Examination A2-4-1 Calculation and Set-out of a Simple Curve—Assessed Field Practical 5 A2-4-2 Location of Field Work: Edinburgh Oval South A2-4-3 Curve Set-out Data A2-4-4 Curve Coordinate Data for Each Group A2-4-5 Curve Check Observations A2-4-6 Example Group Assessment Form A2-4-7 Definitions and Formulae A2-5 Computation of Design Parameters of Vertical Curves A2-5-1 Practical 6 A2-6 Examples of Interim Reports Practical A2-1-1. A3 Civil Engineers Practicals A3-1 Civil Engineers Practical 1 A3-2 Civil Engineers Practical 2 A3-3 Civil Engineers Practical 3 A3-4 Civil Engineers Practical 4 A4 Mining Engineers Practicals A4-1 Mining Engineers Practical 1 A4-2 Mining Engineers Practical 2 A4-3 Mining Engineers Practical 3 A4-4 Mining Engineers Practical 4 A4-5 Civil and Mining Engineers. Practical 5 A5 Survey Calculations on the HP 10s+, HP300s+ A5-1 Introduction A5-1-1 Time/angle Calculations: A5-1-2 DMS to Decimal Degrees: on Ans line A5-1-3 Degrees to Radians: A5-1-4 Why Radians to Degrees? A5-2 Vector Conversion and Axes Rotation A5-2-2 The Importance of the SIGN of the Rectangular Coordinates A5-3 Converting between Polar and Rectangular Coordinates using Function Keys A5-3-1 Trigonometric Conversion to Rectangular Coordinates A5-3-2 Trigonometric Conversion using the Rec( Function Key A5-4 Converting between Rectangular and Polar Coordinates Using Function Keys A5-4-1 Trigonometric Conversion to Polar Coordinates A5-4-2 Trigonometric Conversion using the Pol( Function Key A5-4-3 The ATAN2() Function in Spreadsheets A5-5 Using the M+ Key for Accumulate Operations A5-6 Statistics, Mean and Standard Deviations A5-7 Concluding remarks A5-8 References Appendix A5 INDEX