دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Recent Trends in Wastewater Treatment
سری:
ISBN (شابک) : 9783030998578, 9783030998585
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 480
[481]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Sughosh Madhav, Pardeep Sing, Vandana Mishra, Sirajuddin Ahmed, Pradeep Kumar Mishra به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سوگوش مدهاو، پاردیپ سینگ، واندانا میشرا، سراج الدین احمد، پرادیپ کومار میشرا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد درباره تکنیکها، فناوریها و راهحلهای معاصر برای اصلاح و تصفیه فاضلاب صنعتی بحث میکند. این بخش جنبه های بیولوژیکی، شیمیایی و فیزیکی تصفیه فاضلاب را با پیشینه تولید فاضلاب مرتبط با صنایع مختلف و همچنین مقایسه فن آوری های تصفیه سنتی با پیشرفت های جدید پوشش می دهد. نویسندگان همچنین استفاده مجدد و بازیابی مواد مغذی و فلزات گرانبها از پساب را توصیف میکنند و اینکه چگونه چنین استراتژیهای پایداری را میتوان در برنامهریزی و قوانین فاضلاب صنعتی گنجاند. این کتاب همچنین حاوی جنبههای عملی و نظری صنایع مختلف و شیوههای مدیریت فاضلاب آنها در آب و هوای متغیر است، با تاکید بر تحقیقات اخیر که به بررسی اثرات زیستمحیطی فاضلاب میپردازد. این کار برای دانشآموزان، معلمان و محققانی که در مورد آلودگی و اصلاح فاضلاب مطالعه میکنند، سازمانهای غیردولتی مبتنی بر مدیریت فاضلاب، و افرادی که در برنامهریزی و قانونگذاری عملیات صنعتی دخیل هستند، جالب خواهد بود.
This volume discusses contemporary techniques, technologies, and solutions for industrial wastewater remediation and treatment. It covers biological, chemical, and physical aspects of wastewater treatment, with a background on the generation of wastewater associated with different industries, as well as a comparison of traditional treatment technologies with new advancements. The authors also describe the reuse and recovery of nutrients and precious metals from wastewater, and how such sustainable strategies can be incorporated into industrial wastewater planning and legislation. The book also contains practical and theoretical aspects of various industries and their wastewater management practices in a changing climate, with an emphasis on recent research examining the environmental impact of wastewater. The work will be of interest to students, teachers, and researchers studying wastewater pollution and remediation, wastewater management-based NGOs, and people involved in the planning and legislation of industrial operations.
Contents About the Editors Chapter 1: Water Quality Characterization of Industrial and Municipal Wastewater, Issues, Challenges, Health Effects, and Control Techniques 1.1 Introduction 1.2 Industrial Wastewater: Sources and Composition 1.3 Municipal Wastewater: Sources and Composition 1.4 Wastewater Related Issues and Challenges Worldwide 1.5 Health Concerns Due to Water Pollution 1.6 Control and Treatment Technologies for Water Pollution 1.7 Major Action Taken by Various Organizations 1.8 Conclusion References Chapter 2: Adsorptive Remediation of Pollutants from Wastewater 2.1 Introduction to Water Pollutants 2.2 Treatment Technology 2.3 Adsorption 2.4 Types of Adsorptions 2.5 Different Types of Adsorbents and Their Properties 2.5.1 Nanocellulose-Based Composite Materials 2.5.2 Carbon-Based Nanomaterials 2.5.3 Clay Minerals 2.5.4 Metal-Organic Frameworks 2.5.5 Graphene 2.5.6 Low-Costs Adsorbents 2.6 Properties of Adsorbents Effecting Adsorption 2.7 Pollutants Remediation by Adsorbent 2.8 Adsorption Kinetics Models 2.8.1 Pseudo-First-Order (PFO) Model 2.8.2 Pseudo-Second-Order (PSO) Model 2.8.3 Mixed-Order (MO) Model 2.8.4 Elovich Model 2.8.5 Ritchie’s Equation 2.9 Future Aspects 2.10 Conclusion References Chapter 3: Technological Outline of Constructed Wetlands: An Alternative for Sustainable and Decentralized Wastewater Treatment 3.1 Introduction 3.2 Background 3.3 Constructed Treatment Wetlands 3.4 Development of Constructed Wetlands: Historical Approach 3.5 Classification of Constructed Wetlands 3.6 Frequently Used Media 3.7 Treatment Mechanism of CWs 3.8 Advantages and Disadvantages References Chapter 4: Membrane-Based Remediation of Wastewater 4.1 Introduction 4.2 Membrane-Based Techniques 4.2.1 Pressure-Assisted Membrane Techniques 4.2.2 Non-pressure Assisted Membrane Techniques 4.3 Membrane Development 4.3.1 Membrane Fabrication 4.3.2 Membrane Modifications 4.3.3 Innovative Membranes 4.4 Membrane-Based Remediation of Wastewater 4.4.1 Removal of Heavy Metal Ions 4.4.2 Removal of Colour 4.4.3 Treatment of Oily Wastewater 4.5 Innovative and Sustainable Membrane Techniques 4.6 Conclusion References Chapter 5: Recent Advancement and Efficiency Hindering Factors in the Wastewater Treatment Plant: A Review 5.1 Introduction 5.2 Methodology 5.3 State of the Art in the Wastewater Treatment Processes 5.3.1 Preliminary Treatment 5.3.1.1 Screening 5.3.1.2 Grit Chamber 5.3.1.3 Equalization Tank 5.3.2 Primary Treatment 5.3.3 Secondary Clarifier 5.3.3.1 Activated Sludge (AS) Method 5.3.3.2 Extended Aeration (EA) 5.3.3.3 Trickling Filter (TF) 5.3.3.4 Moving Bed Biofilm Reactor (MBBR) 5.3.4 Tertiary Treatment 5.4 Conclusions References Chapter 6: Nutrient Removal Efficiency of Aquatic Macrophytes in Wastewater 6.1 Introduction 6.2 Nitrogen Contamination 6.3 Phosphorus Contamination 6.4 Phytoremediation 6.5 Nitrogen and Phosphorus Removal Efficiency of Quintessential Aquatic Macrophytes 6.5.1 Water Hyacinth 6.5.2 Azolla 6.5.3 Duckweed 6.5.4 Cattails 6.5.5 Water Lettuce 6.6 Conclusion References Chapter 7: Microbial Degradation of Wastewater 7.1 Introduction 7.2 Current Status of Water Pollution in India and World 7.2.1 Toxic Contaminants in the Wastewater, Their Sources and Effects 7.2.2 Heavy Metals 7.2.3 Pesticides 7.2.4 Various Sources of Wastewater 7.3 Sustainable Approach 7.3.1 Bioremediation Process 7.3.2 Factors Influencing Microbial Remediation 7.3.3 Physicochemical Variables 7.3.4 Biotic Factors 7.3.5 Climatic Conditions 7.4 Types of Bioremediation 7.4.1 Biostimulation 7.4.2 Bioattenuation 7.4.3 Bioaugmentation 7.4.4 Bioventing 7.4.5 Biopiles 7.5 Advantages of Bioremediation 7.6 Disadvantages of Bioremediation 7.7 Remediation of Wastewater 7.7.1 Phycoremediation 7.7.2 Mycoremediation 7.7.3 Mechanism Involved in Microbial Remediation 7.7.4 Bacterial Remediation 7.7.5 Genetic Engineering’s Role in Bacterial Bioremediation 7.7.6 Fungi Remediation 7.7.7 Algal Remediation 7.7.8 Wastewater Treatment by Alga 7.8 Nanotechnology Involved in Wastewater Treatment 7.8.1 Nanobioremediation 7.8.2 Remediation Using Nanomaterials and Nanoparticles 7.8.3 Success Stories Related to Bioremediation 7.9 Conclusion 7.10 Future Perspectives References Chapter 8: Phytoremediation and Phycoremediation: A Sustainable Solution for Wastewater Treatment 8.1 Introduction 8.2 Potential Candidates Used for Wastewater Treatment 8.2.1 Aquatic Plants 8.2.2 Microalgae 8.2.3 Macroalgae 8.3 Role of Aquatic Plants and Algae in Wastewater Treatment 8.3.1 Nitrogen and Phosphorus Acquisition from Wastewater 8.3.2 Utilization of Organic Waste as a Source of Energy 8.3.3 Heavy Metal Uptake and Utilization 8.4 Challenges of Phytoremediation and Phycoremediation 8.5 Conclusion and Future Perspectives References Chapter 9: Application of Nanomaterials for the Remediation of Heavy Metals Ions from the Wastewater 9.1 Introduction 9.2 Toxicity of Heavy Metals 9.3 Nanomaterials as Adsorbents 9.4 Metal Oxide Nanoparticles 9.5 Magnetic Based Nanoparticles (MNPs) 9.6 Carbon Nanotubes (CNTs) 9.7 Chitosan Formulated Nanomaterials 9.8 Silica Based Nanomaterials 9.9 Graphene Based Nano-Adsorbents 9.10 Factors Affecting Adsorption Processes 9.11 Nano-Catalysts 9.12 Nano-Materials as Photocatalysts 9.13 Nano-Membranes 9.14 Conclusion References Chapter 10: Remediation of Heavy Metals form Wastewater by Nanomaterials 10.1 Introduction 10.2 Sources of Heavy Metals and Their Health Impacts 10.3 Conventional Treatment Technologies 10.3.1 Adsorption 10.3.2 Chemical Co-precipitation and Coagulation-Flocculation 10.3.3 Membrane and Filters 10.3.4 Biological and Electrochemical Remediation 10.4 Application of Nanomaterials 10.4.1 Adsorption Treatment 10.4.2 Magnetic Removal 10.4.3 Nanomembranes and Nanofilters 10.4.4 Electrochemical Nanomaterials 10.5 Limitations and Plausible Solution 10.6 Conclusion References Chapter 11: Agricultural Residue-Derived Sustainable Nanoadsorbents for Wastewater Treatment 11.1 Introduction 11.2 Available Wastewater Treatment Techniques 11.3 Wastewater Treatment Through Adsorption Method 11.3.1 Nanoadsorbents for Wastewater Treatment 11.3.2 Agricultural Residue-Derived Nanoadsorbents for Wastewater Treatment 11.3.2.1 Silica-Based Nanoadsorbents 11.3.2.2 Cellulose-Based Nanoadsorbents 11.3.2.3 Lignin-Based Nanoadsorbents 11.3.2.4 Biochar-Based Nanoadsorbents 11.3.3 Mechanism Involved in Adsorptive Removal of Inorganic and Organic Pollutants 11.3.4 Adsorbent Selection and Regeneration 11.4 Conclusion and Recommendations References Chapter 12: State-of-the-Art and Perspectives of Agro-Waste-Derived Green Nanomaterials for Wastewater Remediation 12.1 Introduction 12.2 Conventional Technologies Used for Wastewater Remediation 12.3 Nanomaterials for Wastewater Remediation and Their Advantages 12.3.1 Some Advantages of Nanomaterials in Wastewater Remediation 12.4 Agro-Waste-Derived Green Nanomaterials for Wastewater Remediation 12.4.1 Carbon-Based Nanomaterials for Water Remediation 12.4.1.1 Activated Carbon 12.4.1.2 Biochar 12.4.1.3 Carbon Nanotubes 12.4.2 Metal Oxide-Based Nanomaterials 12.5 Conclusion References Chapter 13: Removal of Organic Pollutants from Waste Water by Adsorption onto Rice Husk-Based Adsorbents, an Agricultural Waste 13.1 Introduction 13.1.1 Efficacy of Adsorption Technique in Waste Water Treatment 13.1.2 Importance of Agricultural Wastes as Adsorbents 13.1.3 Composition of Agricultural Wastes 13.1.4 Characterization of Waste Water 13.1.5 Persistent Organic Pollutants (POPs) 13.1.6 Organic Pollutants in Waste Water and Their Toxicity 13.2 Development of Rice Husk-Based Adsorbents 13.2.1 Rice Husks (RH) 13.2.2 Rice Husk Ash, ‘RHA’ 13.2.3 Characterization of RH and RHA 13.2.4 Brief Applications of RH Based Adsorbents 13.3 Adsorption Study 13.3.1 Adsorption Kinetics 13.3.2 Adsorption Isotherms 13.3.3 Mechanism of Adsorption 13.3.4 Regeneration of Adsorbent or Desorption Studies 13.4 Adsorption of Organic Pollutants Onto Rice Husk-Based Adsorbents 13.4.1 Adsorption of Organic Dyes onto RH and RHA 13.4.2 Adsorption of Detergents and Oils 13.4.3 Adsorption of Pesticides, Herbicides, Pharmaceuticals and Fertilizers 13.4.3.1 Adsorption of Pesticides 13.4.3.2 Adsorption of Herbicides 13.4.3.3 Adsorption of Pharmaceuticals 13.4.3.4 Adsorption of Fertilizers 13.4.4 Adsorption of Phenol and Its Derivatives 13.5 Conclusions and Future Prospects References Chapter 14: Nanomaterial Composite Based Nanofiber Membrane: Synthesis to Functionalization for Wastewater Purification 14.1 Introduction 14.1.1 Sources and Composition of Wastewater 14.2 Nanomaterial Based Purification Methodologies 14.2.1 Nanophotocatalysts 14.2.2 Nanosorbents 14.2.3 Nanomembranes 14.3 Fabrication of Nanofiber Membrane 14.3.1 Functionalization of Nanofiber Membrane 14.3.1.1 Nanofiber Functionalization Methods Polymer Surface Activation Covalent Bonding Radical Polymerization Process Noncovalent Immobilization Process 14.3.2 Factors Effecting Morphology of Nanofiber Membrane 14.3.2.1 Solution Parameter Effect 14.3.2.2 Processing Parameter Effect 14.3.2.3 Ambient Parameter Effect 14.3.3 Filtration process 14.3.3.1 Microfiltration 14.3.3.2 Ultrafiltration 14.3.3.3 Nanofiltration 14.3.3.4 Reverse Osmosis 14.3.3.5 Forward Osmosis 14.4 Application of Nanofiber Membrane for Water Purification 14.4.1 Cations 14.4.2 Anions 14.4.3 Nanoparticles Filtration 14.4.4 Organic Contaminants 14.4.5 Biological Contaminants 14.5 Barriers Associated with Nanomaterial-Based Water Purification 14.5.1 Toxicity 14.5.2 Cost Effectiveness 14.5.3 Nanomaterial Ecotoxicity 14.6 Conclusion References Chapter 15: Enzymes and Its Nano-scaffold for Remediation of Organic Matter in Wastewater: A Green Bioprocess 15.1 Introduction 15.2 Organic Pollutants 15.3 Impact on Environment and Human Health 15.4 Bioremediation 15.5 Enzymatic Bioremediation: A Green Bioprocess 15.5.1 Enzymes Used in Bioremediation of Organic Pollutants 15.5.2 Major Challenges 15.6 Advances in Enzyme Technology: A Nanobiocatalyst for Bioremediation 15.7 Conclusion and Future Prospects References Chapter 16: Nanomaterial Hybridized Hydrogels as a Potential Adsorbent for Toxic Remediation of Substances from Wastewater 16.1 Introduction 16.2 Carbon Nanomaterial-Hybridized Hydrogels for Wastewater Treatment 16.3 Silica Nanoparticle-Hybridized Hydrogels for Remediation of Organic Dye 16.4 Metal and Metal Oxide Nanoparticle-Hybridized Hydrogels for Elimination of Toxic Dye 16.5 Nanomaterial’s Hybridized Polysaccharide Hybrid Hydrogels for Organic Dye Removal 16.6 Summary, Challenges, and Future Perspectives References Chapter 17: Legislative Policies and Industrial Responsibilities for Discharge of Wastewater in the Environment 17.1 Introduction 17.2 Present-Day Scenario of Wastewater Management in the World and Asian Countries 17.3 Policies and Initiatives by the Government of Asian Countries 17.3.1 India 17.3.2 Russia 17.3.3 China 17.3.4 Pakistan 17.3.5 Japan 17.3.6 Korea 17.3.7 Indonesia 17.3.8 Saudi Arabia 17.3.9 Turkey 17.3.10 Thailand 17.4 Prevailing Problems and Critical Issues in the Wastewater Management 17.4.1 Inefficient Treatment Technologies 17.4.1.1 Wear and Tear of Plant Structures 17.4.1.2 Variable Flow 17.4.1.3 Variable Turbidity 17.4.1.4 Scale Builds Up 17.4.1.5 High BOD 17.4.1.6 Pin Floc 17.4.1.7 Sludge Management 17.4.2 Chemicals That Escape Treatment 17.4.2.1 High Nutrient Levels 17.4.2.2 Excessive FOG 17.4.2.3 Microplastics 17.4.2.4 Xenobiotics/Recalcitrants 17.4.2.5 Heavy Metals 17.4.2.6 Per-/Poly-Fluoroalkyl Substances (PFAS) 17.5 Advanced Techniques for the Treatment of Wastewaters Adopted by Industries 17.5.1 Techniques to Overcome Operational Difficulties 17.5.2 Techniques to Treat Persistent Chemicals and Microplastics 17.5.2.1 Advanced Oxidation Technologies 17.5.2.2 Advance Anaerobic Sludge Digestion Processes 17.5.2.3 Membrane Bioreactors 17.5.2.4 Phytoremediation 17.5.2.5 Heavy Metal Removal and Reuse Techniques 17.5.3 Tecniques to Cope with Management Flaws 17.5.3.1 Online SCADA-Based Monitoring with IoT 17.6 Future Prospects of Reuse and Recycle of Wastewater 17.7 Conclusion References Chapter 18: Potential Role of Blue Carbon in Phytoremediation of Heavy Metals 18.1 Introduction 18.2 Overview of Heavy Metals 18.2.1 Definition and Sources 18.2.2 Effects of Heavy Metals 18.2.2.1 Human Health 18.2.2.2 Ecosystem 18.3 Overview of Coastal Water and Blue Carbon 18.4 Sources of Heavy Metals in Coastal Water Along the Bay of Bengal 18.4.1 Sewage Effluents 18.4.2 Land Run-Off 18.4.3 Industrial Effluents 18.4.4 Antifouling Paints 18.5 Phytoremediation 18.5.1 Definition 18.5.2 Mechanism of Phytoremediation 18.5.2.1 Phytoextraction 18.5.2.2 Phytofiltration 18.5.2.3 Phytostabilization 18.5.2.4 Phytovolatilization 18.5.2.5 Phytodegradation 18.5.2.6 Rhizodegradation 18.5.2.7 Phytodesalination 18.5.3 Selection of Plant Species 18.5.4 Factors Affecting Phytoremediation 18.6 Uptake of Heavy Metals by Coastal Vegetation 18.6.1 Mangroves 18.6.2 Saltmarsh Grass 18.7 Conclusion References Chapter 19: Biodegradation Potentials of Cassava Wastewater by Indigenous Microorganisms 19.1 Introduction 19.2 Characteristics of Cassava Wastewater 19.3 Environmental Impacts of Cassava Wastewater 19.4 Concept of Biotechnology 19.5 Biodegradation Efficiency of Cassava Wastewater by Indigenous Microbes 19.6 Factors that Influence the Biodegradation of Cassava Wastewater by Microorganisms 19.6.1 Presence of Inhibitory Materials 19.6.2 Inoculum Size 19.6.3 The Concentration of Toxic Substances 19.6.4 pH 19.6.5 Incubation Period 19.6.6 Choice of Microorganisms 19.6.7 Nutrients 19.6.8 Hydraulic Retention Time and Organic Loading Rate 19.7 Conclusion References Index