دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مهندسی مکانیک ویرایش: 1 نویسندگان: G.F. Deyev سری: ISBN (شابک) : 0849398835, 9780849398834 ناشر: CRC Taylor & Francis سال نشر: 2006 تعداد صفحات: 426 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
کلمات کلیدی مربوط به کتاب پدیده های سطحی در فرآیندهای جوشکاری فیوژن: مهندسی مکانیک و پردازش مواد، جوشکاری و فناوریهای مرتبط، تئوری فرآیندهای جوشکاری
در صورت تبدیل فایل کتاب Surface phenomena in fusion welding processes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پدیده های سطحی در فرآیندهای جوشکاری فیوژن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
صنعت تولید در حال حاضر از طیف گسترده ای از فرآیندهای جوشکاری استفاده می کند. فرآیند تکنولوژیکی اصلی که در تولید جوشکاری استفاده می شود، جوشکاری ذوبی است. ارائه آخرین تحقیقات در مورد این موضوع، پدیده های سطحی در فرآیندهای جوشکاری ذوبی، کتابی پیشرفته و جامع است که به جزئیات دوره های مختلف عملی که در طی فرآیندهای جوشکاری رخ می دهد، می پردازد. قوانین مشخص شده را توضیح می دهد که در توسعه فرآیندها مفید هستند. شکل گیری عیوب را به تفصیل شرح می دهد و امکان درک نقش ویژگی های سطحی و پدیده های سطحی را در هنگام تشکیل عیوب فراهم می کند. و جوشکاری در فضا را توصیف می کند و نقش تعیین کننده پدیده های سطحی در آن محیط را روشن می کند. متن همچنین شامل 217 شکل، 29 جدول و 336 معادله است تا خواننده را با درک بهتری از فرآیندهای مختلف آشنا کند. در توسعه فنآوریهای جوشکاری و همچنین مواد مصرفی جوشکاری، شناخت و در نظر گرفتن خواص سطحی مواد اعمالشده و پدیدههای سطحی که بر مرزهای فازهای تماس تأثیر میگذارند ضروری است. پدیده های سطحی در فرآیندهای جوشکاری ذوبی این دانش را به طور کامل و در دسترس ارائه می دهد و آن را به مرجعی ایده آل برای متخصصان عملی و علمی در زمینه های جوشکاری و متالورژی تبدیل می کند.
The manufacturing industry currently employs a wide variety of welding processes. The main technological process applied in the production of weldments is fusion welding. Presenting the latest research on the topic, Surface Phenomena in Fusion Welding Processes is a cutting-edge and comprehensive book that details the various courses of action that occur during welding procedures. It explains established regularities that are useful in the development of processes; details the formation of defects, allowing for an understanding of the role of surface properties and surface phenomena during the formation of defects; and describes welding in space, elucidating the determination role of surface phenomena in that environment. The text also contains 217 figures, 29 tables, and 336 equations to provide the reader with a better understanding of the various processes. In the development of welding technologies, as well as welding consumables, it is essential to know and to take into account both the surface properties of the applied materials and the surface phenomena that affect the boundaries of contacting phases. Surface Phenomena in Fusion Welding Processes presents this knowledge in a thorough and accessible manner, making it the ideal reference for practical and scientific specialists in the fields of welding and metallurgy.
Front cover......Page 1
Preface......Page 6
Authors......Page 8
Contents......Page 10
1.1.1 THE BASICS WELD FORMATION......Page 18
1.1.2 THE INFLUENCE GASES......Page 19
1.1.3 THE INFLUENCE SLAG......Page 20
1.2.1 THE D.C. VS. A.C. WELDING......Page 21
1.2.2 ELECTRON BEAM WELDING......Page 24
1.2.3 LASER WELDING......Page 25
1.3.1 ELECTRIC ARC WELDING......Page 26
1.3.2 ELECTROSLAG WELDING......Page 28
1.3.3 ELECTRON BEAM LASER WELDING......Page 29
1.4 PHYSICOCHEMICAL PROCESSES OF WELDED JOINT FORMATION......Page 30
1.4.1 DIRECT INTERACTION THE METAL THE GAS......Page 31
1.4.2 INFLUENCE SURFACTANTS......Page 34
1.4.3 THE GAS-ADSORPTION ABILITY......Page 35
1.4.4 THE INFLUENCE VACUUM......Page 36
1.4.5 THE INFLUENCE FLUXES......Page 37
1.4.6 THE ROLE SLAG......Page 38
1.4.7 THE PHYSIOCHEMICAL PROCESSES......Page 40
1.4.8 CALCULATION......Page 43
1.4.9 THE CRYSTALLIZATION PHENOMENA......Page 45
2.1.1 THE CONCEPT SURFACE ENERGY......Page 52
2.1.3 INTERPHASE TENSION......Page 54
2.1.4 THE ADSORPTION PROCESS......Page 57
2.1.5 THE ELECTROCHEMICAL PHENOMENA......Page 59
2.2.2 DROP WEIGHT METHOD......Page 61
2.2.3 SESSILE DROP METHOD......Page 62
2.2.4 METHOD MAXIMUM PRESSURE BUBBLE......Page 63
2.2.5 LARGE DROP METHOD......Page 65
2.2.7 METHOD TO DETERMINE THE SURFACE TENSION OF A METAL IN THE ZONE OF THE ARC ACTIVE SPOT......Page 66
2.3.1 METHOD OF MULTIPHASE EQQUILIBRIUM......Page 68
2.3.2 METHOD OF "ZERO CREEP"......Page 69
2.3.3 METHOD OF GROOVE SMOOTHING......Page 70
2.3.5 METHOD OF THERMAL ETCHING OF GRAIN BOUNDRIES......Page 71
2.4.1 THE SESSILE DROP METHOD......Page 73
2.4.3 TURNED CAPILLARY METHOD......Page 74
2.4.5 X-RAY PHOTOGRAPHY OF A SESSILE DROP......Page 75
2.5.2 A MODERN UNIT FOR STUDYING THE WELDING PHENOMENA......Page 76
2.5.3 STUDYING THE ELECTROCAPILLARY PHENOMENA......Page 78
3.1.1 INFLUENCE OF ALLOY COMPOSITION......Page 82
3.1.2 THE INFLUENCE OF GASES......Page 84
3.2 INTERPHASE SURFACE ENERGIES IN METAL–SLAG AND SOLID METAL–MELT SYSTEMS......Page 99
3.2.1 COMPOSITION OF THE SYSTEM......Page 100
3.2.3 EXPERIMENTAL DETERMINATION INTERPHASE TENSION......Page 103
3.3 WETTABILITY AND SPREADING OF METAL MELTS OVER THE SURFACE OF SOLIDS......Page 105
3.3.1 INFLUENCE INTERPHASE TENSION......Page 107
3.3.3 INFLUENCE EXTERNAL FIELDS......Page 109
3.3.4 ISOTHERMAL CONDITIONS......Page 112
3.3.5 BEHAVIOR NON-ISOTHERMAL PROCESS......Page 117
3.4.1 INFLUENCE ARC DISCHARGE......Page 122
3.4.2 GENERAL MECHANISTIC CONSIDERATIONS......Page 130
3.5.1 THE INFLUENCE SULFUR/SULFIDES......Page 136
3.5.2 INFLUENCE CHLORIDES/FLUORIDES......Page 139
3.6 ELECTROCAPILLARY PHENOMENA IN A METAL–SLAG SYSTEM......Page 140
3.6.2 THE APPROACH......Page 141
3.6.3 EXPERIMENTAL METHODS......Page 142
3.6.4 THE INFLUENCE CELL DIMENSIONS......Page 145
3.6.5 INFLUENCE EXTERNAL ELECTRIC FIELD......Page 148
4.1.1 THE NATURE ELECTRODE-METAL TRANSFER......Page 152
4.1.2 THE PROCESS DROP FORMATION......Page 153
4.1.3 THE ELECTROMAGNETIC FORCE......Page 154
4.2.1 STAGES DROP TRANSFER......Page 155
4.2.2 DROP DETACHMENT......Page 157
4.2.3 FORMATION METAL SPATTER......Page 158
4.2.4 THE ROLE PART PREHEATING......Page 159
4.2.5 WETTABILITY WELDING CURRENT......Page 162
4.2.6 THE ROLE OXIDIZING GASES......Page 163
4.2.7 INFLUENCE ELECTRODE WIRE COMPOSITION......Page 165
4.2.8 FLUX-CORED WIRES FILLER METAL......Page 166
4.3.2 THE IMPACT INTERPHASE TENSION......Page 167
4.3.3 THE INFLUENCE WELDING POLARITY......Page 170
5.1.1 CAUSES STRENGTH DETERIORATION......Page 174
5.2.1 SHAPE DIMENSIONS PENETRATION ZONE......Page 181
5.2.2 THE INFLUENCE BASE-METAL SURFACE PROPERTIES......Page 183
5.2.3 THE ACTION SURFACTANTS......Page 185
5.2.4 THERMOCAPILLARY PHENOMENA......Page 186
5.2.5 EFFECT CURRENT POLARITY......Page 190
5.2.6 EXPERIMENTAL FINDINGS......Page 194
5.3.2 THE GRAPHICAL METHOD......Page 199
5.3.3 THE ROLE TEMPERATURE FIELDS INCLINATION ANGLES......Page 201
5.3.4 SURFACE TENSION VS. GRAVITATIONAL FORCE......Page 204
5.4.1 WETTING ANGLE......Page 206
5.4.2 EXPERIMENTS ELECTRON BEAM SURFACING......Page 208
5.4.3 TEMPERATURE GRADIENT SPEED DISPLACEMENT......Page 211
5.5.1 GROOVE FILLING UNFILLING......Page 215
5.5.2 MULTILAYER WELDING......Page 217
6.1 NON-METALLIC INCLUSIONS IN THE WELDS 6.1.1 TYPES NON-METALLIC INCLUSIONS......Page 222
6.1.2 THE INFLUENCE NON-METALLIC INCLUSIONS......Page 225
6.2.1 THE KINETICS NUCLEATION......Page 228
6.2.2 OVERSATURATION EFFECTS......Page 229
6.2.3 ELECTROCHEMICAL CONSIDERATIONS......Page 231
6.2.4 THERMODYNAMIC CONSIDERATIONS......Page 233
6.3.1 FUNDAMENTALS NUCLEI GROWTH......Page 235
6.3.2 COALESCENCE COAGULATION......Page 236
6.3.3 THE EFFECT OXIDES......Page 237
6.3.4 THE EFFECT STIRRING......Page 239
6.3.5 DISJOINING PRESSURE......Page 240
6.3.6 DETERMINATION ADHESION FORCES......Page 242
6.4.2 THEORETICAL CONSIDERATIONS......Page 244
6.4.3 THE COMBINED EFFECT GAS BUBBLE INCLUSION......Page 246
6.4.4 DEFORMATION DISRUPTION......Page 248
6.4.5 SOME IMPORTANT CALCULATIONS......Page 250
7.1 PORES AND PERFORMANCE OF A WELDED JOINT......Page 254
7.2 FORMATION OF GAS BUBBLE NUCLEI......Page 256
7.2.1 SURFACE TENSION AND RADIUS OF CURVATURE......Page 258
7.2.2 EXISTENCE oF DIFFERENT GASES IN THE PORES......Page 259
7.2.3 EFFECT OF OXYGEN ON THE NUCLEATION OF PORES......Page 263
7.3.1 INTERMOLECULAR ADHESION FORCES......Page 265
7.3.2 THE INFLUENCE ELECTRIC FIELD......Page 267
7.3.3 THE INFLUENCE OF NON-METALLIC INCLUSIONS......Page 271
7.3.4 OTHER SALIENT FEATURES......Page 277
7.4 GROWTH OF GAS BUBBLES IN THE WELD POOL......Page 279
7.4.1 THERMODYNAMIC CONSIDERATIONS......Page 280
7.4.2 EFFECT OF OSCILLATIONS AND STIRRING......Page 281
7.4.3 DIFFUSION PHENOMENA......Page 282
7.4.4 SURFACE VS. VOLUME CONCENTRATION COMPONENTS......Page 285
7.5.1 THE NEED ADVANCED MATHEMATICAL TREATMENT......Page 286
7.5.2 PROVIDING ALLOWANCE MANY BUBBLES......Page 288
7.5.3 DESTRUCTION FILM......Page 290
8 Solidification Cracking......Page 296
8.1.1 THE INFLUENCE CARBON CONTENT......Page 297
8.1.2 THE ROLE METAL STRUCTURE......Page 298
8.1.3 DETERMINATION SUSCEPTIBILITY SOLIDIFICATION CRACKING......Page 299
8.2 MECHANISM OF THE EFFECT OF METAL MELTS ON THE FRACTURE OF SOLID METALS......Page 301
8.2.1 INTERACTION METAL ATOMS CRACK APEX......Page 302
8.2.2 THE ROLE MELT......Page 305
8.3.1 EXPERIMENTAL FINDINGS MECHANICAL PROPERTIES......Page 309
8.3.2 EXPERIMENTAL STUDY CORROSION......Page 315
8.3.3 IMPORTANT OBSERVATIONS METALLOGRAPHY......Page 318
8.3.4 THE MECHANISM CORROSION EFFECT......Page 321
8.3.5 OTHER PARAMETERS......Page 322
8.4.1 CRACK FORMATION......Page 323
8.4.2 THE ROLE SURFACE PHENOMENA......Page 326
8.4.3 COMBINED EFFECT OXYGEN SULFUR......Page 328
9.1 WELDING OF COMPOSITE FIBER-REINFORCED MATERIALS......Page 330
9.1.1 PROBLEMS IN THE FUSION WELDING OF COMPOSITE MATERIALS......Page 331
9.1.2 THE HETEROGENEOUS NATURE SURFACE......Page 332
9.1.3 EXPERIMENTAL OBSERVATIONS......Page 337
9.2 ELECTRON BEAM SURFACING......Page 340
9.2.1 SURFACING—EXPERIMENTAL FINDINGS......Page 341
9.3 WELDING AND SURFACING OF COPPER–STEEL PARTS......Page 347
9.3.1 COPPER–STEEL PIPES......Page 348
9.3.2 WETTING AND SPREADING......Page 350
9.4.1 HARDNESS......Page 354
9.4.2 CRACKS......Page 356
9.4.3 DUCTILITY......Page 357
9.5.1 METHOD OF INCREASING THE PRODUCTIVITY......Page 358
9.5.2 SLAG ADHESION......Page 361
9.6.2 THE FORCE ACCELERATION......Page 364
9.6.3 MICROGRAVITY......Page 366
9.6.4 THE QUESTION CONVECTION......Page 369
9.6.5 GROWTH GAS BUBBLES NON-METALLIC INCLUSIONS......Page 370
A......Page 404
C......Page 405
D......Page 407
E......Page 408
F......Page 409
G......Page 410
I......Page 411
L......Page 412
M......Page 413
N......Page 414
P......Page 415
S......Page 417
T......Page 421
V......Page 422
X......Page 423
Z......Page 424
Back cover......Page 426