دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک ویرایش: 2 نویسندگان: Gernot Friedbacher. Henning Bubert سری: ISBN (شابک) : 3527320474, 9783527320479 ناشر: Wiley-VCH سال نشر: 2011 تعداد صفحات: 559 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
کلمات کلیدی مربوط به کتاب تحلیل سطح و فیلم نازک: مجموعه ای از اصول ، ابزار دقیق و کاربردها: فیزیک، کارگاه، فیزیک تجربی و روش های تحقیق فیزیکی
در صورت تبدیل فایل کتاب Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحلیل سطح و فیلم نازک: مجموعه ای از اصول ، ابزار دقیق و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بررسی و مقایسه تمام تکنیکهای مربوط به کاربردهای عملی در تجزیه و تحلیل لایههای نازک و سطحی، این ویرایش دوم کتاب پرفروش، راهنمای حیاتی برای این موضوع داغ در فناوری نانو و سطح است. این کتاب جدید اصلاح و به روز شده است و به چهار بخش تقسیم شده است - تشخیص الکترون، یون و فوتون، و همچنین میکروسکوپ کاوشگر روبشی. فصلهای جدیدی برای پوشش تکنیکهایی مانند SNOM، FIM، پروب اتمی (AP) و تولید فرکانس جمع (SFG) اضافه شدهاند. ضمائم با خلاصه و مقایسه تکنیک ها و فهرستی از تامین کنندگان تجهیزات، این کتاب را به مرجعی سریع برای دانشمندان مواد، شیمیدانان تحلیلی و کسانی که در صنعت بیوتکنولوژی کار می کنند تبدیل کرده است. "... یک منبع مفید..." (مجله انجمن شیمی آمریکا)
Surveying and comparing all techniques relevant for practical applications in surface and thin film analysis, this second edition of a bestseller is a vital guide to this hot topic in nano- and surface technology. This new book has been revised and updated and is divided into four parts - electron, ion, and photon detection, as well as scanning probe microscopy. New chapters have been added to cover such techniques as SNOM, FIM, atom probe (AP),and sum frequency generation (SFG). Appendices with a summary and comparison of techniques and a list of equipment suppliers make this book a rapid reference for materials scientists, analytical chemists, and those working in the biotechnological industry.From a Review of the First Edition (edited by Bubert and Jenett)"... a useful resource..."(Journal of the American Chemical Society)
Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications......Page 5
Contents......Page 7
Preface to the First Edition......Page 19
Preface to the Second Edition......Page 21
List of Contributors......Page 23
1: Introduction......Page 27
Part One: Electron Detection......Page 33
2.1 Principles......Page 35
2.2.1 Vacuum Requirements......Page 38
2.2.2 X-Ray Sources......Page 39
2.2.4 Electron Energy Analyzers......Page 42
2.2.5 Spatial Resolution......Page 44
2.3 Spectral Information and Chemical Shifts......Page 45
2.4.1 Quantification......Page 47
2.4.2 Depth Profiling......Page 49
2.4.3 Imaging......Page 52
2.5 The A uger Parameter......Page 53
2.6.1 Catalysis......Page 54
2.6.2 Polymers......Page 56
2.6.3 Corrosion and Passivation......Page 57
2.6.4 Adhesion......Page 58
2.6.5 Superconductors......Page 60
2.6.6 Semiconductors......Page 61
2.7 Ultraviolet Photoelectron Spectroscopy (UPS)......Page 64
References......Page 65
3.1 Principles......Page 69
3.2.2 Electron Sources......Page 70
3.2.3 Electron-Energy Analyzers......Page 71
3.3 Spectral Information......Page 73
3.4.1 Quantification......Page 77
3.4.2 Depth Profiling......Page 79
3.5.1 Grain Boundary Segregation......Page 80
3.5.2 Semiconductor Technology......Page 82
3.5.4 Surface Segregation......Page 84
3.6 Scanning A uger Microscopy (SAM)......Page 87
References......Page 90
4: Electron Energy-Loss Spectroscopy (EELS) and Energy-Filtering Transmission Electron Microscopy (EFTEM)......Page 93
4.1 Principles......Page 94
4.2 Instrumentation......Page 96
4.3 Qualitative Spectral Information......Page 98
4.3.1 Low-Loss Excitations......Page 100
4.3.2 Ionization Losses......Page 103
4.3.3 Fine Structures......Page 105
4.4 Quantification......Page 109
4.5 Imaging of Element Distribution......Page 111
4.6 Summary......Page 114
References......Page 115
5.1 Principles and History......Page 119
5.2 Instrumentation......Page 120
5.3.1 LEED Pattern......Page 122
5.3.3 Applications and Restrictions......Page 126
5.4.1 Principles......Page 127
5.4.2 Experimental Techniques......Page 128
5.4.3 Computer Programs......Page 130
5.4.4 Applications and Restrictions......Page 131
5.5.1 Principles of Operation......Page 132
References......Page 134
6.2 Ion Neutralization Spectroscopy (INS)......Page 137
6.3 Inelastic Electron Tunneling Spectroscopy (IETS)......Page 138
Reference......Page 139
Part Two: Ion Detection......Page 141
7.1 Principles......Page 143
7.2.1 Ion Sources......Page 145
7.2.2.1 Quadrupole Mass Spectrometers......Page 146
7.2.2.2 Time-of-Flight Mass Spectrometry (TOF-MS)......Page 147
7.3 Quantification......Page 149
7.4 Spectral Information......Page 151
7.5 Applications......Page 153
7.5.2 Interfaces......Page 154
7.5.3 Polymers......Page 157
7.5.4 Biosensors......Page 159
7.5.5 Surface Reactions......Page 160
7.5.6 Imaging......Page 161
7.5.7 Ultra-Shallow Depth Profiling......Page 163
References......Page 164
8.1.1 Compensation of Preferential Sputtering......Page 167
8.1.6 Charging Effects......Page 168
8.2.1 Ion Sources......Page 169
8.2.2.1 Magnetic Sector Field......Page 170
8.2.2.2 Detector......Page 171
8.3 Spectral Information......Page 172
8.4.2 Implantation Standards......Page 173
8.4.4.3 Local Thermodynamic Equilibrium LTE......Page 174
8.6 Depth Profiles......Page 175
8.7.1 Scanning SIMS......Page 178
8.7.2 Direct Imaging Mode......Page 179
8.8 Three-Dimensional (3-D)-SIMS......Page 180
8.9.1 Implantation Profiles......Page 182
8.9.2 Layer Analysis......Page 183
8.9.3 3-D Trace Element Distribution......Page 184
References......Page 185
9.1 Introduction......Page 187
9.2 General Principles of SNMS......Page 188
9.2.1 Postionization via Electron Impact......Page 189
9.2.2 Suppression of Residual Gas and Secondary Ions......Page 190
9.3.1 Electron Beam SNMS......Page 192
9.3.2 Plasma SNMS......Page 193
9.4 Spectral Information and Quantifi cation......Page 196
9.5 Element Depth Profiling......Page 198
9.6 Applications......Page 200
References......Page 201
10.1.2 Resonant Laser-SNMS......Page 205
10.1.3 Experimental Set-Up......Page 206
10.1.4 Ionization Schemes......Page 207
10.2 Instrumentation......Page 208
10.4 Quantification......Page 209
10.5.1 Nonresonant Laser-SNMS......Page 210
10.5.2 Resonant Laser-SNMS......Page 212
References......Page 215
11.2 Principles......Page 217
11.4 Spectral Information......Page 220
11.5 Quantification......Page 222
11.6.1 Mass Resolution......Page 223
11.7 Applications......Page 224
References......Page 227
12.1 Principles......Page 229
12.2 Instrumentation......Page 232
12.3.2 Yield Information......Page 234
12.5 Applications of LEIS......Page 237
References......Page 240
13.1 Introduction......Page 243
13.2 Fundamentals......Page 244
13.3 Particle Identification Methods......Page 246
13.4 Equipment......Page 248
13.6 Sensitivity and Depth Resolution......Page 249
13.7 Applications......Page 250
References......Page 252
14.1 Introduction......Page 255
14.2 Principles......Page 257
14.3 Equipment and Depth Resolution......Page 258
14.4 Applications......Page 260
References......Page 262
15.1 Introduction......Page 263
15.2.1 Field Ion Microscopy......Page 265
15.2.2 Time-of-Flight Atom Probe Techniques......Page 268
15.2.3 Field Ion Appearance Energy Spectroscopy......Page 272
15.3.1.1 FIM in Catalysis......Page 274
15.3.1.2 Fluctuation-Induced Effects......Page 275
15.3.2.1 Applications of TOF-AP Techniques......Page 278
15.3.2.2 PFDMS Applications......Page 280
15.3.2.3 FIAES Applications......Page 281
References......Page 283
16.1.1 Electron-Stimulated Desorption (ESD) and ESD Ion Angular Distribution (ESDIAD)......Page 287
16.1.2 Thermal Desorption Spectroscopy (TDS)......Page 288
16.3 Fast-Atom Bombardment Mass Spectroscopy (FABMS)......Page 289
References......Page 290
Part Three: Photon Detection......Page 291
17.1 Principles......Page 293
17.2 Instrumentation......Page 295
17.3 Spectral Information......Page 301
17.4 Quantification......Page 302
17.5.1 Particulate and Film-Type Surface Contamination......Page 303
17.5.2 Semiconductors......Page 304
17.5.2.1 Synchrotron Radiation-Based Techniques......Page 306
17.5.2.2 Depth Profiling by TXRF and by Grazing Incidence XRF (GIXRF) for the Characterization of Nanolayers and Ultra-Shallow Junctions......Page 309
17.5.2.3 Vapor-Phase Decomposition (VPD) and Droplet Collection......Page 311
17.5.2.4 Vapor-Phase Treatment (VPT) and Total Reflection X-Ray Fluorescence Analysis......Page 313
References......Page 314
18.1 Principles......Page 319
18.2 Practical Aspects of X-Ray Microanalysis and Instrumentation......Page 321
18.3 Qualitative Spectral Information......Page 329
18.4 Quantification......Page 330
18.5 Imaging of Element Distribution......Page 332
18.6 Summary......Page 334
References......Page 335
19.1 Principles......Page 337
19.1.1 The Grazing Incidence X-Ray Geometry......Page 338
19.1.3 Glancing Angle X-Ray Diffraction......Page 340
19.1.4 ReflEXAFS......Page 342
19.2 Experimental Techniques and Data Analysis......Page 343
19.2.1 Grazing Incidence X-Ray Reflectivity (GXRR)......Page 344
19.2.2 Grazing Incidence Asymmetric Bragg (GIAB) Diffraction......Page 345
19.3.1 Grazing Incidence X-Ray Reflectivity (GXRR)......Page 347
19.3.2 Grazing Incidence Asymmetric Bragg (GIAB) Diffraction......Page 349
19.3.3 Grazing Incidence X-Ray Scattering (GIXS)......Page 350
19.3.4 ReflEXAFS......Page 351
References......Page 352
20.1 Principles......Page 355
20.2.1 Glow Discharge Sources......Page 356
20.2.3 Signal Acquisition......Page 360
20.3 Spectral Information......Page 361
20.4 Quantification......Page 362
20.5 Depth Profiling......Page 363
20.6 Applications......Page 365
20.6.2 rf GD Sources......Page 366
References......Page 368
21.1 Introduction......Page 371
21.2.1 Types of Laser......Page 372
21.2.2 Different Schemes of Laser Ablation......Page 373
21.3 Depth Profiling......Page 374
21.5 Conclusion......Page 380
References......Page 381
22.1 Principles......Page 383
22.2 Instrumentation......Page 384
22.3 Spectral and Analytical Information......Page 386
22.4 Quantitative Analysis by IBSCA......Page 387
22.5 Applications......Page 389
References......Page 392
23.1 Instrumentation......Page 393
23.2 Principles......Page 394
23.3.1 RAIRS......Page 395
23.3.2 ATR and SEIRA......Page 398
References......Page 400
24.1 Principles......Page 403
24.2 Surface-Enhanced Raman Scattering (SERS)......Page 404
24.3 Instrumentation......Page 406
24.4 Spectral Information......Page 408
24.6.1 Unenhanced Raman Spectroscopy at Smooth Surfaces......Page 409
24.6.2 Porous Materials......Page 411
24.6.3 Surface-Enhanced Raman Spectroscopy (SERS)......Page 412
24.7.1 Sum Frequency Generation (SFG) Spectroscopy......Page 413
24.7.3 Stimulated Femtosecond Raman Scattering (SFRS)......Page 415
References......Page 416
25.1 Principles......Page 419
25.2 Instrumentation......Page 421
25.3.1 UV-Vis-NIR Spectral Region......Page 424
25.3.2 Infrared Ellipsometry......Page 426
References......Page 431
26.1 Introduction to SFG Spectroscopy......Page 433
26.2 SFG Theory......Page 436
26.2.1 SFG Signal Intensity and Lineshape......Page 438
26.2.2 Determining the Number Density of Molecules from SFG Signal Intensity......Page 439
26.3 SFG Instrumentation and Operation Modes......Page 440
26.4.1.1 SFG Spectroscopy under UHV Conditions......Page 443
26.4.1.2 Polarization-Dependent SFG Spectroscopy......Page 445
26.4.1.3 SFG Spectroscopy under Near-Atmospheric Gas Pressure......Page 446
26.4.1.4 SFG Spectroscopy on Supported Metal Nanoparticles......Page 447
26.4.1.5 Time-Resolved (Pump-Probe) and Broadband SFG Spectroscopy......Page 449
26.4.1.6 SFG Spectroscopy on Colloidal Nanoparticles and Powder Materials......Page 453
26.4.3 SFG Spectroscopy on Polymer and Biomaterial Interfaces......Page 454
26.4.4 SFG Spectroscopy at Liquid–Gas and Liquid–Liquid Interfaces......Page 455
References......Page 456
27.2 Inverse Photoemission Spectroscopy (IPES) and Bremsstrahlung Isochromat Spectroscopy (BIS)......Page 463
Part Four: Scanning Probe Microscopy......Page 465
28: Introduction......Page 467
References......Page 468
29.1 Principles......Page 469
29.2.1 Friction Force Microscopy (FFM)......Page 472
29.2.4 Force–Distance Curve Measurements......Page 473
29.2.5 Pulsed Force Mode AFM......Page 474
29.2.6 Harmonic Imaging and Torsional Resonance Mode......Page 475
29.3 Instrumentation......Page 478
29.4 Applications......Page 481
References......Page 488
30.1 Principles......Page 491
30.2 Instrumentation......Page 493
30.3 Lateral and Spectroscopic Information......Page 494
30.4 Applications......Page 496
References......Page 505
31.1 Introduction......Page 507
31.2.1 Basic Set-Up......Page 508
31.2.2 Variations of SNOM......Page 509
31.2.3 Scanning and Feedback Techniques......Page 510
31.2.4 Tip Fabrication......Page 511
31.2.4.2 Coating Deposition and Aperture Formation......Page 512
31.2.4.3 Advanced Tip Fabrication......Page 513
31.3.1 Fluorescence......Page 514
31.3.2 Near-Field Raman Spectroscopy......Page 516
31.3.3 SNOM-IR-Spectroscopy......Page 518
References......Page 519
Appendices......Page 525
Appendix A: Summary and Comparison of Techniques......Page 527
Appendix B: Surface and Thin-Film Analytical Equipment Suppliers......Page 533
Index......Page 545