ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Superconducting Materials and Their Applications. An interdisciplinary approach

دانلود کتاب مواد ابررسانا و کاربردهای آنها رویکردی میان رشته ای

Superconducting Materials and Their Applications. An interdisciplinary approach

مشخصات کتاب

Superconducting Materials and Their Applications. An interdisciplinary approach

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9780750322560, 9780750322553 
ناشر: IOP Publishing 
سال نشر: 2021 
تعداد صفحات: 149 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 مگابایت 

قیمت کتاب (تومان) : 30,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 14


در صورت تبدیل فایل کتاب Superconducting Materials and Their Applications. An interdisciplinary approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد ابررسانا و کاربردهای آنها رویکردی میان رشته ای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
Author biography
	Jatinder Vir Yakhmi
Chapter 1 Introduction to superconductivity, superconducting materials and their usefulness
	1.1 Brief introduction to the phenomenon of superconductivity
	1.2 Does the resistance in the superconducting state really become zero?
	1.3 Flow of charge carriers in a metal, an insulator and a superconductor
	1.4 Meissner effect
	1.5 Superconducting elements, alloys, intermetallics and compounds
	1.6 Critical field, Hc
	1.7 Type I and type II superconductors
	1.8 Abrikosov vortices, flux line lattice and the mixed state
	1.9 BCS mechanism: flux quantization and energy gap
		1.9.1 The isotope effect
		1.9.2 The band gap and heat capacity
	1.10 Wires and cables from low Tc superconductors NbTi and Nb3Sn
		1.10.1 A3B superconductors
		1.10.2 The triumvirate: Tc, Bc2 and Jc
		1.10.3 The irreversibility line
	1.11 Techniques employed to evaluate the basic physical characteristics of superconducting materials
	References
Chapter 2 High-Tc superconducting cuprates and magnesium boride
	2.1 Introduction
	2.2 Oxide superconductors, before cuprates
	2.3 Cuprate superconductors: La–Sr–Cu–O and Y–Ba–Cu–O
	2.4 Bi-, Tl- and Hg-based cuprate superconductors
	2.5 Spin-fluctuation as the pairing mechanism for high-Tc superconductors
	2.6 MgB2
		2.6.1 Superconductivity and crystal structure of MgB2
		2.6.2 Two-gap nature of superconductivity of MgB2
	References
Chapter 3 Materials contributing to physics of superconductivity, or holding potential for applications
	3.1 Chevrel phase superconductors
	3.2 Rare earth rhodium boride superconductors, MRh4B4
	3.3 Rare earth nickel borocarbides
	3.4 Heavy fermion superconductors
	3.5 Fe–pnictide superconductors
	3.6 Fe–selenide superconductors
	3.7 Hydride superconductors
	3.8 Organic superconductors
	3.9 Fulleride superconductors
	3.10 Superconducting materials—the continuing search
	3.11 Types of superconductivity
	References
Chapter 4 Applications of bulk superconducting materials, and in high-field magnets
	4.1 Introduction
	4.2 Superconductor wires and cables for winding of magnets
		4.2.1 Protection of superconducting magnets from flux jumping and quenching
		4.2.2 Factors which distort the magnetic field
		4.2.3 The Lorentz force
		4.2.4 Advantage of superfluidity of liquid helium for efficient cooling of the superconducting magnets
	4.3 High field superconducting magnets for particle accelerators and colliders
	4.4 Superconducting magnets for nuclear fusion
	4.5 Superconducting RF cavities
		4.5.1 Quenching of a cavity and its thermal breakdown
	4.6 Superconducting magnets for MRI
		4.6.1 What is MRI, and how does it work?
		4.6.2 MRI aiding medical diagnosis and therapy
		4.6.3 7 T MRI for brain scans and for stroke patients
		4.6.4 Relevance of MRI information, and a caution
		4.6.5 Dispelling nuclear fears from MRI
	4.7 Superconducting magnets for maglev trains
	4.8 Superconductors in the power sector
		4.8.1 Transmission cables
	4.9 Use of HTSCs for power applications
		4.9.1 HTSCs for transmission of electrical power
		4.9.2 Superconducting magnetic energy storage (SMES)
		4.9.3 HTS generators and motors for ship propulsion
	4.10 HTS power cable projects
		4.10.1 Development of HTS power equipment at ISTEC (Japan)
		4.10.2 HTS Cable Project at Columbus, OH (USA)
		4.10.3 Other efforts for cables and HTS devices
	4.11 Superconducting switches and power transformers
	4.12 State-of-the-art superconducting fault current limiters
	4.13 Miscellaneous applications
		4.13.1 Miniature antennas
		4.13.2 Interconnects
		4.13.3 Bolometers
		4.13.4 Magnetic shielding
		4.13.5 Passive microwave devices for signal processing and transmission
		4.13.6 SC motors and bearings
	4.14 High-field magnets using HTSCs
		4.14.1 HTSC magnets for MRI
		4.14.2 Possibility of HTSC magnets for separation in industry
		4.14.3 Superconducting rotating machines and wind turbines
	4.15 Use of HTS in superconducting cavities for accelerators
		4.15.1 RF cavities from MgB2
	4.16 Applications of MgB2 wires
	4.17 Other applications of superconductors
	4.18 Cryogenics
		4.18.1 Handling of cryogens. Safety risks—the danger of suffocation
		4.18.2 Cryogenics for frontline research
	References
Chapter 5 Applications in Josephson junctions, SQUIDs, and MEG. Other low field applications
	5.1 From quantum concepts to superconducting technology: Josephson junctions and SQUIDs
	5.2 Josephson junction electronics, computers and detectors
	5.3 Measurement of ultra-low magnetic fields by SQUIDs
	5.4 Types of SQUIDs
	5.5 Applications of SQUID magnetometers and gradiometers
	5.6 SQUID sensors for magnetoencephalography and biomagnetic applications
		5.6.1 General
		5.6.2 Magnetocardiography (MCG)
		5.6.3 Specific biomagnetic applications of SQUID sensors in human health
		5.6.4 Study of brain processes non-invasively by imaging of brain functions
		5.6.5 MEG in comparison to EEG, fMRI, and fNIRS
		5.6.6 Origin of electromagnetic signals and role of MEG for neurophysiology
		5.6.7 Brief details about MEG instrumentation and operation
	5.7 High-Tc SQUIDs
	References
Chapter 6 Applications in the areas of diagnostics and neuroscience
	6.1 Brain imaging and cognitive neuroscience
		6.1.1 rt-fMRI-NF
		6.1.2 Blood oxygenation level dependent (BOLD) MRI
	6.2 Neuro-diseases
		6.2.1 Tourette syndrome
		6.2.2 rt-fMRI-NF for ADHD
	6.3 The salience network (SN)
	6.4 SN and the mesolimbic dopamine system
	6.5 Magnetic resonance perfusion
	6.6 BIO-interface
		6.6.1 Studies on dog brains and function
		6.6.2 Plant biomechanics
	6.7 Signal-space projection/separation for MEG data
	6.8 Evoked and induced responses
	6.9 Consequences of deprivation of sleep
	6.10 Non-destructive imaging of soft tissue using synchrotron radiation
	6.11 Carbon-ion radiotherapy
	References
Chapter 7 Concluding remarks. Slow progress in the commercialization of potential HTS devices. New hopes. Emerging new applications
	7.1 Why is superconductivity so exciting?
	7.2 Factors hampering the commercial applications of high-Tc superconductors
	7.3 Limitations of hydride and organic superconductors to be overcome before their applications
	7.4 New emerging applications, including those of HTSCs
	References




نظرات کاربران