ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles (Geophysical Monograph Series)

دانلود کتاب رانش زمین در زیردریایی: ذخایر حمل و نقل انبوه زیرآبی از برون زدگی ها به پروفیل های لرزه ای (سری مونوگرافی ژئوفیزیک)

Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles (Geophysical Monograph Series)

مشخصات کتاب

Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles (Geophysical Monograph Series)

ویرایش: 1 
نویسندگان: , ,   
سری: Geophysical Monograph Series (Book 246) 
ISBN (شابک) : 1119500583, 9781119500582 
ناشر: American Geophysical Union 
سال نشر: 2019 
تعداد صفحات: 379 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 31 مگابایت 

قیمت کتاب (تومان) : 30,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 25


در صورت تبدیل فایل کتاب Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles (Geophysical Monograph Series) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب رانش زمین در زیردریایی: ذخایر حمل و نقل انبوه زیرآبی از برون زدگی ها به پروفیل های لرزه ای (سری مونوگرافی ژئوفیزیک) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب رانش زمین در زیردریایی: ذخایر حمل و نقل انبوه زیرآبی از برون زدگی ها به پروفیل های لرزه ای (سری مونوگرافی ژئوفیزیک)



بررسی زمین لغزش‌های زیردریایی باستانی و معاصر و تأثیر آن‌ها

لغزش‌های زمین در هر زمینه ژئودینامیکی زیر آبی، از حاشیه‌های غیرفعال و فعال قاره گرفته تا تنظیمات درون صفحه‌ای اقیانوسی و قاره‌ای، رایج است. آنها به دلیل فرکانس، ابعاد و سرعت نهایی، ظرفیت سفر در فواصل طولانی و توانایی ایجاد سونامی مخرب بالقوه، تهدیدات قابل توجهی برای مناطق دریایی و ساحلی به شمار می روند. رسوبات حمل و نقل از رخنمون ها تا پروفیل های لرزه ای مکانیسم ها، ویژگی ها، و اثرات زمین لغزش های زیردریایی را بررسی می کند.

نکات برجسته حجمی عبارتند از:

  • استفاده از روش های مختلف روش شناختی، از ژئوفیزیک تا زمین شناسی مبتنی بر میدان
  • داده های مربوط به ذخایر زمین لغزش زیردریایی در مقیاس های مختلف
  • مجموعه جهانی مطالعات موردی از داخل و خارج از ساحل
  • خطرات احتمالی به جامعه انسانی و زیرساخت
  • تاثیرات بر هیدروسفر، اتمسفر و لیتوسفر

توضیحاتی درمورد کتاب به خارجی

An examination of ancient and contemporary submarine landslides and their impact

Landslides are common in every subaqueous geodynamic context, from passive and active continental margins to oceanic and continental intraplate settings. They pose significant threats to both offshore and coastal areas due to their frequency, dimensions, and terminal velocity, capacity to travel great distances, and ability to generate potentially destructive tsunamis.

Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles examines the mechanisms, characteristics, and impacts of submarine landslides.

Volume highlights include:

  • Use of different methodological approaches, from geophysics to field-based geology
  • Data on submarine landslide deposits at various scales
  • Worldwide collection of case studies from on- and off-shore
  • Potential risks to human society and infrastructure
  • Impacts on the hydrosphere, atmosphere, and lithosphere


فهرست مطالب

Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles
Contents
List of Contributors
Preface
Acknowledgments
Part I: Submarine Landslide Deposits in Orogenic Belts
1 Submarine Landslide Deposits in Orogenic Belts: Olistostromes and Sedimentary Mélanges
	1.1. INTRODUCTION
	1.2. HISTORICAL OUTLINE
	1.3. SUBMARINE LANDSLIDE STUDIES: AN INTEGRATED APPROACH
	1.4. ANATOMY OF SUBMARINE LANDSLIDES FROM OUTCROP PERSPECTIVE: PROCESSES AND PRODUCTS
	1.5. DISTRIBUTION OF OLISTOSTROMES AND SEDIMENTARY MÉLANGES
	1.6. GETTING OVER THE “SIZE” AND “PRESERVATION” PARADOXES
		1.6.1. Slide to Flow Transformation
		1.6.2. The Slide Volume
		1.6.3. Tectonic Reworking
	1.7. OLISTOSTROMES AND SEDIMENTARY MÉLANGES AS MARKERS OF GEOLOGIC EVENTS
	1.8. CONCLUSIONS AND THE WAY FORWARD
	ACKNOWLEDGMENTS
	REFERENCES
2 Mass-Transport Deposits in the Foredeep Basin of the Miocene Cervarola Sandstones Formation (Northern Apennines, Italy)
	2.1. INTRODUCTION
	2.2. GEOLOGICAL SETTING
		2.2.1. The Foredeep Units: Geometrical Relationships and Previous Interpretations
		2.2.2. Tectonic Remarks
	2.3. STRATIGRAPHY AND FACIES ANALYSIS OF THE CERVAROLA SANDSTONES FORMATION (CSF)
	2.4. MASS‐TRANSPORT DEPOSITS WITHIN THE CERVAROLA SANDSTONES SUCCESSION
		2.4.1. Extrabasinal Chaotic Units: Pievepelago and Sestola‐Vidiciatico Formations
			2.4.1.1. Description
			2.4.1.2. Interpretation
		2.4.2. Slumps
			2.4.2.1. Interpretation
		2.4.3. Megabeds
			2.4.3.1. Interpretation
	2.5. DISCUSSION
	2.6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
3 Late Miocene Olistostrome in the Makran Accretionary Wedge (Baluchistan, SE Iran): A Short Review
	3.1. INTRODUCTION: GEOLOGICAL SETTING
	3.2. GEOMETRY AND INTERNAL STRUCTURE
		3.2.1. Matrix Features
		3.2.2. Clastic Elements
		3.2.3. Clast/Matrix Relationships: Flow Direction
	3.3. RELATIONSHIP WITH THE HOST SEDIMENTARY SUCCESSION
	3.4. APPROXIMATE VOLUME AND COVERED AREA
	3.5. UPDATED INTERPRETATIONS
	3.6. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
4 Spatial Distribution of Mass-Transport Deposits Deduced From High‐Resolution Stratigraphy: The Pleistocene Forearc Basin (Boso Peninsula, Central Japan)
	4.1. INTRODUCTION
	4.2. GEOTECTONIC BACKGROUND
		4.2.1. Kazusa Group on the Boso Peninsula
		4.2.2. High‐Resolution Stratigraphic Framework
	4.3. DISTRIBUTION AND CHARACTERISTICS OF MTDS IN THE KAZUSA GROUP
		4.3.1. Type I
		4.3.2. Type II
		4.3.3. Type III
	4.4. SUMMARY AND DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES
5 Mass‐Transport Deposits as Markers of Local Tectonism in Extensional Basins
	5.1. INTRODUCTION
	5.2. DATA SET AND METHODS
	5.3. GEOLOGICAL SETTING
		5.3.1. Ierapetra Basin, SE Crete
		5.3.2. Espírito Santo Basin, SE Brazil
	5.4. TYPES OF SYN‐TECTONIC MASS‐TRANSPORT DEPOSITS (MTDS)
		5.4.1. Type 1: Carbonate Blocks and Breccia‐Conglomerates Showing Limited Gravitational Collapse
		5.4.2. Type 2: Disrupted Blocks, Carbonate Megabreccias, and Boulder Conglomerates on Tectonically Active Slopes
		5.4.3. Type 3: Blocks and Debris‐Flow Deposits (Boulder Conglomerates) Accumulated Distally From Exposed Fault Scarps
		5.4.4. Type 4: Chaotic Volumes of Turbidites, Chalk, and Evaporites
		5.4.5. Type 5: Steep Debris on the Foot of Large Fault Scarps
	5.5. KEY MARKERS OF TECTONIC ACTIVITY
		5.5.1. Thickening and Deepening of Marine Facies Toward Basin Depocenters
		5.5.2. Slumping and Folding of Strata on Oversteepened Slopes
		5.5.3. Kinematic Indicators of Syn‐tectonic Deformation
	5.6. DISCUSSION
		5.6.1. MTDs as Markers of Tectonic Movements From Seismic to Outcrop Scales
		5.6.2. Relationship Among Block Size, Thickness of Basal Shear Zone, and the Physical Scale of Mass‐Wasting Events
	5.7. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
6 Block Generation, Deformation, and Interaction of Mass-Transport Deposits With the Seafloor: An Outcrop‐Based Study of the Carboniferous Paganzo Basin (Cerro Bola, NW Argentina)
	6.1. INTRODUCTION
	6.2. GEOLOGICAL SETTING
	6.3. MASS‐TRANSPORT DEPOSITS AT CERRO BOLA
		6.3.1. MTD I
			6.3.1.1. Interpretation
		6.3.2. MTD II
			6.3.2.1. Interpretation
		6.3.3. MTD III
			6.3.3.1. Interpretation
	6.4. DISCUSSION
		6.4.1. Seafloor Interaction
		6.4.2. Toward a Model for Block Generation
	6.5. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
7 The Carboniferous MTD Complex at La Peña Canyon, Paganzo Basin (San Juan, Argentina)
	7.1. INTRODUCTION
	7.2. REGIONAL SETTING
	7.3. LOCAL SETTING
	7.4. THE MTD COMPLEX AT LA PEÑA SECTION
		7.4.1. MTD1
		7.4.2. MTD2
		7.4.3. MTD3
		7.4.4. MTD4
		7.4.5. MTD5
		7.4.6. MTD6
	7.5. DEPOSITIONAL MODEL
	7.6. DISCUSSION AND CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
8 Mass-Transport Complexes of the Marnoso‐arenacea Foredeep Turbidite System (Northern Apennines, Italy): A Reappraisal After Twenty‐Years
	8.1. INTRODUCTION
	8.2. GEOLOGICAL SETTING
	8.3. CASAGLIA‐MONTE DELLA COLONNA MTC: PHYSIOGRAPHY AND INTERNAL STRUCTURES
		8.3.1. The Southwest to Northeast Directed Basin Plain Deposits: Casaglia Sector
		8.3.2. The Southwest to Northeast Directed Basin Plain Deposits: Marradi Sector
		8.3.3. Casaglia Sector, Central Zone: The North Verging Slope Deposits
		8.3.4. Casaglia Sector, Central Zone: The Southwest Verging Basin Plain Deposits
		8.3.5. Santerno Sector: The North Verging Basin Plain Deposits
	8.4. SHEAR ZONES
	8.5. DOMAINS OF INTERNAL DEFORMATION
	8.6. ORIGIN OF THE DISPLACED INTRABASINAL SEDIMENTS AND MECHANISM OF TRANSLATION
	8.7. CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES
9 Fold and Thrust Systems in Mass‐Transport Deposits Around the Dead Sea Basin
	9.1. INTRODUCTION AND REGIONAL SETTING OF MTDS IN THE DEAD SEA BASIN
	9.2. ANALYZING REGIONAL PATTERNS OF MTD MOVEMENT AROUND THE DEAD SEA BASIN
	9.3. ANALYZING STRUCTURAL SEQUENCES DURING INTERNAL EVOLUTION OF MTDS
		9.3.1. Distinguishing General Structural Sequences
		9.3.2. Distinguishing Detailed Thrust Sequences
	9.4. ANALYZING REWORKING TRIGGERED BY MULTIPLE SEISMIC EVENTS WITHIN INDIVIDUAL MTDS
	9.5. ANALYZING CONTRACTIONAL STRUCTURES THAT ARE HIDDEN ON SEISMIC IMAGES
	9.6. ANALYZING THE EXTERNAL GEOMETRY OF MTDS AROUND THE DEAD SEA BASIN
		9.6.1. Do Frontally Confined or Frontally Emergent Models Best Constrain the Bulk Geometry of MTDs?
		9.6.2. Do Critical Taper Models Constrain the Bulk Geometry of MTDs?
		9.6.3. Do Dislocation Models Constrain the Bulk Geometry of MTDs?
		9.6.4. Do Models of Thrust Ramp Spacing Constrain the Bulk Geometry of MTDs?
	9.7. CONCLUSIONS
		9.7.1. Analyzing Regional Patterns of MTD Movement Around the Dead Sea Basin
		9.7.2. Analyzing Structural Sequences During Internal Evolution of MTDs
		9.7.3. Analyzing Reworking Triggered by Multiple Seismic Events Within MTDs
		9.7.4. Analyzing Contractional Structures That Are Hidden on Seismic Images
		9.7.5. Analyzing the External Geometry of MTDs Around the Dead Sea Basin
	ACKNOWLEDGMENTS
	REFERENCES
10 Eocene Mass-Transport Deposits in the Basque Basin (Western Pyrenees, Spain): Insights Into Mass‐Flow Transformation and Bulldozing Processes
	10.1. INTRODUCTION
	10.2. GEOLOGICAL SETTING
	10.3. SEDIMENTOLOGY OF THE CALCICLASTIC FLYSCH AND INTERCALATED MTDS
		10.3.1. MTD‐1 and MTD‐2
			10.3.1.1. Description
			10.3.1.2. Interpretation
		10.3.2. MTD‐3
			10.3.2.1. Description
			10.3.2.2. Interpretation
		10.3.3. MTD‐4
			10.3.3.1. Description
			10.3.3.2. Interpretation
		10.3.4. MTD‐5 and MTD‐6
			10.3.4.1. Description
			10.3.4.2. Interpretation
	10.4. DISCUSSION
		10.4.1. Facies Model
		10.4.2. Dimensions
			10.4.2.1. Extent and Volume of MTDs
			10.4.2.2. Topographic Relief of MTDs
		10.4.3. Triggering Mechanism
		10.4.4. Source Area
	10.5. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
11 Neogene and Quaternary Mass-Transport Deposits From the Northern Taranaki Basin (North Island, New Zealand): Morphologies, Transportation Processes, and Depositional Controls
	11.1. INTRODUCTION
	11.2. GEOLOGIC SETTING OF THE NORTH TARANAKI MARGIN
	11.3. OUTCROP EXAMPLES
		11.3.1. Rapanui Stream
		11.3.2. Tongaporutu Beach
	11.4. SEISMIC EXAMPLE
	11.5. DISCUSSION
	11.6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
Part II: Submarine Landslide Deposits in Current Active and Passive Margins
12 Modern Submarine Landslide Complexes: A Short Review
	12.1. GENERAL CHARACTERISTICS AND PECULIARITIES
	12.2. DISTRIBUTION AND CLASSIFICATION
	12.3. TRIGGERS AND PRECONDITIONING FACTORS
	12.4. AGE DATING: CAPABILITIES AND LIMITATIONS
	12.5. CLIMATE CONTROL AND INTERPLAY
	12.6. GEOHAZARD POTENTIAL AND TSUNAMIS
	12.7. LONG‐TERM MONITORING
	12.8. SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES
13 An Atlas of Mass‐Transport Deposits in Lakes
	13.1. INTRODUCTION
	13.2. SELECTED CASE STUDIES OF LACUSTRINE MTDs RESULTING FROM DIFFERENT MASS‐MOVEMENT PROCESSES
		13.2.1. MTDs Generated From Lateral Slope Landslides
		13.2.2. MTDs Generated From Margin Collapses
		13.2.3. MTDs Generated From Delta Collapses
		13.2.4. MTDs Generated From Rockfalls
	13.3. VERTICAL SUCCESSION OF INTERCALATED MTDs IN BASIN‐FILL SEQUENCES
		13.3.1. Skilak Lake
		13.3.2. Lake Como
		13.3.3. Lake Fagnano
		13.3.4. Lake Calafquén
	13.4. DISCUSSION/CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
14 Style and Morphometry of Mass-Transport Deposits Across the Espírito Santo Basin (Offshore SE Brazil)
	14.1. INTRODUCTION
	14.2. GEOLOGICAL SETTING OF THE ESPÍRITO SANTO BASIN
		14.2.1. Seismic Stratigraphy of the Espírito Santo Basin
	14.3. DATA AND METHODS
	14.4. CHARACTER OF MASS‐TRANSPORT DEPOSITS ACROSS THE ESPÍRITO SANTO SLOPE
		14.4.1. Zone 1: Proximal to Transitional Domains
		14.4.2. Zone 2: Transitional Domain
		14.4.3. Zone 3: Distal Compressional Domain
	14.5. INFLUENCE OF SALT TECTONICS ON THE EVOLUTION OF THE ESPÍRITO SANTO BASIN MTDs THROUGH SPACE AND TIME
		14.5.1. Unit 1 MTDs
		14.5.2. Unit 2 MTDs
		14.5.3. Unit 3 MTDs
		14.5.4. MTDs in the ESB: Do They Fit Known MTD Classifications?
	14.6. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES
15 Submarine Landslides on the Nankai Trough Accretionary Prism (Offshore Central Japan)
	15.1. INTRODUCTION
	15.2. GEOLOGIC AND TECTONIC SETTING
	15.3. DATA AND METHODS
	15.4. NANKAI ACCRETIONARY PRISM SUBMARINE LANDSLIDES
		15.4.1. Prism Toe (Frontal Thrust)
		15.4.2. Outer Prism
		15.4.3. Forearc Basin
	15.5. DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES
16 Seismic Examples of Composite Slope Failures (Offshore North West Shelf, Australia)
	16.1. INTRODUCTION
		16.1.1. Rationale
		16.1.2. Regional Outlook
		16.1.3. Stratigraphy
	16.2. MATERIALS AND METHODS
	16.3. OVERVIEW OF SLOPE FAILURES IN THE EXMOUTH PLATEAU ARCH
	16.4. THEBE COMPLEX
		16.4.1. Headwall Slumps
		16.4.2. Central Slide
		16.4.3. Secondary Slide
	16.5. CENTAUR COMPLEX
		16.5.1. Overview
		16.5.2. Headwall Salients
		16.5.3. Internal Architecture
	16.6. MECHANISMS FOR GENERATION OF COMPOSITE FAILURES
		16.6.1. Collapse of the Frontal Part of Failures
		16.6.2. Headscarp Retrogression
	16.7. TRIGGERING MECHANISMS
		16.7.1. Seismic Activity
		16.7.2. Wave Loading and Dissociation of Gas Hydrates
		16.7.3. Bottom Currents
		16.7.4. High Sedimentation Rate
		16.7.5. Fluid Seepage and Migration
		16.7.6. Slope Steepening
	16.8. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
17 Submarine Landslides Around Volcanic Islands: A Review of What Can Be Learned From the Lesser Antilles Arc
	17.1. INTRODUCTION
	17.2. PREVIOUS WORK ON THE LESSER ANTILLES ARC
	17.3. IODP EXPEDITION 340
	17.4. NEW MODEL OF LANDSLIDE GENERATION OFFSHORE THE LESSER ANTILLES ARC
		17.4.1. Two Different Instability Processes
		17.4.2. Décollement Propagation From Debris Avalanche Deposit Loading
		17.4.3. Evolution of the Montagne Pelée Volcano Through the Landslide Processes (Martinique)
	17.5. IMPLICATIONS ON THE EMPLACEMENT MECHANISMS OF THE LANDSLIDE DEPOSITS
		17.5.1. Debris Avalanches
		17.5.2. Seafloor Sediment Failures Triggered by Debris Avalanche Loading
	17.6. IMPLICATIONS FOR TSUNAMI HAZARDS
	17.7. COMPARISON WITH SUBMARINE LANDSLIDES AROUND OTHER VOLCANIC ISLANDS
	ACKNOWLEDGMENTS
	17.A: IODP 340 EXPEDITION SCIENTISTS
	REFERENCES
18 Submarine Landslides in an Upwelling System: Climatically Controlled Preconditioning of the Cap Blanc Slide Complex (Offshore NW Africa)
	18.1. INTRODUCTION
		18.1.1. Oceanography and Climate of the Cap Blanc Slide Area
	18.2. METHODS AND DATA
		18.2.1. Acoustic Data
		18.2.2. ODP Site 658 Core Data
		18.2.3. Core‐Seismic Integration
	18.3. THE CAP BLANC SLIDE COMPLEX
		18.3.1. Seafloor Morphology in the Slide Complex
		18.3.2. Slides at the Ridge Toe
		18.3.3. Slides at the Northern Ridge Flank
	18.4. STRATIGRAPHY OF THE CAP BLANC SLIDE COMPLEX
		18.4.1. Core‐Seismic Integration and Reflector Ages
		18.4.2. Landslide Ages and Errors
	18.5. SEDIMENTOLOGY OF REFLECTORS AND FAILURE PLANES
	18.6. DISCUSSION
		18.6.1. Timing of Landslides in the Cap Blanc Slide Complex
		18.6.2. Preconditioning and Triggers in the Cap Blanc Slide Complex
	18.7. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
19 Submarine Landslides Along the Mixed Siliciclastic-Carbonate Margin of the Great Barrier Reef (Offshore Australia)
	19.1. INTRODUCTION
	19.2. REGIONAL SETTING
		19.2.1. Depositional History
		19.2.2. Modern Physiography and Sediment Distribution
	19.3. METHODS
		19.3.1. Data Sets and Analysis
		19.3.2. Tsunami Modeling
			19.3.2.1. A Note on Bottom Friction
	19.4. RESULTS
		19.4.1. Ribbon Reef Slide (RRS)
			19.4.1.1. Overview
			19.4.1.2. Slope Morphology
			19.4.1.3. Source Area
			19.4.1.4. Depositional Area
		19.4.2. Gloria Knolls Slide (GKS)
			19.4.2.1. Overview
			19.4.2.2. Slope Morphology
			19.4.2.3. Source Area
			19.4.2.4. Depositional Area
		19.4.3. Bowl Slide (BS)
			19.4.3.1. Overview
			19.4.3.2. Slope Morphology
			19.4.3.3. Source Area
			19.4.3.4. Depositional Area
		19.4.4. Viper Slide (VS)
			19.4.4.1. Overview
			19.4.4.2. Slope Morphology
			19.4.4.3. Source Area
			19.4.4.4. Depositional Area
		19.4.5. Tsunami Modeling of the Gloria Knolls Slide
	19.5. DISCUSSION
		19.5.1. Timing of the Mass Movements
		19.5.2. Type of Mass Movements
		19.5.3. Possible Preconditioning Factors and Triggers for Slope Instability in the GBR
		19.5.4. Tsunami Capacity of the Gloria Knolls Slide
			19.5.4.1. Model Limitations
	19.6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
20 Submarine Landslides on the Seafloor: Hints on Subaqueous Mass‐Transport Processes From the Italian Continental Margins (Adriatic and Tyrrhenian Seas, Offshore Italy)
	20.1. INTRODUCTION
	20.2. SOUTHWESTERN ADRIATIC SEA
		20.2.1. Northern SWAM: Vieste Slide MTC
		20.2.2. Central SWAM: Gondola MTC
		20.2.3. Bari Canyon Area MTC
	20.3. SOUTHEASTERN TYRRHENIAN SEA
		20.3.1. Gioia Basin MTC
		20.3.2. Capo d’Orlando Basin MTC
	20.4. DISCUSSION
		20.4.1. Detached Ridges
		20.4.2. Blocks
		20.4.3. Contractional Features
		20.4.4. Barely Deformed Bodies
		20.4.5. Matrix‐Rich Debris Flows
	20.5. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
Index




نظرات کاربران