دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Richard Willian Bell.Teogenes Senna de Oliveira
سری:
ISBN (شابک) : 9783031003141, 9783031003172
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 452
[453]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 21 Mb
در صورت تبدیل فایل کتاب Subsoil Constraints for Crop Production به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محدودیت های زیرزمینی برای تولید محصول نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
وجود، شیوع و شدت محدودیتهای زیرزمینی برای تولید محصولات زراعی در سطح جهانی شناخته شده و کمتر گزارش شده است. محدودیتهای زیرزمینی (اسیدیتی، افق سولفات اسیدی، قلیایی بودن، تراکم، لایههای شنی عمیق، لایههای شن، افقهای با چگالی بالا، تشتها، عوامل بیماریزا، شوری، سدیمی، افقهای غرقابی) ممکن است ویژگیهای طبیعی پروفیلهای خاک یا ناشی از کاربری و مدیریت زمین باشند. تمرینات خاک زیرین در این فصل به عنوان لایههای ناحیه ریشه زیر عمق نمونهبرداری برای آنالیز خاک در نظر گرفته میشود، که معمولاً با خاک زیر 10 تا 25 سانتیمتر، بسته به قراردادهای نمونهبرداری از خاک منطقه مطابقت دارد. مناطق گرمسیری، به ویژه (در آفریقا، آسیا، استرالیای شمالی و آمریکای لاتین)، دارای مناطق وسیعی از پروفایل های عمیق هوازده هستند که معمولاً دارای زیر خاک های متخاصم هستند که رشد ریشه را محدود می کند. پیامد اصلی محدودیتهای زیرزمینی این است که آب و مواد مغذی موجود در زیرزمینها بهطور مؤثر مورد استفاده قرار نمیگیرند و از این رو محصولات به پتانسیل عملکرد خود نمیرسند. حتی زمانی که بهترین شیوه های مدیریتی برای خاک سطحی اعمال می شود، عملکرد محصولات زراعی به دلیل محدودیت های زیرزمینی کاهش می یابد. اگر رشد ریشه محدود نشود، گیاهان ممکن است تا 75 درصد نیتروژن، 85 درصد فسفر و 70 درصد پتاسیم را از زیر خاک جذب کنند. فنآوریهایی برای تشخیص، شناسایی، نقشهبرداری دیجیتالی، و بهبود محدودیتهای زیرزمینی، مرز امیدوارکنندهای برای مدیریت خاک، با پتانسیل افزایش قابل ملاحظه بهرهوری محصول در بسیاری از نقاط جهان است.
The existence, prevalence, and severity of subsoil constraints for crop production globally are under recognized and under-reported. Subsoil constraints (acidity, acid sulphate horizons, alkalinity, compaction, deep sand layers, gravel layers, high-density horizons, pans, pathogens, salinity, sodicity, waterlogged horizons) may be natural features of soil profiles or induced by land use and management practices. The subsoil in this chapter is considered to be the layers of the root zone below the depth of sampling for soil analysis, which typically corresponds to soil below 10–25 cm depth, depending on the soil sampling conventions of the region. Tropical regions, in particular (in Africa, Asia, Northern Australia, and Latin America), contain large areas of deeply weathered profiles that commonly have hostile subsoils that constrain root growth. The main consequence of subsoil constraints is that water and nutrients contained in subsoils are not accessed or efficiently utilized, and hence crops fail to reach their yield potential. Even when best management practices are applied to the topsoil, yield of crops is depressed by subsoil constraints. Crops may acquire up to 75% of N, 85% of P, and 70% of K uptake from the subsoil if root growth is not constrained. Technologies to sense, identify, map digitally, and ameliorate subsoil constraints represent a promising frontier for soil management, with the potential to substantially lift crop productivity in many parts of the world.
Preface Contents Contributors Chapter 1: Introduction to Subsoil Constraints for Crop Production 1.1 Introduction 1.2 Overview of Subsoil Constraints Chapters References Chapter 2: The Geological, Geomorphological, Climatic, and Hydrological Background of Tropical Regoliths and Hostile Subsoils: The Brazilian Landmass 2.1 Introduction 2.2 Regoliths and Subsoils 2.3 The Brazilian Regoliths 2.4 Long-Term Weathering and Brazilian Subsoils 2.4.1 The Kaolinitic Mantle 2.4.2 Ironstone or Ferricrete Mantles 2.4.3 Types of Tropical Alteration and Subsoil Formation 2.4.4 The Deep Subsoil Composition 2.4.5 Latosols and Similar Soils Overly Deep Weathered Saprolites in Brazil 2.5 Hydrogeological Characteristics of Deep Subsoils 2.6 Dating of Brazilian Subsoils, Age of Regoliths, and Rates of Denudation 2.7 Brazilian Subsoils: Hostile for What or Whom? 2.7.1 The Nature of Brazilian Subsoils and Their Environmental Limitations 2.7.2 Mineral Resistance to Weathering in Tropical Brazil 2.8 The Way Forward: Regolith and Subsoils Within the Critical Zone (CZ) Concept References Chapter 3: Soil Acidity and Acidification 3.1 Introduction 3.2 Soil Acidification and the Development of Acid Subsoils (Soil pH Gradients) 3.3 Identifying and Diagnosing Subsoil Acidity 3.4 Minimisation of Subsoil Acidification 3.5 Ameliorating Subsoil Acidity Using Lime and Other Amendments 3.6 Future Farming Practices to Combat Subsoil Acidity 3.7 Conclusions References Chapter 4: Salinity, Sodicity and Alkalinity 4.1 Introduction 4.2 Salinisation Processes: Subsoil Accumulation of Salts 4.2.1 Groundwater-Associated Salinity 4.2.2 Transient Salinity Not Associated with Groundwater Processes 4.2.3 Salinity Induced by Irrigation 4.3 Physical and Chemical Processes Influencing Salinity and Sodicity 4.4 Mechanisms of Salinity-Reducing Crop Production 4.5 Effect of Exchangeable Cations (Including Sodicity) and Soluble Anions on Soil Structural Stability 4.5.1 Role of Exchangeable Cations and Soluble Anions in Clay Swelling and Dispersion 4.6 Alkalinity and High Soil pH 4.7 Categories of Salt-Affected Soils 4.8 Managing Subsoil Constraints Due to Salinity, Sodicity (Dispersivity) and Alkalinity 4.8.1 Reclamation of Saline Subsoil 4.8.2 Amelioration of Subsoil Sodicity and Soil Dispersivity 4.8.3 Correction of Subsoil Alkalinity References Chapter 5: Pyritic Subsoils in Acid Sulfate Soils and Similar Problems in Mined Areas with Sulfidic Rocks 5.1 Introduction 5.2 Thionic Soils 5.3 Prediction of Acid Drainage 5.4 Prevention and Soil Remediation Opportunities for Acid Sulfate Materials 5.5 Treatment of Acid Discharge Water 5.6 Conclusions References Chapter 6: Physical Subsoil Constraints of Agricultural and Forestry Land 6.1 Introduction 6.2 Soil Compaction and Land Use 6.2.1 Conventional and No-Tillage Farming 6.2.2 Livestock/Pasture 6.2.3 Planted Forests 6.3 Compaction and Impacts on Soil Functions 6.4 Assessment Methods of Soil Compaction 6.5 Soil Compaction Management 6.6 Compaction Susceptibility 6.7 Final Comments References Chapter 7: Subsoil and Surface Soil Constraints of Mined Land and Tailings 7.1 Introduction 7.2 Compaction and High Soil Strength 7.3 Soil Texture: Soil Water and Chemical Constraints 7.4 Chemical Limitations of the Subsoil 7.5 Overcoming Multiple Soil Constraints for Brazilian Bauxite Rehabilitation in High Rainfall Environments 7.6 Recovery After Iron Ore Mining and Tailing Dam Collapse in Brazil 7.7 Final Remarks References Chapter 8: Sand and Gravel Subsoils 8.1 Introduction 8.2 Definitions 8.3 Geological Origin 8.4 Geographical Distribution 8.5 Effect of Sand and Gravel Subsoils on Root Density and Function 8.6 Effect of Sand and Gravel Subsoils on Plant-Soil Water Relations 8.7 Effect of Sand and Gravel Subsoils on Nutrient Acquisition 8.8 Agronomic Management of Sand and Gravelly Subsoils 8.9 Conclusion References Chapter 9: Soilborne Pathogens 9.1 Introduction 9.2 Fungi and Fungus-Like Pathogens 9.2.1 Fusarium 9.2.2 Macrophomina 9.2.3 Phytophthora 9.2.4 Pythium 9.2.5 Rhizoctonia 9.2.6 Sclerotium 9.3 Bacterial Pathogens 9.3.1 Wilt 9.3.2 Deformations 9.3.3 Soft Rot 9.4 Plant-Parasitic Nematodes 9.4.1 Root-Knot Nematodes 9.4.2 Cyst Nematodes 9.4.3 Root Lesion Nematodes 9.5 Control Measures 9.6 Perspectives References Chapter 10: Root Systems of Agricultural Crops and Their Response to Physical and Chemical Subsoil Constraints 10.1 Introduction 10.2 Overview of the Root System of the Main Cultivated Species 10.3 Response of the Root System of Major Agricultural Crops to Soil Physical Constraints 10.4 Response of the Root System of Major Agricultural Crops to Soil Chemical Constraints 10.4.1 Soil pH 10.4.2 Aluminium Toxicity 10.4.3 Heavy Metals, Toxic Elements and Micronutrients 10.4.4 Macronutrients 10.4.5 Sodicity 10.5 Summary References Chapter 11: Roots and Beneficial Interactions with Soil Microbes 11.1 Introduction 11.2 Mycorrhizal Associations 11.2.1 Benefits of Mycorrhizal Associations 11.2.2 Role in Carbon Cycling 11.2.3 Mycorrhizal Associations and Nutrient Acquisition 11.2.4 Mycorrhizal Activity in Subsoils 11.2.5 Application of Mycorrhiza in Agriculture and Forestry 11.3 Biological Nitrogen-Fixing Bacteria 11.4 Plant Growth-Promoting Fungi 11.5 Plant Growth-Promoting Rhizobacteria 11.6 Plant Soil Feedback (PSF) and Plant Microbiome 11.7 Final Considerations References Chapter 12: Nutrient Acquisition with Particular Reference to Subsoil Constraints 12.1 Introduction 12.2 Root Types and Distribution 12.3 Root Growth in Heterogeneous Soil 12.4 Root Growth Under Drought 12.5 Root Growth with Subsoil Constraints 12.5.1 Physical Constraints 12.5.2 Chemical Constraints Nutrient Deficiencies Soil Acidity Alkalinity/Sodicity Salinity 12.6 Subsoil Nutrient Acquisition 12.6.1 Nutrient Mobilization in Subsoils 12.6.2 Nutrient Translocation From Subsoils 12.6.3 Nutrient Re-allocation to Subsoils 12.7 Modelling Subsoil Nutrient Acquisition 12.8 Crop Response to Deep Fertilization 12.8.1 Soil Types 12.8.2 Plant Species 12.8.3 Tillage Practice 12.8.4 Hydraulic Redistribution 12.9 Conclusion References Chapter 13: Water Acquisition by Roots From the Subsoil: Impact of Physical Constraints on the Dynamics of Water Capture 13.1 Introduction 13.2 Conditions for Optimum Root Growth and Function 13.2.1 Temperature 13.2.2 Aeration 13.2.3 Water Status 13.2.4 Mechanical Resistance 13.3 Soil Water Availability 13.4 Rate at Which Roots Explore the Soil Profile 13.5 Maximum Depth of Soil Exploration 13.6 Efficiency of Extraction From a Soil Layer 13.7 Consequences for Seasonal Crop Water Use 13.8 Future Research Needs 13.8.1 Soil-Root Interface 13.8.2 Crop Management and Soil Pores 13.8.3 Quantifying Importance References Chapter 14: Deep Soil Carbon: Characteristics and Measurement with Particular Bearing on Kaolinitic Profiles 14.1 Definitions 14.2 Possible Sources of Organic Carbon and Its Occurrence in Deep Soils 14.2.1 Plant Roots 14.2.2 Other Living Sources of Carbon 14.3 Stability of Deep Soil Carbon 14.4 Age of Deep Soil Carbon 14.5 Methodology to Study Deep Soil Carbon 14.5.1 Carbon Quantification Methods Dry Combustion Method Wet Digestion Method Near-Infrared Spectroscopy 14.5.2 Soil Organic Matter Characterization Methods Mid-Infrared Spectroscopy Chromatographic Technique Coupled with Mass Spectroscopy 14.6 Carbon Components as a Tool for Identifying Sources of Soil Organic Carbon 14.7 Deep Soils and Deep Carbon 14.7.1 Deep Soils in the World 14.7.2 Deep Soils in South-Western Australia 14.7.3 Deep Roots and Land-Use Change in South-Western Australia 14.7.4 Deep Carbon Storage and Composition in South-Western Australia 14.8 Summary Remarks References Chapter 15: Live Subsoils: Tropical Regolith and Biota Interactions 15.1 Introduction 15.2 Importance of Soil Fauna and Vegetation in Regolith Formation 15.3 The Biological Turnover of Soils 15.3.1 The Termites: Evolution, Role, Long Term Effects 15.3.2 Ants and Subsoils: A Complementary Effect for Deep Latosol Formation and Regolith Deepening 15.4 Age of Soil and Biological Turnover 15.4.1 Dynamic Landscape Denudation 15.5 Final Remarks References Chapter 16: Subsoil Constraints for Crop Production: Recent Advances, New Technologies, and Priorities for Further Research 16.1 Extent and Severity of Subsoil Constraints 16.2 Deeply Weathered Soils 16.3 Field and Farm-Scale Variability and Diagnosis 16.4 Multiple Subsoil Constraints 16.5 Nutrients in Subsoil 16.6 Subsoil Acidity and Acidification 16.7 Salinity, Alkalinity, and Sodicity 16.8 Soil Physical Constraints 16.9 Sand and Gravel-Rich Subsoils 16.10 Biological Subsoil Constraints 16.11 Root Penetration Rates and Biopores 16.12 Conclusions References Index