دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Ratan Raj Tatiya
سری:
ISBN (شابک) : 0415621194, 9780203440940
ناشر: CRC Press / Balkema
سال نشر: 2013
تعداد صفحات: 886
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 33 مگابایت
در صورت تبدیل فایل کتاب Surface and underground excavations: methods, techniques and equipment به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاوش های سطحی و زیرزمینی: روش ها، تکنیک ها و تجهیزات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
1 Introduction 1.1 Excavations and their classification 1.2 Surface excavations 1.3 Underground excavations 1.4 Importance of minerals and brief history of their recovery 1.5 Current status of mineral industry 1.6 Excavation technologies/systems – development & growth 1.7 Unique features of mineral industry 1.7.1 Different phases of mine life 1.8 Brief history of civil work excavations including tunneling 1.9 The current scenario 1.9.1 Population growth 1.9.2 Lifestyle 1.9.3 Globalization 1.9.4 Buyer’s market 1.9.5 Technological developments and renovations 1.9.6 Information technology (IT) and its impacts 1.10 Tomorrow’s mine & civil excavations 1.11 The way forward Questions References 2 Rocks, minerals and mineral inventory evaluation 2.1 Formation process and classification 2.1.1 Igneous rocks 2.1.2 Sedimentary rocks 2.1.3 Metamorphic rocks 2.2 Rock cycle & type of deposits 2.3 Texture, grain size and shape 2.3.1 Grain sizes and shapes 2.3.2 Durability, plasticity and swelling potential of rocks 2.4 The concepts of mineral resources and reserves; mineral inventory, cutoff grade and ores 2.4.1 Some important ores – chemical & mineralogical composition 2.5 Geological structures 2.5.1 Geometry of a deposit 2.5.2 Forms of deposits 2.5.3 Structural features of rock mass 2.6 Physical and mechanical characteristics of ores and rocks 2.6.1 Rocks as rock mechanics 2.6.2 Rock composition 2.6.3 Rock strength 2.7 Some other properties/characteristics 2.7.1 Hardness of minerals 2.7.2 Rock breakability 2.8 Related terms – rock and mineral deposits 2.9 Mineral inventory evaluation 2.9.1 Introduction 2.9.2 Grade computation from borehole data 2.9.3 Mineral inventory modelling/estimation techniques 2.9.3.1 Method of polygons 2.9.3.2 Triangle or triangular prism method 2.9.3.3 Cross-sectional method 2.9.3.4 Inverse Square Distance Weighting (IDW) method 2.9.3.5 Classical statistics 2.9.3.6 Geostatistics 2.9.3.7 Non-linear estimation techniques in geostatistics 2.9.4 Important considerations for evaluation of the mineral inventory 2.9.4.1 Homogeneity and mode of origin 2.9.4.2 Geological and mineralogical boundaries 2.9.5 Computation of the mineral inventory 2.9.5.1 Logical steps followed 2.9.5.2 Graphical presentation of data 2.9.5.3 Statistical analysis and cumulative probability distribution 2.9.5.4 Structural analysis – the semi-variogram 2.9.5.5 Trend surface analysis 2.9.5.6 Checking the variogram model 2.9.5.7 Block kriging 2.9.5.8 Block dimensions 2.9.5.9 Kriging procedure 2.9.6 Graphical presentation of the kriged results 2.9.7 Grade-tonnage calculation and plotting the curves 2.9.8 Selection of a suitable mining/stoping method 2.10 Resources classification by UNECE 2.11 The way forward Questions References 3 Prospecting, exploration & site investigations 3.1 Introduction 3.2 Prospecting and exploration 3.2.1 Finding signs of the mineral in the locality or general indications 3.2.1.1 Geological studies 3.2.1.2 Geo-chemical studies 3.2.2 Finding the deposit or preliminary proving 3.2.2.1 Geophysical methods/studies/surveys 3.2.2.2 Putting exploratory headings 3.2.3 Exploring the deposits or detailed proving – prospecting drilling 3.3 Phases of prospecting and exploration program 3.4 Site investigations for civil constructions, or any excavation project including tunnels and caverns 3.5 Rocks and ground characterization 3.5.1 Rock strength classification 3.5.2 Rock mass classifications 3.6 Rock quality designation (RQD) 3.6.1 Q (Rock mass quality) system 3.6.2 Geomechanics classification (RMR system) 3.6.3 Rock structure rating (RSR) 3.7 Geological and geotechnical factors 3.8 The way forward Questions References 4 Drilling 4.1 Introduction – unit operations 4.2 Primary rock breaking 4.3 Drilling 4.4 Operating components of the drilling system 4.5 Mechanics of rock penetration 4.5.1 Top-hammer drilling 4.5.2 Down-the-hole (DTH) drilling 4.5.3 Rotary drilling 4.5.4 Augur drill 4.5.5 Rotary abrasive drilling 4.6 Rock drill classification 4.6.1 Tunneling/development drill jumbos 4.6.2 Shaft jumbos 4.6.3 Ring drilling jumbos 4.6.4 Fan drilling jumbos 4.6.5 Wagon drill jumbos 4.6.6 DTH drill jumbos 4.6.7 Roof bolting jumbos 4.7 Motive power of rock drills 4.7.1 Electric drills 4.7.2 Pneumatic drills 4.7.3 Hydraulic drills 4.8 Drilling accessories 4.8.1 Extension drill steels 4.8.2 Bits 4.8.3 Impact of rock-type on drilling performance 4.9 Selection of drill 4.10 Summary – rocks drill applications 4.11 Drilling postures 4.12 The way forward Questions References 5 Explosives and blasting 5.1 Introduction – explosives 5.2 Detonation and deflagration 5.3 Common ingredients of explosives 5.4 Classification of explosives 5.4.1 Primary or initiating explosives 5.4.2 Secondary explosives 5.4.3 Pyrotechnic explosives 5.4.4 Low explosives 5.4.5 Commercial explosives – high explosives 5.4.5.1 Gelatin explosives 5.4.5.1.1 Dynamites (straight dynamite, ammonia dynamite) 5.4.5.1.2 Blasting gelatin 5.4.5.1.3 Semi gelatin 5.4.5.2 Wet blasting agents 5.4.5.2.1 Slurry explosives 5.4.5.2.2 Emulsions 5.4.5.2.3 Heavy ANFO 5.4.5.3 Dry blasting agents 5.4.5.3.1 Explosive ANFO 5.4.5.3.2 ANFO mixing 5.4.5.3.3 ANFO loading 5.4.5.4 Pneumatic loaders and principles of loading 5.4.5.4.1 Pressure type loaders 5.4.5.4.2 Ejector type loader 5.4.5.4.3 Combine type (combining pressure and ejecting features) 5.4.5.5 Safety aspects 5.4.5.6 Static hazards associated with ANFO loading 5.4.5.7 Special types of explosives 5.4.5.7.1 Permitted explosives 5.4.5.7.2 Seismic explosives 5.4.5.7.3 Overbreak control explosives 5.4.6 Military explosives 5.5 Blasting properties of explosives 5.5.1 Strength 5.5.2 Detonation velocity 5.5.3 Density 5.5.4 Water resistance 5.5.5 Fume characteristics, or class, or medical aspects 5.5.6 Oxygen balance 5.5.7 Completion of reaction 5.5.8 Detonation pressure 5.5.9 Borehole pressure and critical diameter 5.5.10 Sensitivity 5.5.11 Safety in handling & storage qualities 5.5.12 Explosive cost 5.6 Explosive initiating devices/systems 5.6.1 Detonator system 5.6.1.1 Detonators 5.6.1.2 Instantaneous detonators 5.6.1.2.1 Plain detonator 5.6.1.2.2 Instantaneous electric detonators 5.6.1.3 Delay detonators 5.6.1.3.1 Electric delay detonators 5.6.1.3.2 Electronic delay detonators 5.6.1.3.3 Non-electric delay detonators: detonating relays (ms connectors) 5.6.1.3.4 Primadet and anodet non-electric delay blasting systems 5.6.1.3.5 The nonel system 5.6.1.3.6 Combine primadet-nonel system 5.6.1.3.7 The hercudet blasting cap system 5.6.1.3.8 Advantages of short delay blasting 5.6.2 Fuse/cord system 5.6.2.1 Safety fuse 5.6.2.2 Detonating fuse/cord (DC) 5.6.2.3 Igniter cords (IC) 5.7 Explosive charging techniques 5.7.1 Water gel (slurry loader) 5.8 Blasting accessories 5.8.1 Exploders 5.8.2 Circuit testers 5.8.3 Other blasting tools 5.9 Firing systems – classification 5.9.1 While firing with a safety fuse 5.9.2 Firing with electric detonators 5.9.3 Non-electric systems 5.10 Ground blasting techniques 5.10.1 Control/contour blasting 5.10.1.1 Pre-splitting 5.10.1.2 Cushion blasting 5.10.1.3 Smooth blasting & buffer blasting 5.10.1.4 Line drilling 5.11 Secondary breaking 5.11.1 Secondary rock breaking methods 5.11.1.1 With the aid of explosives 5.11.1.1.1 Plaster shooting 5.11.1.1.2 Pop shooting 5.11.1.1.3 Releasing jammed muck from the draw points 5.11.2Without aid of explosives 5.11.2.1 Mechanical rock breaking 5.11.2.1.1 Manual breaking 5.11.2.1.2 Mechanical rock breakers 5.11.2.1.3 Hydraulic rock breakers 5.11.2.1.4 Teledyne rock breaker 5.11.2.2 Electrical rock breaking 5.11.2.2.1 Rock breaking by the use of high frequency current 5.11.2.3 Hydraulic boulder splitter 5.12 Use, handling, transportation and storage of explosives 5.12.1 Magazine 5.13 Explosive selection 5.14 Blasting theory 5.14.1 Adverse impacts of explosives 5.14.1.1 Ground/land vibrations 5.14.1.2 Air blast and noise 5.14.1.3 Rock throw 5.15 Drilling and blasting performance 5.15.1 Percentages pull 5.15.2 Over-break factor 5.15.3 Degree of fragmentation 5.15.4 Overall cost 5.16 Recent trends in explosives and blasting technology 5.17 Concluding remarks Questions References 6 Mucking, casting and excavation 6.1 Introduction 6.2 Muck characteristics 6.3 Classification 6.4 Underground mucking units 6.4.1 Overshot loaders 6.4.2 Autoloaders – hopper loaders and LHDs 6.4.2.1 Autoloaders – mucking and delivering 6.4.2.2 Mucking and transporting – load haul and dump units (LHDs) 6.4.2.2.1 Constructional details 6.4.2.2.2 Special provisions 6.4.2.2.3 Buckets of LHD and other dimensions 6.4.2.2.4 LHD tyres 6.4.2.2.5 Distance, gradient and speed 6.4.2.2.6 Ventilation 6.4.2.2.7 Latest developments 6.4.2.3 Desirable features 6.4.2.3.1 Perfect layout 6.4.2.3.2 Suitable drainage and road maintenance 6.4.2.3.3 Well-fragmented muck 6.4.2.3.4 Maintenance 6.4.2.3.5 Trained personnel 6.4.2.4 Advantages 6.4.2.5 Limitations 6.4.2.6 Manufacturers 6.5 Arm loaders 6.5.1 Gathering-arm-loader (GAL) 6.5.2 Arm loaders for sinking operations 6.5.3 Riddle mucker 6.5.4 Cryderman mucker 6.5.5 Cactus-grab muckers 6.5.6 Backhoe mucker 6.6 Scrapers 6.7 Mucking in tunnels 6.7.1 Dipper and hydraulic shovels 6.7.2 Mucking in TBM driven tunnels 6.8 Surface – excavation, loading and casting units 6.9 Wheel loaders – front end loaders 6.10 Backhoe 6.11 Hydraulic excavators 6.12 Shovel 6.13 Dragline 6.13.1 Multi bucket excavators 6.14 Bucket chain excavator (BCE) 6.15 Bucket wheel excavator (BWE) 6.16 Calculations for selection of shovel/excavator 6.17 Total cost calculations 6.18 Governing factors for the selection of mucking equipment 6.19 The way forward Questions References 7 Transportation – haulage and hoisting 7.1 Introduction 7.2 Haulage system 7.2.1 Rail or track mounted – rope haulage 7.2.1.1 Rope haulage calculations 7.2.1.1.1 Direct rope haulage system 7.2.1.1.2 Endless rope haulage system 7.2.1.2 Scope and applications of rope haulage 7.2.2 Locomotive haulage 7.2.2.1 Electric locomotives 7.2.2.2 Battery locomotives 7.2.2.3 Combination locomotives 7.2.2.4 Diesel locomotives 7.2.2.5 Compressed air locomotives 7.2.2.6 Other fittings 7.2.2.7 Locomotive calculations 7.3 Trackless or tyred haulage system 7.3.1 Automobiles 7.3.2 LHD 7.3.3 Shuttle car 7.3.4 Underground trucks 7.3.4.1 Trackless or tyred haulage system 7.4 Conveyor system 7.4.1 Belt conveyors 7.4.1.1 Conveyor calculations 7.4.2 Cable belt conveyors 7.4.3 Scraper chain conveyors 7.5 Hoisting or winding system 7.5.1 Head-frame or head-gear 7.5.2 Shaft conveyances 7.5.3 Rope equipment 7.5.4 Classification of hoisting system 7.5.4.1 Multi-rope friction winding system 7.5.5 Hoisting cycle 7.5.6 Calculations of suspended load during hoisting 7.5.7 Use of safety devices with a hoisting system 7.6 Aerial ropeway 7.6.1 Aerial ropeway calculations 7.7 Ropes 7.7.1 Rope calculations 7.8 Track and mine car 7.8.1 Track 7.8.2 Mine cars 7.9 The way forward Questions References 8 Supports 8.1 Introduction – necessity of supports 8.2 Classification of supports 8.3 Self support by in-place (in-situ) rock 8.3.1 Support by the use of natural pillars 8.3.2 Use of artificial supports 8.3.2.1 Brick and stone masonry 8.3.2.2 Wooden (timber) supports 8.3.2.2.1 Calculations with regard to wooden supports 8.3.2.3 Steel supports 8.3.2.3.1 Steel props, powered and shield supports 8.3.2.3.2 Rock bolting 8.3.2.4 Concrete supports 8.3.2.5 Support by filling 8.4 Selection of support 8.4.1 Measures to preserve the stability of the stoped out workings or to minimize problems of ground stability 8.5 Effect of ore extraction upon displacement of country rock and surface 8.6 The way forward Questions References 9 Drives and tunnels (conventional methods) 9.1 Introduction – function of drives and tunnels 9.2 Drivage techniques (for drives and tunnels) 9.3 Drivage techniques with the aid of explosives 9.3.1 Pattern of holes 9.3.1.1 Mechanized-cut kerf 9.3.1.2 Blasting off the solid 9.3.1.2.1 Parallel hole cuts 9.3.1.2.2 Verification of pattern of holes 9.3.2 Charging and blasting the rounds 9.3.2.1 Placement of primer 9.3.2.2 Stemming 9.3.2.3 Depth of round/hole 9.3.2.4 Charge density in cut-holes and rest of the face area 9.3.3 Smooth blasting 9.3.3.1 Charging and blasting procedure 9.3.3.2 Use of ANFO in drives and tunnels 9.4 Muck disposal and handling (mucking and transportation) 9.5 Ventilation 9.5.1 Mine opening ventilation 9.5.1.1 Using general air flow 9.5.1.2 Using auxiliary fans: forcing, exhaust or contra rotating 9.5.2 Ventilation during civil tunneling 9.6 Working cycle (including auxiliary operations) 9.7 Driving large sized drives/tunnels in tough rocks 9.7.1 Full-face driving/tunneling 9.7.2 Pilot heading technique 9.7.3 Heading and bench method 9.8 Conventional tunneling methods: tunneling through the soft ground and soft rocks 9.9 Supports for tunnels and mine openings 9.9.1 Classification 9.9.2 Selection of supports 9.10 Driving without aid of explosives 9.11 Pre-cursor or prior to driving civil tunnels 9.11.1 Site investigations 9.11.2 Location of tunnels 9.11.3 Rocks and ground characterization 9.11.4 Size, shape, length and orientation (route) of tunnels 9.11.5 Preparatory work required 9.12 Past, present and future of tunneling technology 9.13 Over-break and scaling – some innovations 9.14 Longer rounds – some trials 9.15 The way forward Questions References 10 Tunneling by roadheaders and impact hammers 10.1 Tunneling by boom-mounted roadheaders 10.2 Classification boom-mounted roadheaders 10.2.1 Ripper (transverse) type roadheaders – (Cutter heads with rotation perpendicular to the boom axis) 10.2.1.1 Bar type 10.2.1.2 Disc type 10.3 Milling or longitudinal (auger) roadheaders 10.3.1 Borer type roadheaders 10.4 Classification based on weight 10.5 Advantages of roadheaders 10.6 Important developments 10.7 Procedure of driving by the heading machines 10.8 Auxiliary operations 10.8.1 Ground support 10.9 Hydraulic impact hammer tunneling 10.10 Excavation procedure and cycle of operations 10.10.1 Hammer’s working cycle 10.11 Merit and limitations 10.12 Partial face rotary rock tunneling machines 10.13 Excavators 10.13.1 Excavators mounted within shield 10.13.1.1 Excavator buckets 10.14 Excavator with multiple tool miner (MTM) attachments 10.14.1 Excavator mounted within a shield 10.14.2 Excavator-mounted cutter booms (Partial face machines for NATM) 10.15 The way forward Questions References 11 Full-face tunnel borers (TBMs) & special methods 11.1 Introduction 11.1.1 Improved understanding 11.2 Tunneling methods and procedures 11.3 Full-face tunneling machines 11.3.1 Full-face tunnel borers (mechanical) TBM – open and shielded 11.3.2 Mechanical excavation of the full cross-section with open type machines 11.3.2.1 Open main beam machines 11.3.2.2 Single shield 11.3.2.3 Double shield 11.3.2.4 Enlarging TBM 11.4 Mini tunnel borers 11.5 Boring system 11.6 Rock cutting tools and their types 11.6.1 Cutting head configuration 11.7 TBM performance 11.7.1 Economical aspects 11.8 Size of unit and its overall length including its trailing gear 11.8.1 Advantages 11.8.2 Disadvantages 11.9 Backup system/activities 11.9.1 Muck disposal 11.9.2 Single track 11.9.3 Double track 11.9.4 Continuous conveyor system 11.9.5 Other back-ups include 11.10 TBMs for soft ground/formations 11.10.1 Full-face shield with picks 11.10.2 Compressed air shields 11.10.3 Slurry shield 11.10.4 Earth pressure balance 11.10.4.1 Segments 11.10.4.2 Back filling 11.10.4.3 Auxiliary construction measures 11.10.5 Developments 11.11 Phases of tunneling project 11.11.1 Tunnel portal 11.11.2 Phases of a TBM project 11.12 Future technology 11.12.1 Hard rock TBMs 11.12.2 Soft ground machines 11.13 New Austrian tunneling method (NATM) 11.13.1 NATM design philosophy and typical features 11.13.2 Ground categories and tunneling procedures 11.13.2.1 Excavation sequence 11.13.3 Semi-mechanized methods 11.14 Tunneling through abnormal or difficult ground using special methods 11.14.1 Ground treatment 11.14.1.1 Reinforcement 11.14.1.2 Treatment that tackles the problems arising due to the presence of water 11.14.1.3 Lowering water table/ground water 11.14.1.4 Use of compressed air to hold back water 11.14.1.5 Grouting 11.14.1.6 Freezing 11.15 Cut and cover method of tunneling 11.16 Submerged tubes/tunnels 11.17 The way forward Questions References 12 Planning 12.1 Economic studies 12.1.1 Phases or stages in economic studies 12.1.1.1 Preliminary studies or valuation 12.1.1.2 Intermediate economic study or pre-feasibility study 12.1.1.3 Feasibility study 12.1.1.3.1 Information on deposit 12.1.1.3.2 Information on general project economics 12.1.1.3.3 Mining method selection 12.1.1.3.4 Processing methods 12.1.1.3.5 Ecology 12.1.1.3.6 Capital and operating costs estimates 12.1.1.3.7 Project cost & rates of return 12.1.1.3.8 Comments 12.1.2 Conceptual mine planning and detailed project reports 12.1.2.1 Conceptual studies/models 12.1.2.2 Engineering studies 12.1.2.3 Models and detailed design 12.2 Mine design elements 12.2.1 Mineral resources and reserves 12.2.2 Cutoff grade 12.2.2.1 Mining & process plant input-output calculations (for a copper mining complex) 12.2.2.2 Cutoff grade calculations 12.2.3 Interrelationship amongst the mine design elements 12.2.4 Mine life 12.2.4.1 Phases or stages during mine life 12.3 Dividing property for the purpose of underground mining 12.3.1 Panel system 12.3.2 Level system 12.3.3 Level interval 12.4 Mine planning duration 12.5 Mine development – introduction 12.6 Access to deposit or means of mine access 12.7 System – opening up a deposit 12.7.1 Opening deposit in parts 12.7.2 Opening up the whole deposit 12.8 Positioning and developing the main haulage levels 12.8.1 Selecting development in ore or rock (country rock) 12.8.2 Vertical development in the form of raises 12.8.3 Connecting main levels by ramps/declines/slopes 12.8.4 Determination of optimal load concentration point 12.8.4.1 Analytical method 12.8.4.2 Graphical method: funicular diagram 12.9 Size and shape of mine openings and tunnels 12.10 Pit top layouts 12.11 Pit bottom layouts 12.11.1 Types of pit bottom layouts 12.12 Structures concerning pit bottom layouts 12.13 The way forward Questions References 13 Excavations in upward direction – raising 13.1 Introduction 13.2 Raise applications in civil and construction industries 13.3 Classification – types of raises for mines 13.4 Raise driving techniques 13.5 Conventional raising method: open raising 13.6 Conventional raising method: raising by compartment 13.7 Raising by the use of mechanical climbers: Jora hoist 13.8 Raising by mechanical climbers: Alimak raise climber 13.8.1 Preparatory work and fittings 13.8.2 Ignition and telephone systems 13.8.3 Cycle of operations 13.8.4 Performance 13.8.5 Design variants 13.8.6 Air-driven unit 13.8.7 Electrically driven unit 13.8.8 Diesel-hydraulic unit 13.9 Blasthole raising method: long-hole raising 13.9.1 Marking the raise 13.9.2 Equipment installation 13.9.3 Drilling 13.9.4 Raise correlation 13.9.5 Blowing and plugging the holes 13.9.6 Charging and blasting 13.9.7 Limitations 13.9.8 Advantages 13.10 Blasthole raising method: drop raising 13.11 Raising by the application of raise borers 13.12 Raise boring in a package – BorPak 13.13 Ore pass/waste rock pass 13.13.1 Size and shape 13.13.2 Ore pass lining 13.13.3 Design consideration of rock pass/ore pass 13.14 The way forward Questions References 14 Shaft sinking 14.1 Introduction 14.2 Location 14.3 Preparatory work required 14.4 Sinking appliances, equipment and services 14.5 Sinking methods and procedure 14.6 Reaching up to the rock head 14.6.1 Pre-sink 14.7 Sinking through the rock 14.7.1 Drilling 14.7.2 Blasting 14.7.3 Lashing and mucking 14.7.4 Hoisting 14.7.5 Support or shaft lining 14.7.6 Auxiliary operations 14.7.6.1 Dewatering 14.7.6.2 Ventilation 14.7.6.3 Illumination 14.7.6.4 Shaft centering 14.7.6.5 Station construction and initial development 14.8 Special methods of shaft sinking 14.9 Piling system 14.10 Caisson method 14.10.1 Sinking drum process 14.10.2 Forced drop-shaft method 14.10.3 Pneumatic caisson method 14.11 Special methods by temporary or permanent isolation of water 14.11.1 Cementation 14.11.1.1 Boring/Drilling 14.11.1.2 Cementation 14.11.1.3 Sinking and walling 14.12 The freezing process 14.12.1 Drilling and lining of boreholes 14.12.2 Formation and maintenance of the ice column 14.12.3 Actual sinking operations 14.12.4 Thawing of ice wall 14.12.5 Freezing – shafts 14.12.6 Ground freezing practices in Germany 14.13 Shaft drilling and boring 14.13.1 Shaft drilling 14.13.2 Shaft boring 14.14 Safety in sinking shafts 14.14.1 Field tests and measurements 14.15 The way forward Questions References 15 Large sub-surface excavations 15.1 Introduction 15.2 Caverns 15.2.1 Constructional details – important aspects 15.2.1.1 Construction procedure 15.3 Powerhouse caverns 15.4 Oil storage caverns 15.5 Repository 15.6 Salt cavern storage 15.7 Aquifer storage 15.8 Exhibition hall caverns 15.9 Underground chambers in mines 15.10 Equipment and services selection 15.11 The way forward Questions References 16 Underground mining/stoping methods & mine closure 16.1 Introduction 16.1.1 Factors governing choice of a mining method 16.1.1.1 Shape and size of the deposit 16.1.1.2 Thickness of deposit 16.1.1.3 Dip of the deposit 16.1.1.4 Physical and mechanical characteristics of the ore and the enclosing rocks 16.1.1.5 Presence of geological disturbances and influence of the direction of cleats or partings 16.1.1.6 Degree of mechanization and output required 16.1.1.7 Ore grade and its distribution, and value of the product 16.1.1.8 Depth of the deposit 16.1.1.9 Presence of water 16.1.1.10 Presence of gases 16.1.1.11 Ore & country rock susceptibility to caking and oxidation 16.1.2 Desirable features of selecting a stoping method 16.1.3 Classification – stoping methods 16.2 Open stoping methods 16.2.1 Open stoping method – room & pillar stoping 16.2.1.1 Introduction 16.2.1.2 Stope preparation 16.2.1.3 Unit operations 16.2.1.4 Stoping operations 16.2.1.5 Bord and pillar 16.2.1.6 Block system 16.2.1.7 Stope and pillar 16.2.1.7.1 Advantages 16.2.1.7.2 Limitations 16.2.2 Open stoping method – shrinkage stoping 16.2.2.1 Introduction 16.2.2.2 Stope preparation 16.2.2.3 Unit operations 16.2.2.4 Stoping operations 16.2.2.5 Layouts 16.2.2.5.1 Winning the pillars 16.2.2.5.2 Advantages 16.2.2.5.3 Limitations 16.2.3 Open stoping method – sublevel stoping 16.2.3.1 Introduction 16.2.3.2 Sublevel stoping with benching 16.2.3.3 Blasthole stoping 16.2.3.4 Longitudinal sublevel stoping 16.2.3.5 Transverse sublevel stoping 16.2.3.6 Blasthole drilling 16.2.4 Large blasthole stoping 16.2.4.1 Stope preparation (general procedure) 16.2.4.2 VCR method 16.2.4.3 Unit operations 16.2.4.4 Layouts 16.2.4.4.1 Advantages 16.2.4.4.2 Limitations 16.2.4.4.3 Winning the pillars 16.3 Supported stoping methods 16.3.1 Supported stoping method – stull stoping 16.3.1.1 Introduction 16.3.1.2 Unit operations 16.3.1.3 Auxiliary operations 16.3.1.4 Stope preparation 16.3.1.5 Stoping 16.3.1.6 Layouts 16.3.1.6.1 Variants 16.3.1.6.2 Advantages 16.3.1.6.3 Limitations 16.3.2 Supported stoping method: cut & fill stoping 16.3.2.1 Introduction 16.3.2.2 Stope preparation 16.3.2.3 Stoping 16.3.2.4 Unit operations 16.3.2.5 Auxiliary operations 16.3.2.5.1 Advantages 16.3.2.5.2 Limitations 16.3.2.5.3 Variants 16.3.2.6 Cut and fill with flat back 16.3.2.7 Cut and fill with inclined slicing 16.3.2.8 Post and pillar cut and fill stoping 16.3.2.9 Stope drive or undercut and fill stoping 16.3.2.9.1 Filling methods during deep mining 16.3.2.9.2 Top slicing (An undercut-and-fill method) 16.3.2.9.3 Filling materials 16.3.3 Supported stoping method – square set stoping 16.3.3.1 Introduction 16.3.3.2 Stope preparation 16.3.3.3 Stoping 16.3.3.4 Unit operations 16.3.3.5 Auxiliary operations 16.3.3.6 Layouts 16.3.3.6.1 Advantages 16.3.3.6.2 Limitations 16.4 Caving methods 16.4.1 Caving method – longwall mining 16.4.1.1 Introduction 16.4.1.2 Unit operations 16.4.1.3 While mining coal 16.4.1.4 Stope preparation 16.4.1.5 Stoping operations 16.4.1.6 Layouts 16.4.1.6.1 Advantages 16.4.1.6.2 Limitations 16.4.1.7 Mining at ultra depths 16.4.2 Caving method – sublevel caving 16.4.2.1 Introduction 16.4.2.2 Unit operations 16.4.2.2.1 Variants 16.4.2.3 Stope preparation (transverse sublevel caving) 16.4.2.4 Stope preparation (sublevel caving – longitudinal) 16.4.2.5 Layouts 16.4.2.5.1 Advantages 16.4.2.5.2 Limitations 16.4.3 Caving method – block caving 16.4.3.1 Introduction 16.4.3.2 Unit operations 16.4.3.2.1 Variants 16.4.3.3 Methods of draw 16.4.3.4 Stope preparation 16.4.3.5 Layouts 16.4.3.5.1 Advantages 16.4.3.5.2 Limitations 16.5 Common aspects 16.5.1 Stope design 16.5.1.1 Model parameters 16.5.1.2 Design parameters 16.5.2 Application of computers in stope design and economic analysis 16.5.3 Proposed methodology for selection of a stoping method for the base metal deposits with a case study 16.6 Mine liquidation 16.6.1 Liquidation of the stopes of different types 16.6.2 Planning liquidation 16.6.3 Liquidation techniques 16.6.4 Pillar types & methods of their extraction 16.6.4.1 Pillar extraction methods 16.6.4.2 Planning a heavy-blast for liquidation purpose 16.6.5 Case studies 16.6.5.1 Heavy blasting at a copper mine 16.6.5.2 Remnant pillars’ blast at lead-zinc mine 16.6.5.2.1 Blast planning 16.6.5.2.2 Results of the blast 16.7 Planning for mine closure 16.7.1 Introduction 16.7.2 Phases – mine closure 16.7.3 The integrated mine closure planning guidelines (toolkit) 16.7.3.1 Salient features (parameters to be considered) for closure planning 16.7.3.2 Guidelines/toolkit details 16.7.3.3 Glossary 16.8 The way forward Questions References 17 Surface excavations 17.1 Introduction – surface mining methods 17.2 Open pit mining 17.2.1 Open pit elements 17.2.1.1 Bench angle or slope 17.2.2 Overall pit slope angle 17.2.2.1 Computation of overall pit slope angle 17.2.3 Stripping ratio 17.2.4 Overall pit profile 17.2.4.1 Coning concept for open pit design 17.2.5 Stripping sequence 17.3 Haul roads 17.4 Ramp and its gradient 17.5 Open cast mining/strip mining 17.5.1 Introduction 17.5.2 Design aspects 17.5.3 Operational details – surface mines 17.5.3.1 Planning 17.5.3.2 Site preparation 17.5.3.3 Opening up the deposit 17.5.4 Development 17.5.4.1 Waste rock dumps 17.5.5 Bench blasting design patterns 17.5.5.1 Linear formulas 17.5.5.2 Power formulas derived by statistical analysis 17.5.5.3 Formulas related to energy transfer in rock blasting, burden and blasthole diameter 17.5.5.4 Tatiya and Adel’s formula to determine burden with respect to blasthole diameter 17.5.5.5 Powder factor method 17.5.6 Drilling and blasting operations 17.5.7 Cast blasting 17.5.8 Muck handling 17.5.9 Selection of excavator and transportation units 17.5.10 Calculations for selection of shovel/excavator 17.5.10.1 Time factor 17.5.10.2 Operational factor (Of) 17.5.10.3 Bucket fill factor (Bf) 17.5.11 Theoretical output from an excavator/hr 17.5.12 Output from a continuous flow unit 17.5.13 Transportation schemes 17.5.14 In-pit crushing and conveying 17.5.15 Dumping site 17.5.16 Integrated or matching equipment complex 17.5.16.1 Global Positioning System (GPS) 17.5.17 Quarrying of dimension stones 17.6 Quarrying of dimension stones 17.6.1 Drilling 17.6.2 Line drilling 17.6.3 Discontinuous or spaced drilling 17.6.4 Drilling and blasting 17.6.4.1 Blast results at Vanga granite quarry in southern Sweden 17.6.5 Wire cutter – helicoid and diamond 17.6.6 Cutter saw and rock channellers (impact cutting machines) 17.6.6.1 Merits 17.6.6.2 Disadvantages 17.7 The diamond belt saw 17.7.1 Water jet technology 17.7.2 Thermal cutting 17.7.3 Underground quarrying 17.8 Earth movers 17.9 The way forward Questions References 18 Hazards, occupational health and safety (OHS), environment and loss prevention 18.1 Introduction 18.2 Potential excavation hazards 18.2.1 Hazards (risks) analysis and management 18.3 Safety and accidents 18.3.1 Terminology 18.3.2 Safety strategies 18.3.3 Safety elements 18.3.3.1 People/mine workers 18.3.3.2 The systems 18.3.3.3 The working environment (conditions) 18.3.4 Accidents 18.3.4.1 Accidents/incident analysis & calculations 18.3.4.2 Common accident areas/heads 18.3.4.3 Accident costs 18.3.4.4 Remedial measures 18.3.4.5 Measures/preparedness 18.3.4.6 Hazards analysis methods 18.4 Occupational health and surveillance 18.4.1 Industrial hygiene 18.4.1.1 Aqueous effluents – permissible quality & efficient discharge 18.4.1.2 House keeping 18.4.1.3 The 5S concept 18.4.2 Working conditions 18.4.3 Ergonomics 18.4.3.1 Introduction 18.4.3.2 Impacts of poor ergonomics 18.4.4 Occupational health surveillance 18.4.4.1 Organizational culture and workplace stresses 18.4.4.2 ‘Presenteeism’ – lost performance at work 18.4.4.3 Periodic health surveillance: based on exposure-risk 18.4.4.4 Notified diseases and preventive measures 18.5 Environment degradation and mitigation measures 18.5.1 Balance system/equation 18.5.2 Environmental degradation 18.5.3 Environmental management 18.5.4 Environmental system 18.6 Loss prevention 18.6.1 Classification – losses 18.6.2 Abnormalities 18.6.3 5W-2H analysis 18.6.4 Wastage 18.6.5 Case-study illustrating computation of financial losses 18.6.6 Use of Information Technology (IT) in integrating processes and information 18.7 The way forward Questions References 19 Sustainable Development 19.1 Sustainable Development (SD) in mining 19.1.1 Sustainable development 19.1.2 Global issues & backlog on sustainable development 19.1.3 Sustainable development in mining 19.2 Stakeholders and sustainable development 19.2.1 Principles/guidelines for SD by ICMM 19.2.2 Status of SD in mining, based on stakeholders’ views though a survey by globalscan 19.3 Scenarios influencing mining industry 19.3.1 Population growth and resulting impacts/implications 19.3.2 Use of minerals by world’s citizens 19.3.3 Mineral consumption trends 19.3.4 Status of quality, quantity, type of mineral and resources depletion 19.3.5 Mineral consumption prediction 19.3.6 Mining industry’s inherent problems and challenges 19.3.7 Global risk ranking and competitiveness in the mining sector 19.4 Is mining industry equipped to meet the challenges? 19.4.1 Technological developments in mining 19.4.2 Initiatives already taken globally to meet demand of minerals mass consumption 19.5 Proposed strategy to run mines is an economically viable (beneficial) way 19.5.1 Exploration: huge, intensive & speedy together with bringing precision in ore evaluation techniques 19.5.2 Establishing mineral inventory, cutoff grade and ore reserves 19.5.3 Division of mineral property (i.e. orebody or coal deposits into level and panels) 19.5.4 Locale-specific challenges and proposed solutions/way-outs 19.5.4.1 Underground metalliferous mining challenges 19.5.4.2 Underground coal mining challenges 19.5.4.3 Open cast/open pit mines (coal & non coal) challenges 19.5.5 Mining difficult deposits using non-conventional technologies 19.5.6 Improved fragmentation – a better way to extract minerals (ore, waste rocks, overburden) to save energy 19.5.7 Precision in operations – maximizing recovery 19.5.8 The critical path to full automation 19.5.9 Effective utilization of resources through standardization & benchmarking 19.5.10 Needs-based changes, research and development 19.6 Measures for SD through improvements environmentally, socially and ethically 19.6.1 HSE – a critical business activity for sustainable development 19.6.2 Economic development regional as well as local – A case-study 19.7 Legal compliances and mining policy 19.7.1 Mining laws – legislation 19.7.2 Minerals & mining policy 19.8 Quality of human resources 19.8.1 Academic (educational) status and standard of mining schools 19.9 The ultimate aim 19.9.1 Contented employees & stakeholders 19.9.2 Efficient systems including best practices 19.9.3 Legal compliance including Environment Management Systems (EMS) 19.9.4 World Class Management (WCM) 19.10 The way forward: proposed milestones/strategy Questions References Subject index