دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Theis Solling (editor), Muhammad Shahzad Kamal (editor), Syed M. Shakil Hussain (editor) سری: ISBN (شابک) : 3030700259, 9783030700256 ناشر: Springer سال نشر: 2021 تعداد صفحات: 476 [458] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Surfactants in Upstream E&P (Petroleum Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سورفکتانت ها در بالادست E&P (مهندسی نفت) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب ویرایش شده به بررسی استفاده از سورفکتانت ها در اکتشاف و تولید بالادستی (E&P) می پردازد. این یک رویکرد مولکولی، مکانیکی و مبتنی بر کاربرد برای این موضوع ارائه میکند و از مشارکتهای محققان پیشرو در زمینه شیمی سورفکتانت آلی و شیمی سورفکتانت برای E&P بالادست استفاده میکند. این کتاب طیف وسیعی از مشکلات را در بازیابی نفت افزایش یافته و شیمی سورفکتانت که اهمیت زیادی در حفاری، شکستن، مهار هیدرات و انطباق دارند، پوشش میدهد. با بحث در مورد اصول سورفکتانت ها و سنتز آنها شروع می شود. سپس به ارائه کاربرد آنها در موقعیتهای مختلف مانند تزریق گاز، مهار تورم شیل و تحریک اسید میپردازد. این کتاب تحقیقاتی را در زمینهای در حال تحول ارائه میکند و آن را برای دانشگاهیان، دانشجویان تحصیلات تکمیلی و کارشناسان حوزه نفت و گاز جالب میکند.
This edited book explores the use of surfactants in upstream exploration and production (E&P). It provides a molecular, mechanistic and application-based approach to the topic, utilising contributions from the leading researchers in the field of organic surfactant chemistry and surfactant chemistry for upstream E&P. The book covers a wide range of problems in enhanced oil recovery and surfactant chemistry which have a large importance in drilling, fracking, hydrate inhibition and conformance. It begins by discussing the fundamentals of surfactants and their synthesis. It then moves on to present their applicability to a variety of situations such as gas injections, shale swelling inhibition, and acid stimulation. This book presents research in an evolving field, making it interesting to academics, postgraduate students, and experts within the field of oil and gas.
Preface Contents Synthesis Design and Synthesis of Low Molecular Weight and Polymeric Surfactants for Enhanced Oil Recovery 1 Introduction 2 Main Properties of Surfactants 2.1 Adsorption at Interfaces and Surface Excess 2.2 Surface/Interfacial Tension 2.3 Self-assembly of Surfactant and Critical Micellar Concentration 2.4 Critical Packing Parameter 3 Type of Surfactants 3.1 Nonionic Surfactants 3.2 Cationic Surfactants 3.3 Anionic Surfactants 3.4 Zwitterionic Surfactants 3.5 Gemini Surfactants 3.6 Biosurfactants 3.7 Polymeric Surfactants 4 Surfactants in Enhanced Oil Recovery 4.1 Interfacial Tension Reduction 4.2 Wettability Alteration 4.3 Emulsification and Emulsion Phase 5 Design and Synthesis of Low Molecular Weight Surfactants for EOR 5.1 Nonionic Surfactants 5.2 Anionic Surfactants 5.3 Zwitterionic Surfactants 5.4 Gemini Surfactants 5.5 Other Bio-based and Miscellaneous Surfactants 6 Design and Synthesis of Polymeric Surfactants for EOR 6.1 Polymeric Surfactants in Enhanced Oil Recovery 6.2 Poloxames 6.3 Hydrophobically Associative Polymers 6.4 Amphiphilic Block Polyelectrolytes 7 Conclusions and Future Perspective References Drilling Application of Surfactants in the Drilling Fluids to Mitigate the Shale Hydration and Swelling 1 Introduction 2 Classification of Surfactants 2.1 Nonionic Surfactants 2.2 Anionic Surfactants 2.3 Cationic Surfactants 2.4 Amphoteric Surfactants 3 Synthesis of Surfactants 3.1 Synthesis of Cationic (Gemini) Surfactants 3.2 Synthesis of Nonionic Surfactants 4 Impact of Surfactants on Rheology and Filtration Properties of Drilling Fluids 5 Evaluation of Shale Inhibition Characteristics with Surfactants 5.1 Shale Swelling Properties 5.2 Cutting Dispersion Test 5.3 Zeta Potential Analysis 5.4 Uniaxial Compression Test 5.5 Particle Size Measurement 5.6 Wettability Alteration Test 5.7 SEM Analysis of Shale 5.8 XRD Analysis of Shale 6 Effect of Different Parameters on Shale Inhibition Properties 6.1 Effect of Temperature on Shale Inhibition Characteristics 6.2 Effect of Electrolyte on Surfactant Based Drilling Fluids Properties 7 Field Applications 8 Recommendation and Challenges of Surfactants for Shale Inhibition 9 Conclusion References Effect of Surfactants on the Performance of Water-Based Drilling Fluids 1 Introduction 1.1 Drilling Fluid 1.2 Bentonite 1.3 Surfactants 2 Effect of Surfactants on Drilling Fluid Performance 2.1 Surfactants in Water-Based Drilling Fluids (WBDF) 2.2 Surfactants in Organic-Based Drilling Fluids 2.3 General Remarks 3 Cationic Surfactant CTAB and Anionic Surfactant SDS in Water-Based Drilling Fluid 3.1 Experimental 3.2 Investigation of Surfactant-WBDF Properties 3.3 Conclusions References Chemical EOR IFT Role on Oil Recovery During Surfactant Based EOR Methods 1 Fundamental Concepts of Enhanced Oil Recovery 1.1 Microscopic Displacement 1.2 Macroscopic Sweep 2 Conventional Surfactant Flooding 2.1 Effect of Wettability on IFT Requirement 2.2 Effect of Oil Continuity on IFT Requirement 2.3 Effect of Oil Viscosity on IFT Requirement 3 Spontaneous Imbibition 3.1 IFT Role in Tight Shale Rocks 3.2 IFT Role in Low Permeable Limestone and a Relatively Permeable Berea 4 CO2 Flooding 4.1 Role of IFT in MMP Reduction and Oil Recovery 5 Foam Flooding Applications 5.1 Ultra-Low IFT and Foam Stability—A Dilemma 5.2 IFT Role During Foam Flooding in Naturally Fractured Carbonates 6 Steam Flooding 6.1 Steam Foam Flooding 6.2 IFT Role on Sor Reduction During Alkaline Steam Foam Flooding 7 Conclusions References Alternative Understanding of Surfactant EOR Based on Micellar Solubilization and In Situ Emulsification 1 General Overview of Chemical EOR in China 2 Traditional Mechanisms of Surfactant-Based EOR 3 Solubilization of Oil by Surfactant Micelles 3.1 IFT Between Anisole (1-Hexene) and SDBS Solution 3.2 Solubilized Amount of Anisole and 1-Hexene in SDBS Micelles 3.3 Size Change of SDBS Micelles in the Presence of Additives 3.4 Solubilization Site of Anisole and 1-Hexene in SDBS Micelles 3.5 Morphology of Micelle Assemblies 3.6 Solubilization Behavior of Some Other Surfactants 4 In Situ Emulsification in Porous Media 4.1 IFT Between Paraffin Oil and SDBS Solution 5 Conclusions and Perspectives References Biosurfactants and Its Application in Oil Recovery 1 Introduction 2 Biosurfactants 3 Role of Biosurfactants in MEOR Mechanism 3.1 Oil/Water Interfacial Tension Reduction by Biosurfactants 4 Emulsification Index by Biosurfactants 5 Use of Biosurfactants in Enhanced Oil Recovery (EOR) 6 Field Applications 7 Conclusion References Novel Surfactants for Enhanced Oil Recovery 1 Introduction 1.1 General Overview on the Effect of Surfactant on IFT and Wettability Alteration 2 Types of Surfactants and Their Role in EOR 2.1 Cationic Surfactants 2.2 Anionic Surfactant 2.3 Nonionic Surfactants 2.4 Zwitterionic Surfactant 3 Conclusion References Low Salinity Surfactant Flooding: Role of Surfactant and Salt 1 Introduction 2 Low Salinity Water Flooding 3 Low Salinity Surfactant Flooding 4 Synergistic Effects of Low Salinity and Surfactant on Reservoir Properties 5 Oil Recovery Potential of Low Salinity Surfactant Formulations 6 Mechanism of Low Salinity Surfactant EOR 7 Conclusion References Conformance Control Combining Particles with Surfactants to Improve Microscopic Displacement and Sweep Efficiency 1 Introduction 2 Surfactants in EOR 2.1 Recovery Mechanisms of Surfactants 3 Particles Used in EOR 3.1 Conventional Nanoparticles 3.2 Particle Gels 4 Conventional Nanoparticles Combined with Surfactants 4.1 Rock Wettability Modification 4.2 Oil-Water Interfacial Tension Reduction 4.3 Oil Viscosity Reduction and Conformance Control 4.4 Challenges and Limitations of Conventional Nanoparticles Combined with Surfactants 5 Polymeric Nanogel Combined with Surfactant 5.1 Interfacial Tension Reduction Mechanism 5.2 Emulsion Stability Mechanism 5.3 Plugging Mechanism 5.4 Wettability Modification Mechanism 6 PPG Combined with Surfactants 6.1 The Compatibility of PPG and Surfactant 6.2 Oil Recovery Mechanisms of the Combined Method 7 Summary References Gas Injection Recovery of Oil Using Surfactant-Based Foams 1 Introduction 2 Laboratory Studies 2.1 Fluid-Only Testing 2.2 Synergies with Polymers 2.3 Synergies with Nano-Particles (NP) 2.4 Fluid-Rock Testing 3 Foam Applications for Recovery of Oil 3.1 Foam for Air Drilling and Corrosion Inhibition 3.2 Additive in Cement Slurry 3.3 Wellbore Insulation 3.4 Foam Fracturing Treatments 3.5 Foam as Additive in Matrix Acidization 3.6 Foam as Additive in Gravel Packs 3.7 Foam Gas Shut-off 3.8 Mobility Control in Gas Floods 3.9 Mobility Control in Steam Floods 4 Concluding Remarks References CO2-Philic Surfactants: Structure Performance Relationship 1 Surfactants and Foaming Issues 2 CO2-Philic Surfactants 2.1 Surfactant Tails—Fluorinated Surfactants 2.2 Hydrocarbon, Siloxane Based and Oxygenated Surfactants 2.3 HC-Based Surfactants 3 CO2-Philic Surfactants for Foam 3.1 Cooperative C−H···O Hydrogen Bonding 3.2 Phase Behaviour of Oxygen-Containing Polymers in CO2 4 CO2-Philic Surfactants as CO2-Viscofiers 5 Factors Affecting CO2-Philicity for CO2-Philic Surfactants 5.1 Branching 5.2 Number of Tails 5.3 Structural Changes 5.4 No. of Methyl Groups 5.5 Carbonyl Groups 5.6 Molecular Weight (MW) 5.7 Interaction Capacity of Carbon Dioxide with Organic Compounds 5.8 Stepwise Fluorination 6 Conclusion References Stimulation Applications of Surfactants as Fracturing Fluids: Chemical Design, Practice, and Future Prospects in Oilfield Stimulation Operations 1 Introduction 2 Reservoir Evaluation and Geotechnical Considerations 3 Fluid Design and Characterization 4 Physicochemical Attributes of Surfactant-Based Fracturing Fluids 4.1 Friction Reduction (FR) Capacity 4.2 Low Pipe Frictional Pressure 4.3 Tortuosity 4.4 Stability 4.5 Flow Pumpability and Flow Loop Testing 5 Surfactant as Fracturing Fluid 6 Components of Surfactant-Based Hydraulic Fracturing Fluids 7 Different Kinds of Fracturing Fluids 7.1 Water-Based Fracturing Fluids 7.2 Oil-Based Fracturing Fluids 7.3 Alcohol-Based Fracturing Fluids 7.4 Acid-Based Fracturing Fluids 7.5 Emulsion-Based Fracturing Fluids 7.6 Foam Fracturing System 8 Hydraulic Fracturing Process Considerations 9 Applications of Surfactants as Fracturing Fluids 10 Summary and Outlook References Application of Surfactants in Well Stimulation 1 Introduction 2 Mechanisms 2.1 Alteration of Wettability 2.2 Reduction of Interfacial Tension 2.3 Viscoelastic Surfactants (VES) as Gelling Agents 2.4 Foaming Agents 2.5 Induced Microcracks and Acceleration of Crack Growth 2.6 Anti-sludge and Acid Retarding Agents 3 Laboratory-Scale Studies 4 Field Tests 5 New Directions for Surfactant Systems 6 Summary References Corrosion Inhibition Fundamental and Application of Surface Active Agents in Petroleum Industry as Corrosion Inhibitors 1 Introduction 2 Surface Active Agent Fundamental 2.1 Surface Active Agents’ Definition 2.2 Classification of Surface Active Agents 2.3 Micelle Formation 2.4 Factors Influencing the Critical Micelle Concentration 3 Application of Surface Active Agents in Petroleum Industry 3.1 Surface Active Agents as Corrosion Inhibitors in Oil and Gas Production 3.2 Surface Active Agents as Corrosion Inhibitors in Acidization of Oil and Gas Wells 3.3 Surface Active Agents as Corrosion Inhibitors in Chemical Cleaning Process 4 Surface Active Agents as Corrosion Inhibitors 4.1 Cationic Surface Active Agents as Corrosion Inhibitors 4.2 Anionic Surface Active Agents as Corrosion Inhibitors 4.3 Nonionic Surface Active Agents as Corrosion Inhibitors 4.4 Gemini Surface Active Agents as Corrosion Inhibitors 5 Mechanism of the Corrosion Inhibition by Surface Active Agent Inhibitors References Hydrate Inhibition The Role of Surfactants in Gas Hydrate Management 1 Introduction 2 Role of Surfactant Molecular Structure on Hydrate Promotion 2.1 Ionic Type 2.2 Properties of Hydrophobic Group 3 General Theories Behind the Surfactant-Based Promotion 3.1 Micelles Formation Theory 3.2 Capillary Driven Growth 3.3 Adsorption Theory 3.4 Interfacial Tension and Adhesion Energy 3.5 Zeta Potential Measurement 4 Role of Surfactant with Co-promoting Gas Hydrate Formation 4.1 Microemulsions 4.2 Nano-Fluids 4.3 Thermodynamic Promoters 4.4 Porous Medium 5 Application of Surfactant 5.1 Surfactant-Based Hydrate Inhibition 5.2 Natural Gas Storage and Transportation 5.3 Hydrate Based Desalination and Produced Water Treatment 5.4 Hydrate Based CO2 Separation, Capture and Storage 5.5 Hydrate Based Hydrogen Storage 5.6 Drawbacks of Surfactants 6 Computational Studies on the Role of Surfactant During Hydrate Formation 6.1 Empirical Modelling—The Electrolyte Model 6.2 Quantum Mechanics 6.3 Molecular Dynamics 6.4 Continuum Solvation Model 6.5 Machine Learning 7 Closing Remarks and Future Prospects References Demulsification Surfactants as Integral Components of Chemical Demulsifiers 1 Introduction 2 The Emulsification Process—Surfactant Action 2.1 Surfactants Adsorption at Liquid–Liquid Interface 3 The Demulsification Process 4 Demulsification Techniques 4.1 Creaming and Sedimentation 4.2 Flocculation 4.3 Ostwald Ripening (Disproportionation) 4.4 Coalescence 4.5 Phase Separation 5 The Chemical Demulsification Technique 5.1 Anionic Surfactants 5.2 Cationic Surfactants 5.3 Zwitterionic Surfactants 5.4 Nonionic Surfactants 6 Surfactants as Demulsifiers 6.1 Demulsifier Classifications and Selection 7 Requirements of a Demulsifier 7.1 Major Types of Demulsifier Chemicals 7.2 Functions of an Effective Demulsifier 7.3 Mechanism of Chemical Demulsification 7.4 Formulation of a Chemical Demulsifier 8 Comparison Between Two Different Demulsifiers with Different Interfacial Properties (Interfacial Activity) 9 Conclusion References Conclusion