ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Sughosh Madhav, Pardeep Sing, Vandana Mishra, Sirajuddin Ahmed, Pradeep Kumar Mishra

دانلود کتاب سوگوش مدهاو، پاردیپ سینگ، واندانا میشرا، سراج الدین احمد، پرادیپ کومار میشرا

Sughosh Madhav, Pardeep Sing, Vandana Mishra, Sirajuddin Ahmed, Pradeep Kumar Mishra

مشخصات کتاب

Sughosh Madhav, Pardeep Sing, Vandana Mishra, Sirajuddin Ahmed, Pradeep Kumar Mishra

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9783030998578, 9783030998585 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 480
[481] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 Mb 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Sughosh Madhav, Pardeep Sing, Vandana Mishra, Sirajuddin Ahmed, Pradeep Kumar Mishra به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سوگوش مدهاو، پاردیپ سینگ، واندانا میشرا، سراج الدین احمد، پرادیپ کومار میشرا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب سوگوش مدهاو، پاردیپ سینگ، واندانا میشرا، سراج الدین احمد، پرادیپ کومار میشرا

این جلد درباره تکنیک‌ها، فناوری‌ها و راه‌حل‌های معاصر برای اصلاح و تصفیه فاضلاب صنعتی بحث می‌کند. این بخش جنبه های بیولوژیکی، شیمیایی و فیزیکی تصفیه فاضلاب را با پیشینه تولید فاضلاب مرتبط با صنایع مختلف و همچنین مقایسه فن آوری های تصفیه سنتی با پیشرفت های جدید پوشش می دهد. نویسندگان همچنین استفاده مجدد و بازیابی مواد مغذی و فلزات گرانبها از پساب را توصیف می‌کنند و اینکه چگونه چنین استراتژی‌های پایداری را می‌توان در برنامه‌ریزی و قوانین فاضلاب صنعتی گنجاند. این کتاب همچنین حاوی جنبه‌های عملی و نظری صنایع مختلف و شیوه‌های مدیریت فاضلاب آنها در آب و هوای متغیر است، با تاکید بر تحقیقات اخیر که به بررسی اثرات زیست‌محیطی فاضلاب می‌پردازد. این کار برای دانش‌آموزان، معلمان و محققانی که در مورد آلودگی و اصلاح فاضلاب مطالعه می‌کنند، سازمان‌های غیردولتی مبتنی بر مدیریت فاضلاب، و افرادی که در برنامه‌ریزی و قانون‌گذاری عملیات صنعتی دخیل هستند، جالب خواهد بود.


توضیحاتی درمورد کتاب به خارجی

This volume discusses contemporary techniques, technologies, and solutions for industrial wastewater remediation and treatment. It covers biological, chemical, and physical aspects of wastewater treatment, with a background on the generation of wastewater associated with different industries, as well as a comparison of traditional treatment technologies with new advancements. The authors also describe the reuse and recovery of nutrients and precious metals from wastewater, and how such sustainable strategies can be incorporated into industrial wastewater planning and legislation. The book also contains practical and theoretical aspects of various industries and their wastewater management practices in a changing climate, with an emphasis on recent research examining the environmental impact of wastewater. The work will be of interest to students, teachers, and researchers studying wastewater pollution and remediation, wastewater management-based NGOs, and people involved in the planning and legislation of industrial operations.



فهرست مطالب

Contents
About the Editors
Chapter 1: Water Quality Characterization of Industrial and Municipal Wastewater, Issues, Challenges, Health Effects, and Control Techniques
	1.1 Introduction
	1.2 Industrial Wastewater: Sources and Composition
	1.3 Municipal Wastewater: Sources and Composition
	1.4 Wastewater Related Issues and Challenges Worldwide
	1.5 Health Concerns Due to Water Pollution
	1.6 Control and Treatment Technologies for Water Pollution
	1.7 Major Action Taken by Various Organizations
	1.8 Conclusion
	References
Chapter 2: Adsorptive Remediation of Pollutants from Wastewater
	2.1 Introduction to Water Pollutants
	2.2 Treatment Technology
	2.3 Adsorption
	2.4 Types of Adsorptions
	2.5 Different Types of Adsorbents and Their Properties
		2.5.1 Nanocellulose-Based Composite Materials
		2.5.2 Carbon-Based Nanomaterials
		2.5.3 Clay Minerals
		2.5.4 Metal-Organic Frameworks
		2.5.5 Graphene
		2.5.6 Low-Costs Adsorbents
	2.6 Properties of Adsorbents Effecting Adsorption
	2.7 Pollutants Remediation by Adsorbent
	2.8 Adsorption Kinetics Models
		2.8.1 Pseudo-First-Order (PFO) Model
		2.8.2 Pseudo-Second-Order (PSO) Model
		2.8.3 Mixed-Order (MO) Model
		2.8.4 Elovich Model
		2.8.5 Ritchie’s Equation
	2.9 Future Aspects
	2.10 Conclusion
	References
Chapter 3: Technological Outline of Constructed Wetlands: An Alternative for Sustainable and Decentralized Wastewater Treatment
	3.1 Introduction
	3.2 Background
	3.3 Constructed Treatment Wetlands
	3.4 Development of Constructed Wetlands: Historical Approach
	3.5 Classification of Constructed Wetlands
	3.6 Frequently Used Media
	3.7 Treatment Mechanism of CWs
	3.8 Advantages and Disadvantages
	References
Chapter 4: Membrane-Based Remediation of Wastewater
	4.1 Introduction
	4.2 Membrane-Based Techniques
		4.2.1 Pressure-Assisted Membrane Techniques
		4.2.2 Non-pressure Assisted Membrane Techniques
	4.3 Membrane Development
		4.3.1 Membrane Fabrication
		4.3.2 Membrane Modifications
		4.3.3 Innovative Membranes
	4.4 Membrane-Based Remediation of Wastewater
		4.4.1 Removal of Heavy Metal Ions
		4.4.2 Removal of Colour
		4.4.3 Treatment of Oily Wastewater
	4.5 Innovative and Sustainable Membrane Techniques
	4.6 Conclusion
	References
Chapter 5: Recent Advancement and Efficiency Hindering Factors in the Wastewater Treatment Plant: A Review
	5.1 Introduction
	5.2 Methodology
	5.3 State of the Art in the Wastewater Treatment Processes
		5.3.1 Preliminary Treatment
			5.3.1.1 Screening
			5.3.1.2 Grit Chamber
			5.3.1.3 Equalization Tank
		5.3.2 Primary Treatment
		5.3.3 Secondary Clarifier
			5.3.3.1 Activated Sludge (AS) Method
			5.3.3.2 Extended Aeration (EA)
			5.3.3.3 Trickling Filter (TF)
			5.3.3.4 Moving Bed Biofilm Reactor (MBBR)
		5.3.4 Tertiary Treatment
	5.4 Conclusions
	References
Chapter 6: Nutrient Removal Efficiency of Aquatic Macrophytes in Wastewater
	6.1 Introduction
	6.2 Nitrogen Contamination
	6.3 Phosphorus Contamination
	6.4 Phytoremediation
	6.5 Nitrogen and Phosphorus Removal Efficiency of Quintessential Aquatic Macrophytes
		6.5.1 Water Hyacinth
		6.5.2 Azolla
		6.5.3 Duckweed
		6.5.4 Cattails
		6.5.5 Water Lettuce
	6.6 Conclusion
	References
Chapter 7: Microbial Degradation of Wastewater
	7.1 Introduction
	7.2 Current Status of Water Pollution in India and World
		7.2.1 Toxic Contaminants in the Wastewater, Their Sources and Effects
		7.2.2 Heavy Metals
		7.2.3 Pesticides
		7.2.4 Various Sources of Wastewater
	7.3 Sustainable Approach
		7.3.1 Bioremediation Process
		7.3.2 Factors Influencing Microbial Remediation
		7.3.3 Physicochemical Variables
		7.3.4 Biotic Factors
		7.3.5 Climatic Conditions
	7.4 Types of Bioremediation
		7.4.1 Biostimulation
		7.4.2 Bioattenuation
		7.4.3 Bioaugmentation
		7.4.4 Bioventing
		7.4.5 Biopiles
	7.5 Advantages of Bioremediation
	7.6 Disadvantages of Bioremediation
	7.7 Remediation of Wastewater
		7.7.1 Phycoremediation
		7.7.2 Mycoremediation
		7.7.3 Mechanism Involved in Microbial Remediation
		7.7.4 Bacterial Remediation
		7.7.5 Genetic Engineering’s Role in Bacterial Bioremediation
		7.7.6 Fungi Remediation
		7.7.7 Algal Remediation
		7.7.8 Wastewater Treatment by Alga
	7.8 Nanotechnology Involved in Wastewater Treatment
		7.8.1 Nanobioremediation
		7.8.2 Remediation Using Nanomaterials and Nanoparticles
		7.8.3 Success Stories Related to Bioremediation
	7.9 Conclusion
	7.10 Future Perspectives
	References
Chapter 8: Phytoremediation and Phycoremediation: A Sustainable Solution for Wastewater Treatment
	8.1 Introduction
	8.2 Potential Candidates Used for Wastewater Treatment
		8.2.1 Aquatic Plants
		8.2.2 Microalgae
		8.2.3 Macroalgae
	8.3 Role of Aquatic Plants and Algae in Wastewater Treatment
		8.3.1 Nitrogen and Phosphorus Acquisition from Wastewater
		8.3.2 Utilization of Organic Waste as a Source of Energy
		8.3.3 Heavy Metal Uptake and Utilization
	8.4 Challenges of Phytoremediation and Phycoremediation
	8.5 Conclusion and Future Perspectives
	References
Chapter 9: Application of Nanomaterials for the Remediation of Heavy Metals Ions from the Wastewater
	9.1 Introduction
	9.2 Toxicity of Heavy Metals
	9.3 Nanomaterials as Adsorbents
	9.4 Metal Oxide Nanoparticles
	9.5 Magnetic Based Nanoparticles (MNPs)
	9.6 Carbon Nanotubes (CNTs)
	9.7 Chitosan Formulated Nanomaterials
	9.8 Silica Based Nanomaterials
	9.9 Graphene Based Nano-Adsorbents
	9.10 Factors Affecting Adsorption Processes
	9.11 Nano-Catalysts
	9.12 Nano-Materials as Photocatalysts
	9.13 Nano-Membranes
	9.14 Conclusion
	References
Chapter 10: Remediation of Heavy Metals form Wastewater by Nanomaterials
	10.1 Introduction
	10.2 Sources of Heavy Metals and Their Health Impacts
	10.3 Conventional Treatment Technologies
		10.3.1 Adsorption
		10.3.2 Chemical Co-precipitation and Coagulation-Flocculation
		10.3.3 Membrane and Filters
		10.3.4 Biological and Electrochemical Remediation
	10.4 Application of Nanomaterials
		10.4.1 Adsorption Treatment
		10.4.2 Magnetic Removal
		10.4.3 Nanomembranes and Nanofilters
		10.4.4 Electrochemical Nanomaterials
	10.5 Limitations and Plausible Solution
	10.6 Conclusion
	References
Chapter 11: Agricultural Residue-Derived Sustainable Nanoadsorbents for Wastewater Treatment
	11.1 Introduction
	11.2 Available Wastewater Treatment Techniques
	11.3 Wastewater Treatment Through Adsorption Method
		11.3.1 Nanoadsorbents for Wastewater Treatment
		11.3.2 Agricultural Residue-Derived Nanoadsorbents for Wastewater Treatment
			11.3.2.1 Silica-Based Nanoadsorbents
			11.3.2.2 Cellulose-Based Nanoadsorbents
			11.3.2.3 Lignin-Based Nanoadsorbents
			11.3.2.4 Biochar-Based Nanoadsorbents
		11.3.3 Mechanism Involved in Adsorptive Removal of Inorganic and Organic Pollutants
		11.3.4 Adsorbent Selection and Regeneration
	11.4 Conclusion and Recommendations
	References
Chapter 12: State-of-the-Art and Perspectives of Agro-Waste-Derived Green Nanomaterials for Wastewater Remediation
	12.1 Introduction
	12.2 Conventional Technologies Used for Wastewater Remediation
	12.3 Nanomaterials for Wastewater Remediation and Their Advantages
		12.3.1 Some Advantages of Nanomaterials in Wastewater Remediation
	12.4 Agro-Waste-Derived Green Nanomaterials for Wastewater Remediation
		12.4.1 Carbon-Based Nanomaterials for Water Remediation
			12.4.1.1 Activated Carbon
			12.4.1.2 Biochar
			12.4.1.3 Carbon Nanotubes
		12.4.2 Metal Oxide-Based Nanomaterials
	12.5 Conclusion
	References
Chapter 13: Removal of Organic Pollutants from Waste Water by Adsorption onto Rice Husk-Based Adsorbents, an Agricultural Waste
	13.1 Introduction
		13.1.1 Efficacy of Adsorption Technique in Waste Water Treatment
		13.1.2 Importance of Agricultural Wastes as Adsorbents
		13.1.3 Composition of Agricultural Wastes
		13.1.4 Characterization of Waste Water
		13.1.5 Persistent Organic Pollutants (POPs)
		13.1.6 Organic Pollutants in Waste Water and Their Toxicity
	13.2 Development of Rice Husk-Based Adsorbents
		13.2.1 Rice Husks (RH)
		13.2.2 Rice Husk Ash, ‘RHA’
		13.2.3 Characterization of RH and RHA
		13.2.4 Brief Applications of RH Based Adsorbents
	13.3 Adsorption Study
		13.3.1 Adsorption Kinetics
		13.3.2 Adsorption Isotherms
		13.3.3 Mechanism of Adsorption
		13.3.4 Regeneration of Adsorbent or Desorption Studies
	13.4 Adsorption of Organic Pollutants Onto Rice Husk-Based Adsorbents
		13.4.1 Adsorption of Organic Dyes onto RH and RHA
		13.4.2 Adsorption of Detergents and Oils
		13.4.3 Adsorption of Pesticides, Herbicides, Pharmaceuticals and Fertilizers
			13.4.3.1 Adsorption of Pesticides
			13.4.3.2 Adsorption of Herbicides
			13.4.3.3 Adsorption of Pharmaceuticals
			13.4.3.4 Adsorption of Fertilizers
		13.4.4 Adsorption of Phenol and Its Derivatives
	13.5 Conclusions and Future Prospects
	References
Chapter 14: Nanomaterial Composite Based Nanofiber Membrane: Synthesis to Functionalization for Wastewater Purification
	14.1 Introduction
		14.1.1 Sources and Composition of Wastewater
	14.2 Nanomaterial Based Purification Methodologies
		14.2.1 Nanophotocatalysts
		14.2.2 Nanosorbents
		14.2.3 Nanomembranes
	14.3 Fabrication of Nanofiber Membrane
		14.3.1 Functionalization of Nanofiber Membrane
			14.3.1.1 Nanofiber Functionalization Methods
				Polymer Surface Activation
				Covalent Bonding
				Radical Polymerization Process
				Noncovalent Immobilization Process
		14.3.2 Factors Effecting Morphology of Nanofiber Membrane
			14.3.2.1 Solution Parameter Effect
			14.3.2.2 Processing Parameter Effect
			14.3.2.3 Ambient Parameter Effect
		14.3.3 Filtration process
			14.3.3.1 Microfiltration
			14.3.3.2 Ultrafiltration
			14.3.3.3 Nanofiltration
			14.3.3.4 Reverse Osmosis
			14.3.3.5 Forward Osmosis
	14.4 Application of Nanofiber Membrane for Water Purification
		14.4.1 Cations
		14.4.2 Anions
		14.4.3 Nanoparticles Filtration
		14.4.4 Organic Contaminants
		14.4.5 Biological Contaminants
	14.5 Barriers Associated with Nanomaterial-Based Water Purification
		14.5.1 Toxicity
		14.5.2 Cost Effectiveness
		14.5.3 Nanomaterial Ecotoxicity
	14.6 Conclusion
	References
Chapter 15: Enzymes and Its Nano-scaffold for Remediation of Organic Matter in Wastewater: A Green Bioprocess
	15.1 Introduction
	15.2 Organic Pollutants
	15.3 Impact on Environment and Human Health
	15.4 Bioremediation
	15.5 Enzymatic Bioremediation: A Green Bioprocess
		15.5.1 Enzymes Used in Bioremediation of Organic Pollutants
		15.5.2 Major Challenges
	15.6 Advances in Enzyme Technology: A Nanobiocatalyst for Bioremediation
	15.7 Conclusion and Future Prospects
	References
Chapter 16: Nanomaterial Hybridized Hydrogels as a Potential Adsorbent for Toxic Remediation of Substances from Wastewater
	16.1 Introduction
	16.2 Carbon Nanomaterial-Hybridized Hydrogels for Wastewater Treatment
	16.3 Silica Nanoparticle-Hybridized Hydrogels for Remediation of Organic Dye
	16.4 Metal and Metal Oxide Nanoparticle-Hybridized Hydrogels for Elimination of Toxic Dye
	16.5 Nanomaterial’s Hybridized Polysaccharide Hybrid Hydrogels for Organic Dye Removal
	16.6 Summary, Challenges, and Future Perspectives
	References
Chapter 17: Legislative Policies and Industrial Responsibilities for Discharge of Wastewater in the Environment
	17.1 Introduction
	17.2 Present-Day Scenario of Wastewater Management in the World and Asian Countries
	17.3 Policies and Initiatives by the Government of Asian Countries
		17.3.1 India
		17.3.2 Russia
		17.3.3 China
		17.3.4 Pakistan
		17.3.5 Japan
		17.3.6 Korea
		17.3.7 Indonesia
		17.3.8 Saudi Arabia
		17.3.9 Turkey
		17.3.10 Thailand
	17.4 Prevailing Problems and Critical Issues in the Wastewater Management
		17.4.1 Inefficient Treatment Technologies
			17.4.1.1 Wear and Tear of Plant Structures
			17.4.1.2 Variable Flow
			17.4.1.3 Variable Turbidity
			17.4.1.4 Scale Builds Up
			17.4.1.5 High BOD
			17.4.1.6 Pin Floc
			17.4.1.7 Sludge Management
		17.4.2 Chemicals That Escape Treatment
			17.4.2.1 High Nutrient Levels
			17.4.2.2 Excessive FOG
			17.4.2.3 Microplastics
			17.4.2.4 Xenobiotics/Recalcitrants
			17.4.2.5 Heavy Metals
			17.4.2.6 Per-/Poly-Fluoroalkyl Substances (PFAS)
	17.5 Advanced Techniques for the Treatment of Wastewaters Adopted by Industries
		17.5.1 Techniques to Overcome Operational Difficulties
		17.5.2 Techniques to Treat Persistent Chemicals and Microplastics
			17.5.2.1 Advanced Oxidation Technologies
			17.5.2.2 Advance Anaerobic Sludge Digestion Processes
			17.5.2.3 Membrane Bioreactors
			17.5.2.4 Phytoremediation
			17.5.2.5 Heavy Metal Removal and Reuse Techniques
		17.5.3 Tecniques to Cope with Management Flaws
			17.5.3.1 Online SCADA-Based Monitoring with IoT
	17.6 Future Prospects of Reuse and Recycle of Wastewater
	17.7 Conclusion
	References
Chapter 18: Potential Role of Blue Carbon in Phytoremediation of Heavy Metals
	18.1 Introduction
	18.2 Overview of Heavy Metals
		18.2.1 Definition and Sources
		18.2.2 Effects of Heavy Metals
			18.2.2.1 Human Health
			18.2.2.2 Ecosystem
	18.3 Overview of Coastal Water and Blue Carbon
	18.4 Sources of Heavy Metals in Coastal Water Along the Bay of Bengal
		18.4.1 Sewage Effluents
		18.4.2 Land Run-Off
		18.4.3 Industrial Effluents
		18.4.4 Antifouling Paints
	18.5 Phytoremediation
		18.5.1 Definition
		18.5.2 Mechanism of Phytoremediation
			18.5.2.1 Phytoextraction
			18.5.2.2 Phytofiltration
			18.5.2.3 Phytostabilization
			18.5.2.4 Phytovolatilization
			18.5.2.5 Phytodegradation
			18.5.2.6 Rhizodegradation
			18.5.2.7 Phytodesalination
		18.5.3 Selection of Plant Species
		18.5.4 Factors Affecting Phytoremediation
	18.6 Uptake of Heavy Metals by Coastal Vegetation
		18.6.1 Mangroves
		18.6.2 Saltmarsh Grass
	18.7 Conclusion
	References
Chapter 19: Biodegradation Potentials of Cassava Wastewater by Indigenous Microorganisms
	19.1 Introduction
	19.2 Characteristics of Cassava Wastewater
	19.3 Environmental Impacts of Cassava Wastewater
	19.4 Concept of Biotechnology
	19.5 Biodegradation Efficiency of Cassava Wastewater by Indigenous Microbes
	19.6 Factors that Influence the Biodegradation of Cassava Wastewater by Microorganisms
		19.6.1 Presence of Inhibitory Materials
		19.6.2 Inoculum Size
		19.6.3 The Concentration of Toxic Substances
		19.6.4 pH
		19.6.5 Incubation Period
		19.6.6 Choice of Microorganisms
		19.6.7 Nutrients
		19.6.8 Hydraulic Retention Time and Organic Loading Rate
	19.7 Conclusion
	References
Index




نظرات کاربران