ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب SURVEYING FOR CIVIL AND MINE ENGINEERS acquire the skills in weeks.

دانلود کتاب نقشه برداری برای مهندسان عمران و معدن این مهارت ها را در چند هفته به دست می آورد.

SURVEYING FOR CIVIL AND MINE ENGINEERS acquire the skills in weeks.

مشخصات کتاب

SURVEYING FOR CIVIL AND MINE ENGINEERS acquire the skills in weeks.

ویرایش: [2 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 9783030458034, 3030458032 
ناشر: SPRINGER NATURE 
سال نشر: 2020 
تعداد صفحات: [434] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 13 Mb 

قیمت کتاب (تومان) : 30,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب SURVEYING FOR CIVIL AND MINE ENGINEERS acquire the skills in weeks. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نقشه برداری برای مهندسان عمران و معدن این مهارت ها را در چند هفته به دست می آورد. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نقشه برداری برای مهندسان عمران و معدن این مهارت ها را در چند هفته به دست می آورد.

این نسخه به روز شده و توسعه یافته کتاب شامل چهار فصل اضافی در مورد کارهای خاکی در سایت های شیبدار است. منحنی های انتقالی و ارتفاع فوق العاده؛ محاسبات ارتفاعات فوق العاده در منحنی های مرکب. و بررسی معادن زیرزمینی به طور غنی با نمودارها، معادلات و جداول و همچنین نمونه هایی از وظایف نظرسنجی روزانه نشان داده شده است. همچنین موضوعات جدیدی مانند سیستم جهانی ناوبری ماهواره ای (Real Time Kinematic-RTK) را پوشش می دهد که به طور فزاینده ای در طیف گسترده ای از کاربردهای مهندسی روزمره استفاده می شود.


توضیحاتی درمورد کتاب به خارجی

This updated and expanded edition of the book includes four additional chapters on earthwork on sloping sites; transitional curves and super elevation; calculations of super elevations on composite curves; and underground mine surveying. Richly illustrated with diagrams, equations and tables as well as examples of every day survey tasks. It also covers new topics, such as the global navigation satellite system’s (Real Time Kinematic-RTK), which are increasingly used in a wide range of everyday engineering applications.



فهرست مطالب

Foreword
Acknowledgements
Preface
Acknowledgement
TABLE OF CONTENTS
Chapter 1 Fundamental Surveying
	1.1 Introductory Remarks
	1.2 Definitions
		1.2.1 Surveying
		1.2.2 Engineering and Mine Surveying
	1.3 Plane and Geodetic Surveying
	1.4 Measuring Techniques
		1.4.1 Plane Surveying Measurements and Instruments
		1.4.2 Geodetic Measuring Techniques
		1.4.3 Basic Measuring Principles and Error Management
	1.5 Measurement Types
		1.5.1 Linear Measurements
		1.5.2 Traversing
	1.6 Concluding Remarks
	1.7 Reference for Chapter 1
Chapter 2 Levelling
	2.1 Introductory Remarks
	2.2 Definitions of Levelling Terminologies
	2.3 Example: The Australian Height Datum (AHD)
	2.4 Instrumentation: Automatic Level and Staff
		2.4.1 Setting the instrument for area levelling Leica manual, page 11. “Setting up the tripod”.
		2.4.2 Levelling the Instrument Leica manual, page 12. “Levelling up”.
		2.4.3 Focusing the Instrument Leica manual, page 13. “Focusing telescope”.
			2.4.3.1 Eyepiece focus
			2.4.3.2 Object focus
			2.4.3.3 Backsights and Foresights
		2.4.4 Reading the Staff Interval Leica manual, page 15. “Height reading”.
			2.4.4.1 Staff reading
			2.4.4.2 Staff handling
		2.4.5 Collimation Checks (Two peg test) Leica manual, page 21. “Checking and adjusting line-of-sight”.
	2.5 Measuring and Reduction Techniques
		2.5.1 Basic Rules of Levelling
		2.5.2 Levelling Specifications in Australia
		2.5.3 Differential Levelling: The “Rise and Fall” Method Levelling procedure:
		2.5.4 Booking and Field Reduction Procedures for Levelling
		2.5.5 Rise and Fall Booking and Reduction Procedures
			2.5.5.1 Three wire booking: using the stadia wiresLeica manual, page 16. “Line levelling”.
		2.5.6 Area Levelling: The “Rise and Fall” Method
		2.5.7 Area Levelling: The “Height of Collimation” Method
			2.5.7.1 Using HC to set out design levels.
	2.6 Examples of Levelling for Height Control
		2.6.1 Civil Engineering for a Road Excavation Exercise
		2.6.2 Mining Engineering Surveying for a Site Development
		2.6.3 Grid Layout for levelling
		2.6.4 Orthogonal Grid Layout Methods
		2.6.5 Height from Vertical Inclination
	2.7 Errors in Levelling and Management Strategies
		2.7.1 Systematic Errors in Level Observations
		2.7.2 Random Errors in Level Observations
		2.7.3 Observation Blunders and Mistakes
	2.8 Concluding Remarks
	2.9 References to Chapter 2
Chapter 3 Relief and Vertical Sections
	3.1 Introductory Remarks
	3.2 Definitions
	3.3 Application: Road Design
	3.4 Calculation of Road Cross Sections in Cut and Fill Operations
		3.4.1 Calculation of Cut Formation Width WL, and, WR, Flat Ground
		3.4.2 Calculation of Formation Width, WL, and, WR, Incorporating Cross Fall. Sloping Ground
			3.4.2.1 Formation width with constant cross fall
			3.4.2.2 Unified formula using sign of k
		3.4.3 Calculation of Formation Width, WL, and, WR, Constant Cross Fall Ground
		3.4.4 Calculation of Formation Width, WL, and WR, Varying Cross Fall Ground
		3.4.5 Batter Width Falls Outside the First Cross Section
		3.4.6 Derivation of AREA Formula using Formation Widths
		3.4.7 Area by Coordinates
	3.5 Calculation of Embankment Volume from Road Cross Sections in Cut and Fill Operations
	3.6 Plan Scale, Horizontal and Vertical
	3.7 Plan Sketching and Drawing
		3.7.1 Plotting radiations
		3.7.2 Vertical Exaggeration
	3.8 Calculation of Embankment Volume from Batter Slopes: Mining
		3.8.1 Batters, Ramps and Benches
		3.8.2 Calculate Cross Section Areas for Volume: Mining
			3.8.2.1 Generate Cross Sections
			3.8.2.2 Area by matrix cross multiplication
			3.8.2.3 Batter slope at 7500N
		3.8.3 Cross Section Area by Trapezium
		3.8.4 Block Volume
			3.8.4.1 Block volume method
			3.8.4.2 Block volume value
			3.8.4.3 Pyramid volume for batter calculations
				3.8.4.3.1 Compare methods
		3.8.5 Volume by Contour
		3.8.6 Missing Grid Data
		3.8.7 Stockpile Volumes Angle of repose for free stockpiles.
	3.9 Mass Haul Diagram
		3.9.1 Definitions
		3.9.2 Basic Mass Haul Concepts
		3.9.3 Generation of a Mass Haul Diagram
			3.9.3.1 Route survey and grade design
			3.9.3.2 Bulk and shrink in cut and fill
			3.9.3.3 Calculating haul in station metres
			3.9.3.4 Balancing lines
				3.9.3.4.1 Worked example 3.1
			3.9.3.5 Auxiliary balance lines
		3.9.4 The Economies of Haul
			3.9.4.1 Scraper capacity
			3.9.4.2 Track dozer capacity
			3.9.4.3 Earthmoving performance reference
	3.10 Concluding Remarks
	3.11 Reference to Chapter 3
Chapter 4 Total Station: Measurements and Computations
	4.1 Introductory Remarks
	4.2 Instrumentation and Operation
		4.2.1 The Total Station
		4.2.2 Setting over a Point Using the Optical or Laser Plummet
		4.2.3 Preparing Trimble M3 DR 5” for Survey Observations
		4.2.4 Preparing Sokkia SET530RK3 for Survey Observations
			4.2.4.1 Preparing the instrument for observations
			4.2.4.2 Setting the Horizontal Angle Reading
			4.2.4.3 Setting initial direction using a tubular (trough) compass
	4.3 Measurements
		4.3.1 Distance Measurements
			4.3.1.1 Phase difference method
			4.3.1.2 Pulse method
			4.3.1.3 Reflector-less EDM
		4.3.2 Prisms
	4.4 Prism Constant, Why All the Fuss?
		4.4.1 How a Prism is Measured, and its PC is Determined?
			4.4.1.1 Examples: Typical 62mm diameter prism
		4.4.2 The Leica Geosystems Total Station Prism Constant Conundrum
		4.4.3 Prism Constant Calibration:
			4.4.3.1 Scale error
			4.4.3.2 Atmospheric effects
				4.4.3.2.1 Sokkia SET 530RK3 atmospheric correction factor example
			4.4.3.3 Periodic (Cyclic) errors
		4.4.4 Summary of Major Error Sources
	4.5 Angular Measurements
	4.6 Combined Total Station Measurements
		4.6.1 Station Records
		4.6.2 Recording Observations
		4.6.3 Example Recording of Observations from an Initial Station (Table 4-2)
	4.7 Computations
		4.7.1 Manipulating VECTORS Coordinate system calculations.
			4.7.1.1 The Join calculation
				4.7.1.1.1 From the arctangent angle, find the bearing of AB in all 4 quadrants?
				4.7.1.1.2 Illustrating the bearing of AB in all 4 quadrants. Eqn 4-6, Figure 4-23 - Figure 4-26
				4.7.1.1.3 Join calculation example
				4.7.1.1.4 Worked example 4.1
			4.7.1.2 The Polar calculation
				4.7.1.2.1 Worked example 4.2
		4.7.2 Using the POLAR and RECTANGULAR Function on a Calculator
		4.7.3 Reduction of Electronically Measured Distance to the Spheroid
			4.7.3.1 Reduction to the plane
			4.7.3.2 Reduction to the ellipsoid
	4.8 Observation Blunders and Mistakes
	4.9 Concluding Remarks
	4.10 Reference to Chapter 4
Chapter 5 Traversing
	5.1 Introductory Remarks
	5.2 Definition and Applications
	5.3 Traverse Procedure
	5.4 Field Notes Reduction
		5.4.1 Angular Misclose
		5.4.2 Bearing and Coordinates Computations
		5.4.3 Traverse Misclose: Bowditch Adjustment
		5.4.4 Area Computations
		5.4.5 Summary of the Traverse Computation.
	5.5 Worked Example 5.1: Set-out and Adjustment of Control Points for Site Control
		5.5.1 Field Book Observations and Reduction
		5.5.2 Network Adjustment Method
		5.5.3 Angular Misclose Correction
		5.5.4 Adjusted Coordinates using the Bowditch Adjustment
		5.5.5 Calculation of AREA by Coordinates Method
		5.5.6 Calculation of Area by Double Longitude Coordinates
		5.5.7 Bowditch Adjustment of an Open Linked Traverse
			5.5.7.1 Methods to determine angular misclose and corrections distribution
			5.5.7.2 Adjust observed angles, calculate adjusted bearings
			5.5.7.3 Check for scale factor in horizontal distances
			5.5.7.4 Determine coordinate misclose and distribute corrections proportionally
			5.5.7.5 Calculate final adjusted coordinates
		5.5.8 Traverse calculation form
		5.5.9 Example Field Calculations. Field Practical in Appendix A2-3.
		5.5.10 The “eccy” Station. Missing the Point?
	5.6 Sources of Errors in Traversing
	5.7 Concluding Remarks
	5.8 Reference for Chapter 5
Chapter 6 Total Station Differential Levelling
	6.1 Introductory Remarks
		6.1.1 Allowable misclose:
		6.1.2 Equipment:
		6.1.3 Observation Techniques:
	6.2 Errors Propagation in Trigonometric Levelling
		6.2.1 Systematic Errors in Level Observations
		6.2.2 Random Errors in Observations
	6.3 Calculation of Three Dimensional Coordinates from Observations
		6.3.1 Capture of points for a digital elevation model (DEM). “Resection by distances.”
		6.3.2 Calculation of Observed Distances
		6.3.3 Direct Calculation of Horizontal X, Y Coordinates by Intersection of Horizontal Distances to Known Points
			6.3.3.1 An alternate method, avoiding bearings calculations
			6.3.3.2 Worked example 6.1
		6.3.4 Orientation of a Local Coordinate System to a Grid System
		6.3.5 Observation, Booking and Calculation of Terrain Points for DTM.
		6.3.6 Feature Codes for Point and Line Pickup
		6.3.7 DTM File Output for CAD Processing
	6.4 Concluding remarks
	6.5 Reference to Chapter 6
Chapter 7 Underground Mining Survey: Transferring Traversing and Levelling Measurements
	7.1 Introductory Remarks
		7.1.1 Western Australian Mines Act and Regulations
	7.2 Mines Survey Compilation and Tolerances
		7.2.1 Survey Compilation (COP §1.3, Compilation. §1.4 Conversion to MGA2020)
		7.2.2 Baselines
		7.2.3 Accuracy
			7.2.3.1 Instruments at Curtin
		7.2.4 Connecting Surface and Underground Surveys
		7.2.5 Levelling
	7.3 Establishment of Control Points for Traversing
		7.3.1 Backs
		7.3.2 Wall Brackets
		7.3.3 Wall Stations
	7.4 Wall Stations in Mining Traversing
		7.4.1 Position by Resection. Also Known as a Free Station Position
			7.4.1.1 Resection to ground control points
			7.4.1.2 Resection to wall stations
		7.4.2 Projecting from a Floating Point to the Sleeve
			7.4.2.1 Two-point offset station observations
			7.4.2.2 Designing a two-prism target pole for wall station sleeves
			7.4.2.3 Direction cosines to the rescue
				7.4.2.3.1 Direction cosines? Didn’t tell me about them at school!
			7.4.2.4 Simulation of solution
			7.4.2.5 Repeating the observations with 1 × GLS115 pole
		7.4.3 General Procedure in the Field
			7.4.3.1 Comments on wall station traversing
	7.5 Azimuth Transfer from the Surface Coordinate Frame
		7.5.1 Physics of the Suspension Wire
			7.5.1.1 Telescope reticule markings
		7.5.2 Student Practical Sessions in Mine Surveying
	7.6 Azimuth Transfer Methods
		7.6.1 Single Wire
		7.6.2 The Weisbach Triangle
			7.6.2.1 Measuring the Weisbach triangle
				7.6.2.1.1 Worked example 7.1
			7.6.2.2 Error analysis of the calculated angle angle β
		7.6.3 The Weiss Quadrilateral
			7.6.3.1 Calculating the underground coordinates
			7.6.3.2 Connecting to the surface
				7.6.3.2.1 Calculate coordinates of W1 and W2
				7.6.3.2.2 Rotate underground figure around W1
			7.6.3.3 Continuing the underground traverse
				7.6.3.3.1 Reducing the observations
			7.6.3.4 Accuracy of azimuth transfer
				7.6.3.4.1 Comparison of error ellipse between Figure 7-31 and Figure 7-32
			7.6.3.5 Air currents, spiral set and scale reading errors
		7.6.4 Azimuth by Gyroscope
	7.7 Vertical Control Transfer by Shaft Plumbing
		7.7.1 Taping
			7.7.1.1 Temperature correction
			7.7.1.2 Tension correction, horizontal
			7.7.1.3 Tension correction in vertical shafts
				7.7.1.3.1 Worked example 7.2
				7.7.1.3.2 Worked example 7.3
		7.7.2 EDM in Vertical Shafts.
	7.8 Chapter 7 References
		7.8.1 Essential references
	7.9 End notes
Chapter 8 Strike And Dip to an Embedded Plane
	8.1 Introductory Remarks
	8.2 Strike and Dip
	8.3 Strike and Dip to a Plane
	8.4 Deriving Strike and Dip of a Plane
		8.4.1 Strike and Dip of a Plane, Worked Example 8.1 by Calculation
			8.4.1.1 Calculate the strike and dip of the seam
			8.4.1.2 Calculate the strike and dip directions
			8.4.1.3 Calculate the full dip angle
		8.4.2 Strike and Dip of a Plane, the Graphical Solution
		8.4.3 Outlier Problems
			8.4.3.1 The case of included angle>90º
			8.4.3.2 Maximum dip “outside” apparent dip lines
	8.5 Depth to Seam
		8.5.1 Worked Example 8.2
	8.6 Seam Thickness
		8.6.1 Worked Example 8.3
	8.7 Direction of Any Slope Over the Dipping Surface
	8.8 Horizontal Angles Projected on to an Inclined Plane
		8.8.1 Worked Example 8.4
		8.8.2 Worked Example 8.5
	8.9 Concluding Remarks
	8.10 Reference for Chapter 7
Chapter 9 Earthworks on a sloping site
	9.1 Revisit Earthworks
		9.1.1 Introduction
		9.1.2 Basic equation diagrams
		9.1.3 Revision of basic formula
			9.1.3.1 Formation width
			9.1.3.2 Crest and toe heights
		9.1.4 Cut and Fill on a Flat Surface
			9.1.4.1 Fill on flat. See Figure 9-6
			9.1.4.2 Cut in flat. See Figure 9-7
		9.1.5 The Effect of a Sloping Surface
			9.1.5.1 Full fill calculations. Figure 9-8
			9.1.5.2 Full cut calculations
		9.1.6 Heights to Toes or Crests
			9.1.6.1 Calculating using surveyed centreline ground level (GL) and ground slopes (k)
			9.1.6.2 Calculating using the formation design level (FL) and batter slope (m)
		9.1.7 Cross Section Area Calculations
			9.1.7.1 Derived area from formula or from coordinates
			9.1.7.2 Notes on area calculations
			9.1.7.3 Following the formation surface, what happens?
		9.1.8 Combined Cut and Fill in a Cross Section
			9.1.8.1 Minimum h for full cut. Figure 9-14
			9.1.8.2 Minimum h for full fill. Figure 9-14
			9.1.8.3 Cut/Fill area calculations
			9.1.8.4 Cut and fill on grade, h = 0. Figure 9-17
			9.1.8.5 A small cut, between h = 0 and h = –0.67
			9.1.8.6 A small fill, between h = 0 and h = +0.5
		9.1.9 Summary of Cross Section Area Calculations on Simple Formation Design
		9.1.10 Intersection of Two Lines
			9.1.10.1 Traditional line-line intersection method using points and slopes
			9.1.10.2 Illustration of solving the intersection of the two lines
			9.1.10.3 Comparing the line-line intersection with Eqn 9-2
			9.1.10.4 Line-line intersection method using 2 sets of points on each line
			9.1.10.5 Line intercepts by matrix determinant
		9.1.11 Design Profile Imposed on the Ground Surface Why use coordinates?
			9.1.11.1 Intersections at h = 0
			9.1.11.2 Intersection at h = –2The design profile has a cut of h
			9.1.11.3 Intersection at h = +2
	9.2 Circular Earthworks on a Sloping Site
		9.2.1 Reprise of Strike and Dip
		9.2.2 The Sign of Things
	9.3 Volume in circular embankments
		9.3.1 Segment Areas. Area between Dip Plane and Plane of the Embankment
		9.3.2 End Area Volume, finding dh
			9.3.2.1 Generate the table of values.Strike on pad centre, h = 0.
			9.3.3 Strike through Back of Pad. h = R/k
				9.3.3.1 Volume from segment areas. >90°
				9.3.3.2 Fixed dh intervals for contour lines
			9.3.4 Pad in Full Fill from Strike Line
				9.3.4.1 Comparative table of embankment volumes
			9.3.5 Full Fill versus Cut and Fill
			9.3.6 Earthworks Construction, Calculations on Compaction
				9.3.6.1 Work comparison on a 20m diameter pad
				9.3.6.2 Solution of compaction works using unit radius, Rf = 1
				9.3.6.3 Solution of compaction works using radius, Rf =10
				9.3.6.4 Illustration of full fill versus cut/fill of a 20m circular pad on a sloping site.
	9.4 Earthworks for Water Storage
		9.4.1 The Turkey’s Nest Concept
		9.4.2 The equations for a frustum and an annulus:
		9.4.3 Turkey’s Nest Parameters
		9.4.4 Design Premises
		9.4.5 Basic Equations
			9.4.5.1 Excavation volume, below level ground
			9.4.5.2 Embankment volume, above level ground
			9.4.5.3 Optimising bund fill volume
				9.4.5.3.1 Storage capacity at the lower bund height
			9.4.5.4 Applying ground slope to the bund
				9.4.5.4.1 Slope intersection with bund walls
			9.4.5.5 Bund volume by annulus, slicing into lifts
				9.4.5.5.1 Volume of an annulus. End area
				9.4.5.5.2 Volume by rotation of cross section area at the centroid radius
			9.4.5.6 Compaction layers, area and fill volume
				9.4.5.6.1 Area of a partial annulus
		9.4.6 Lining the Dam (frustum) Wall
			9.4.6.1 The equation for the frustum surface area
			9.4.6.2 Clay and Bentonite Lining
			9.4.6.3 Lining with geofabric material
		9.4.7 Setting a Dam Out. The Survey Aspects
			9.4.7.1 Initial measurements
			9.4.7.2 Toe distances and levels on the sloping site
		9.4.8 Dam Control and Survey Set-out
			9.4.8.1 Running the job
			9.4.8.2 Check measurements of slope utilise a method of in-situ measurement
		9.4.9 References
Chapter 10 Circular Curves
	10.1 Introductory Remarks
	10.2 Generating a Circular Curve - A Process of Visualisation
		10.2.1 Basic Formulae. Arc length
		10.2.2 The Tangent Distance
		10.2.3 The Long Chord
		10.2.4 Other Chords
		10.2.5 The Chord Deflection Angle
			10.2.5.1 Worked example 10.1
		10.2.6 Chainage
		10.2.7 In, Through and Out Arcs. Setout and Checking Tools
		10.2.8 Calculating a Circular Curve: Definitions and Equations
	10.3 Laying Out of Circular Curves
		10.3.1 Setting Steps using Deflection Angle and Chord Method (Figure 10-14):
			10.3.1.1 Checks – Deflection/Chord method
		10.3.2 Setting Steps using Coordinates Method (Figure 10-15):
			10.3.2.1 Checks – Coordinates method
	10.4 Setting Out Road Sumps and Drains
		10.4.1 Offset by Calculation of Coordinates
			10.4.1.1 Worked example 10.1
		10.4.2 In Field Offset by Taping
		10.4.3 Opinion on Field Methods for Set-outs
	10.5 Calculations for a Field Practical Exercise
		10.5.1 Calculation of a Design Curve
		10.5.2 Curve Radius from Design Profile
		10.5.3 Initial Curve Calculations
			10.5.3.1 Curve M1, centre line calculations
			10.5.3.2 In, through and out arcs for Curve M1
		10.5.4 Roads in Mining Operations
		10.5.5 Haul Road Example
		10.5.6 Curve T5, centre line calculations
		10.5.6.1 Set-out table for Curve T5
		10.5.6.2 In, through and out Arcs for Curve T5
		10.5.6.3 Resulting tangent and arc distances for the T5 formation
	10.6 Concluding Remarks
	10.7 References to Chapter
Chapter 11. Transition curves and superelevation
	11.1 Road Design incorporating Transition Curves and Superelevation
		11.1.1 Introduction
		11.1.2 The Fundamentals of Uniform Circular Motion
		11.1.3 Forces Involved in Uniform Circular Motion
		11.1.4 The Forces on a Body in Uniform Circular Motion
		11.1.5 Forces on a Canted Surface
		11.1.6 Coefficients of Friction
		11.1.7 Practical Design Considerations for Circular Road Curves
		11.1.8 Recommended Values for Coefficient of Static Friction
			11.1.8.1 Side friction values
		11.1.9 Recommended Minimum Radii Values of Horizontal Curves
			11.1.9.1 Minimum radii values of horizontal curves
		11.1.10 Superelevation. Road Profile on a Composite Curve
			11.1.10.1 Developing superelevation between the straight and circular curve
			11.1.10.2 Length of development of superelevation based on rate of rotation
			11.1.10.3 Length of superelevation development based on rate of rotation
			11.1.10.4 Caution. Use of Table 11-1 to Table 11-3
	11.2 The Transition or Spiral Curve
		11.2.1 Introduction to Transition Curves
		11.2.2 Introducing the Transition Spiral
		11.2.3 Equations for the Clothoid
		11.2.4 Developing the Spiral Angle
		11.2.5 Cartesian Coordinates of a Point on the Spiral
			11.2.5.1 Worked example 11.1:
	11.3 Design and Set-out of Full Transition Curve. Worked Example 11.2
		11.3.1 Length of Transition Spiral
			11.3.1.1 Calculate transition spiral length
			11.3.1.2 The spiral angle
			11.3.1.3 Cartesian coordinates of spiral to curve point, SC, on the spiral
			11.3.1.4 The shift distance
			11.3.1.5 Derivation of the shift distance approximation
			11.3.1.6 Tangent distance; TS to PI
			11.3.1.7 Circular distance: SC to CS
			11.3.1.8 Tangential components of transition curve: TS to SC
			11.3.1.9 Chainages from TS to ST
		11.3.2 Set out Calculations for the Spiral and the Arc
			11.3.2.1 Deflection calculations for the spiral and the arc
				11.3.2.1.1 Spiral arc
				11.3.2.1.2 Circular ar
			11.3.2.2 Setout Calculations for the shifted PI and shifted crown
		11.3.3 Diagram of a Circular Arc with Two Spirals
	11.4 Worked Example 11.3. Circular Curve with Transition Spirals
	11.5 Step by Step Solution:
		11.5.1 Transition Curve Length
		11.5.2 Spiral angle
		11.5.3 Length of Circular Curve
		11.5.4 Tangent Distance
		11.5.5 Find Through Chainages: Figure 11-28
		11.5.6 Determine 20m Chainage Points on First Spiral:
			11.5.6.1 Chainage points on spiral curve, T to T1
		11.5.7 Determine 20m Chainage Points on Circular Curve, T1 – T2
			11.5.7.1 Chainage points on circular curve T1 to T2
		11.5.8 Determine 20m Chainage Points on Second Spiral, T2 to U:
			11.5.8.1 Chainage points on spiral curve T2 to U
		11.5.9 Set-out of Common Tangents, T, T1, T2 and U:
			11.5.9.1 Calculate the bearings of thetangents and chords:
			11.5.9.2 Calculate a traverse sheet: I, T, T1, T2, U, I
		11.5.10 Calculation of Chainage Station Coordinates:
			11.5.10.1 For the first spiral, T to T1
			11.5.10.2 For the circular arc, T1 to T2
			11.5.10.3 For the second spiral, T2 to U
		11.5.11 Set-out of Chainage Coordinates from Other Control Points
	11.6 Equations for the Clothoid Spiral Curve
		11.6.1 General Formula
		11.6.2 Spiral Deflections and Chords
		11.6.3 Circular Deflections and Chords
	11.7 Tutorial Exercises 11.1
		11.7.1 Answers to Tutorial Exercises 11.1:
	11.8 References to Chapter 11
Chapter 12. Calculations of Superelevation on a Composite Curve
	12.1 Superelevation. Road Profile on a Composite Curve
		12.1.1 Developing Superelevation between the Straight and Circular Curve
			12.1.1.1 The length of superelevation development:
	12.2 Worked Example 12.1 Superelevation on a Transition Curve
	12.3 Comments on superelevation calculation.
	12.4 References to Chapter 12
Chapter 13. Vertical Curves
	13.1 Introductory Remarks
		13.1.1 Definition
		13.1.2 Uses
		13.1.3 Components of a Vertical Curve
	13.2 Elements of the Vertical Curve
		13.2.1 Two Properties of a Parabola:
		13.2.2 Sign of r
	13.3 Calculus of the Parabola
		13.3.1 Developing the General Equation
		13.3.2 Deriving Data from the General Equation
		13.3.3 High or Low Point of the Vertical Curve
		13.3.4 Level of High or Low Point of the Vertical Curve
			13.3.4.1 Worked Example 13.1
		13.3.5 The Midpoint of the Vertical Curve
			13.3.5.1 Worked Example 13.2
		13.3.6 Pass a Curve Through a Fixed Point
			13.3.6.1 Worked Example 13.3
	13.4 Calculate the RLs of Points Along the Vertical Curve
		13.4.1 Worked Example 13.4. Single Vertical Curve
		13.4.2 Worked Example 13.5. Multiple Vertical Curves
	13.5 Vertical Curves in Rural Road Design
		13.5.1 Effects of Grade on Vehicle Type
		13.5.2 Grades in Rural Road Design
		13.5.3 Length of Vertical Curves in Rural Road Design
		13.5.4 “K” Value in Vertical Curve Design
			13.5.4.1 Worked Example 13.6
		13.5.5 Sight Distance in Vertical Curve Design
		13.5.6 The Arc Length of the Vertical Curve
	13.6 Concluding Remarks
	13.7 References for Chapter 13
Chapter 14 Global Navigation Satellite System
	14.1 Introductory Remarks
	14.2 GNSS, A Revolution to Mine and Civil Engineering Industries
		14.2.1 Measuring principle and GNSS Family
		14.2.2 Applications to Mine and Civil Engineering Operations
	14.3 GPS Design and Operation
		14.3.1 Space Segment
		14.3.2 Control Segment
		14.3.3 User Segment
	14.4 Errors in GPS Measurements
		14.4.1 Ephemeris Errors
		14.4.2 Clock Errors
		14.4.3 Atmospheric Errors
		14.4.4 Multipath
		14.4.5 Satellite Constellation “Geometry”
		14.4.6 Other Sources of Errors
	14.5 GNSS measuring techniques useful to Engineering
		14.5.1 Relative Kinematic (RK)
		14.5.2 Real-time Kinematic (RTK)
		14.5.3 Precise Point Positioning (PPP)
	14.6 Concluding Remarks
	14.7 Reference to Chapter 10
Chapter 15 Setting Out Of Engineering Structures
	15.1 Introductory Remarks
	15.2 Control Surveying
	15.3 Undertaking an Engineering Construction Project
		15.3.1 Personnel involved
		15.3.2 Recording and Filing of Information
		15.3.3 Plans
		15.3.4 Setting out Methods and Procedures
			15.3.4.1 Accuracy of the setting out
			15.3.4.2 Procedure and Methods
			15.3.4.3 Stages in Setting out: Horizontal control.
			15.3.4.4 Coordinate Systems.
		15.3.5 Methods for establishing horizontal control.
			15.3.5.1 Intersection Worked Example 15.1:
			15.3.5.2 Methods for setting out engineering structures
		15.3.6 Stages in Setting out: Structural Horizontal Control.
			15.3.6.1 Projecting offset horizontal control points
			15.3.6.2 External multilevel control transfer
			15.3.6.3 In-building multilevel control transfer
				15.3.6.3.1 Optical plummets
				15.3.6.3.2 Laser plummets
				15.3.6.3.3 Total station plumbing
			15.3.6.4 Free station control transfer
		15.3.7 Stages in Setting out: Vertical Control.
			15.3.7.1 Corrections to trigonometric heighting
			15.3.7.2 Heighting accuracy
			15.3.7.3 Differential versus trignometric heighting for vertical control
			15.3.7.4 Intermediate distance trigonometric levelling
				15.3.7.4.1 Worked example 15.2
		15.3.8 Maintaining verticality in structures
			15.3.8.1 Plumb bob and spirit level
			15.3.8.2 Theodolites and total stations for vertical alignment
				15.3.8.2.1 Errors due to mis-levelment of the trunnion axis
			15.3.8.3 Laser levels in vertical and horizontal alignmen
				15.3.8.3.1 Line laser
				15.3.8.3.2 Rotating beam laser
				15.3.8.3.3 Grade laser
		15.3.9 A long straight line
		15.3.10 Grade control and set out
			15.3.10.1 Trench and pipelaying control
				15.3.10.1.1 Drainage grade control. Worked Example 15.1
			15.3.10.2 Cut/fill stakes for level
			15.3.10.3 Staking for toe/crest profile
				15.3.10.3.1 Setting a toe in fill
				15.3.10.3.2 Setting the crest in cut
				15.3.10.3.3 Comments on toe/crest pegging
			15.3.10.4 Sight rails for batters in cut and fill
			15.3.10.5 The total station in profile and slope set out
			15.3.10.6 The pentaprism in large fill operations
				15.3.10.6.1 The pentaprism on site, marking the batter line
	15.4 Concluding Remarks
	15.5 References to Chapter 15
Chapter 16 Coordinate Transformation And Least Squares Solutions
	16.1 Introduction
	16.2 Definitions
	16.3 Transformation Methods
		16.3.1 Block Shift
		16.3.2 Conformal Transformation
			16.3.2.1 Worked Example 16.1
				16.3.2.1.1 Transform MGA2020 coordinates to the construction grid
				16.3.2.1.2 Transform Construction grid coordinates to MGA2020
				16.3.2.1.3 Transform another point
		16.3.3 Matrix Method of Coordinate Transformations - the Unique Solution Transform mine grid coordinates to MGA2020.
			16.3.3.1 Worked example 16.2. Matrix based conformal transformation
		16.3.4 Least Squares Solution to Coordinate Transformation
		16.3.5 Worked Example 16.3. Over-determined Least Squares Conformal Transformation
			16.3.5.1 The use of MATLAB to solve the problems
	16.4 Coordinate Translations – a VERY HELPFUL Technique
	16.5 Resection to a Point by EDM – a Least Squares Solution
		16.5.1 Resection by Observation from an Unknown Point to Two Known Points
			16.5.1.1 Angle equation
			16.5.1.2 Distance equation
	16.6 Least Squares Solution of an Over-determined Trilateration Problem
		16.6.1 Overdetermined Coordinate Example
			16.6.1.1 Linearize non-linear functions
			16.6.1.2 First Iteration, i0, Start with the estimates of Ax=b+v
			16.6.1.3 Second Iteration, i1:
	16.7 Affine Coordinate Transformation with Weights
		16.7.1 Developing the Affine Transformation
		16.7.2 Dealing with the Skew Angle
		16.7.3 Worked example 16.4. Over-determined Least Squares Affine Transformation
		16.7.4 Affine Transformation using MATLAB
		16.7.5 MATLAB Script used for this Affine Adjustment
	16.8 Concluding Remarks
	16.9 References to Chapter 16
APPENDICES
	A1 Workshop Materials
		A1-1 Workshop 1 - Levelling
		A1-2 Workshop 2 – Earthworks: Relief Representation and Vertical Sections
		A1-3 Workshop 3 – Total Station and Angular Measurements
		A1-4 Workshop 4 – Traversing
		A1-5 Workshop 5 – Horizontal Curves
	A2 Field Practical Materials
		A2-1 Instructions for Field Practical Sessions
			A2-1-2 Conduct of Field Practical Sessions
			A2-1-3 Field Checks
			A2-1-4 Computations and Plan Drawings
			A2-1-5 Equipment
			A2-1-6 Hygiene, Safety and Dress
			A2-1-7 Workshops
			A2-1-8 Field Practical Instructions
			A2-1-9 Field Books and Data Recording
		A2-2 Establishment of Vertical Control and Vertical Sections for a Construction Site
			A2-2-1 Field Practical 1: Establishment of Vertical Control
			A2-2-2 Field Practical 2: Vertical Sections
		A2-3 Establishment of Horizontal Control for a Construction Site
			A2-3-1 Field Practical 3: Establishment of Horizontal Control
				A2-3-1 Field Practical 3: Establishment of Horizontal Control
				A2-3-2 Field Practical 4: Establishment and Adjustment of Construction Site Boundary Control
		A2-4 Establishment of Horizontal Curves Field Examination
			A2-4-1 Calculation and Set-out of a Simple Curve—Assessed Field Practical 5
			A2-4-2 Location of Field Work: Edinburgh Oval South
			A2-4-3 Curve Set-out Data
			A2-4-4 Curve Coordinate Data for Each Group
			A2-4-5 Curve Check Observations
			A2-4-6 Example Group Assessment Form
			A2-4-7 Definitions and Formulae
		A2-5 Computation of Design Parameters of Vertical Curves
			A2-5-1 Practical 6
		A2-6 Examples of Interim Reports
			Practical A2-1-1.
	A3 Civil Engineers Practicals
		A3-1 Civil Engineers Practical 1
		A3-2 Civil Engineers Practical 2
		A3-3 Civil Engineers Practical 3
		A3-4 Civil Engineers Practical 4
	A4 Mining Engineers Practicals
		A4-1 Mining Engineers Practical 1
		A4-2 Mining Engineers Practical 2
		A4-3 Mining Engineers Practical 3
		A4-4 Mining Engineers Practical 4
		A4-5 Civil and Mining Engineers. Practical 5
	A5 Survey Calculations on the HP 10s+, HP300s+
		A5-1 Introduction
			A5-1-1 Time/angle Calculations:
			A5-1-2 DMS to Decimal Degrees: on Ans line
			A5-1-3 Degrees to Radians:
			A5-1-4 Why Radians to Degrees?
		A5-2 Vector Conversion and Axes Rotation
			A5-2-2 The Importance of the SIGN of the Rectangular Coordinates
		A5-3 Converting between Polar and Rectangular Coordinates using Function Keys
			A5-3-1 Trigonometric Conversion to Rectangular Coordinates
			A5-3-2 Trigonometric Conversion using the Rec( Function Key
		A5-4 Converting between Rectangular and Polar Coordinates Using Function Keys
			A5-4-1 Trigonometric Conversion to Polar Coordinates
			A5-4-2 Trigonometric Conversion using the Pol( Function Key
			A5-4-3 The ATAN2() Function in Spreadsheets
		A5-5 Using the M+ Key for Accumulate Operations
		A5-6 Statistics, Mean and Standard Deviations
		A5-7 Concluding remarks
		A5-8 References Appendix A5
INDEX




نظرات کاربران