دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Kei Ogata (editor), Andrea Festa (editor), Gian Andrea Pini (editor) سری: Geophysical Monograph Series (Book 246) ISBN (شابک) : 1119500583, 9781119500582 ناشر: American Geophysical Union سال نشر: 2019 تعداد صفحات: 379 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 31 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles (Geophysical Monograph Series) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رانش زمین در زیردریایی: ذخایر حمل و نقل انبوه زیرآبی از برون زدگی ها به پروفیل های لرزه ای (سری مونوگرافی ژئوفیزیک) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بررسی زمین لغزشهای زیردریایی باستانی و معاصر و تأثیر آنها
لغزشهای زمین در هر زمینه ژئودینامیکی زیر آبی، از حاشیههای غیرفعال و فعال قاره گرفته تا تنظیمات درون صفحهای اقیانوسی و قارهای، رایج است. آنها به دلیل فرکانس، ابعاد و سرعت نهایی، ظرفیت سفر در فواصل طولانی و توانایی ایجاد سونامی مخرب بالقوه، تهدیدات قابل توجهی برای مناطق دریایی و ساحلی به شمار می روند. رسوبات حمل و نقل از رخنمون ها تا پروفیل های لرزه ای مکانیسم ها، ویژگی ها، و اثرات زمین لغزش های زیردریایی را بررسی می کند.
نکات برجسته حجمی عبارتند از:
An examination of ancient and contemporary submarine landslides and their impact
Landslides are common in every subaqueous geodynamic context, from passive and active continental margins to oceanic and continental intraplate settings. They pose significant threats to both offshore and coastal areas due to their frequency, dimensions, and terminal velocity, capacity to travel great distances, and ability to generate potentially destructive tsunamis.
Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles examines the mechanisms, characteristics, and impacts of submarine landslides.
Volume highlights include:
Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles Contents List of Contributors Preface Acknowledgments Part I: Submarine Landslide Deposits in Orogenic Belts 1 Submarine Landslide Deposits in Orogenic Belts: Olistostromes and Sedimentary Mélanges 1.1. INTRODUCTION 1.2. HISTORICAL OUTLINE 1.3. SUBMARINE LANDSLIDE STUDIES: AN INTEGRATED APPROACH 1.4. ANATOMY OF SUBMARINE LANDSLIDES FROM OUTCROP PERSPECTIVE: PROCESSES AND PRODUCTS 1.5. DISTRIBUTION OF OLISTOSTROMES AND SEDIMENTARY MÉLANGES 1.6. GETTING OVER THE “SIZE” AND “PRESERVATION” PARADOXES 1.6.1. Slide to Flow Transformation 1.6.2. The Slide Volume 1.6.3. Tectonic Reworking 1.7. OLISTOSTROMES AND SEDIMENTARY MÉLANGES AS MARKERS OF GEOLOGIC EVENTS 1.8. CONCLUSIONS AND THE WAY FORWARD ACKNOWLEDGMENTS REFERENCES 2 Mass-Transport Deposits in the Foredeep Basin of the Miocene Cervarola Sandstones Formation (Northern Apennines, Italy) 2.1. INTRODUCTION 2.2. GEOLOGICAL SETTING 2.2.1. The Foredeep Units: Geometrical Relationships and Previous Interpretations 2.2.2. Tectonic Remarks 2.3. STRATIGRAPHY AND FACIES ANALYSIS OF THE CERVAROLA SANDSTONES FORMATION (CSF) 2.4. MASS‐TRANSPORT DEPOSITS WITHIN THE CERVAROLA SANDSTONES SUCCESSION 2.4.1. Extrabasinal Chaotic Units: Pievepelago and Sestola‐Vidiciatico Formations 2.4.1.1. Description 2.4.1.2. Interpretation 2.4.2. Slumps 2.4.2.1. Interpretation 2.4.3. Megabeds 2.4.3.1. Interpretation 2.5. DISCUSSION 2.6. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 3 Late Miocene Olistostrome in the Makran Accretionary Wedge (Baluchistan, SE Iran): A Short Review 3.1. INTRODUCTION: GEOLOGICAL SETTING 3.2. GEOMETRY AND INTERNAL STRUCTURE 3.2.1. Matrix Features 3.2.2. Clastic Elements 3.2.3. Clast/Matrix Relationships: Flow Direction 3.3. RELATIONSHIP WITH THE HOST SEDIMENTARY SUCCESSION 3.4. APPROXIMATE VOLUME AND COVERED AREA 3.5. UPDATED INTERPRETATIONS 3.6. CONCLUSION ACKNOWLEDGMENTS REFERENCES 4 Spatial Distribution of Mass-Transport Deposits Deduced From High‐Resolution Stratigraphy: The Pleistocene Forearc Basin (Boso Peninsula, Central Japan) 4.1. INTRODUCTION 4.2. GEOTECTONIC BACKGROUND 4.2.1. Kazusa Group on the Boso Peninsula 4.2.2. High‐Resolution Stratigraphic Framework 4.3. DISTRIBUTION AND CHARACTERISTICS OF MTDS IN THE KAZUSA GROUP 4.3.1. Type I 4.3.2. Type II 4.3.3. Type III 4.4. SUMMARY AND DISCUSSION ACKNOWLEDGMENTS REFERENCES 5 Mass‐Transport Deposits as Markers of Local Tectonism in Extensional Basins 5.1. INTRODUCTION 5.2. DATA SET AND METHODS 5.3. GEOLOGICAL SETTING 5.3.1. Ierapetra Basin, SE Crete 5.3.2. Espírito Santo Basin, SE Brazil 5.4. TYPES OF SYN‐TECTONIC MASS‐TRANSPORT DEPOSITS (MTDS) 5.4.1. Type 1: Carbonate Blocks and Breccia‐Conglomerates Showing Limited Gravitational Collapse 5.4.2. Type 2: Disrupted Blocks, Carbonate Megabreccias, and Boulder Conglomerates on Tectonically Active Slopes 5.4.3. Type 3: Blocks and Debris‐Flow Deposits (Boulder Conglomerates) Accumulated Distally From Exposed Fault Scarps 5.4.4. Type 4: Chaotic Volumes of Turbidites, Chalk, and Evaporites 5.4.5. Type 5: Steep Debris on the Foot of Large Fault Scarps 5.5. KEY MARKERS OF TECTONIC ACTIVITY 5.5.1. Thickening and Deepening of Marine Facies Toward Basin Depocenters 5.5.2. Slumping and Folding of Strata on Oversteepened Slopes 5.5.3. Kinematic Indicators of Syn‐tectonic Deformation 5.6. DISCUSSION 5.6.1. MTDs as Markers of Tectonic Movements From Seismic to Outcrop Scales 5.6.2. Relationship Among Block Size, Thickness of Basal Shear Zone, and the Physical Scale of Mass‐Wasting Events 5.7. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 6 Block Generation, Deformation, and Interaction of Mass-Transport Deposits With the Seafloor: An Outcrop‐Based Study of the Carboniferous Paganzo Basin (Cerro Bola, NW Argentina) 6.1. INTRODUCTION 6.2. GEOLOGICAL SETTING 6.3. MASS‐TRANSPORT DEPOSITS AT CERRO BOLA 6.3.1. MTD I 6.3.1.1. Interpretation 6.3.2. MTD II 6.3.2.1. Interpretation 6.3.3. MTD III 6.3.3.1. Interpretation 6.4. DISCUSSION 6.4.1. Seafloor Interaction 6.4.2. Toward a Model for Block Generation 6.5. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 7 The Carboniferous MTD Complex at La Peña Canyon, Paganzo Basin (San Juan, Argentina) 7.1. INTRODUCTION 7.2. REGIONAL SETTING 7.3. LOCAL SETTING 7.4. THE MTD COMPLEX AT LA PEÑA SECTION 7.4.1. MTD1 7.4.2. MTD2 7.4.3. MTD3 7.4.4. MTD4 7.4.5. MTD5 7.4.6. MTD6 7.5. DEPOSITIONAL MODEL 7.6. DISCUSSION AND CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 8 Mass-Transport Complexes of the Marnoso‐arenacea Foredeep Turbidite System (Northern Apennines, Italy): A Reappraisal After Twenty‐Years 8.1. INTRODUCTION 8.2. GEOLOGICAL SETTING 8.3. CASAGLIA‐MONTE DELLA COLONNA MTC: PHYSIOGRAPHY AND INTERNAL STRUCTURES 8.3.1. The Southwest to Northeast Directed Basin Plain Deposits: Casaglia Sector 8.3.2. The Southwest to Northeast Directed Basin Plain Deposits: Marradi Sector 8.3.3. Casaglia Sector, Central Zone: The North Verging Slope Deposits 8.3.4. Casaglia Sector, Central Zone: The Southwest Verging Basin Plain Deposits 8.3.5. Santerno Sector: The North Verging Basin Plain Deposits 8.4. SHEAR ZONES 8.5. DOMAINS OF INTERNAL DEFORMATION 8.6. ORIGIN OF THE DISPLACED INTRABASINAL SEDIMENTS AND MECHANISM OF TRANSLATION 8.7. CONCLUDING REMARKS ACKNOWLEDGMENTS REFERENCES 9 Fold and Thrust Systems in Mass‐Transport Deposits Around the Dead Sea Basin 9.1. INTRODUCTION AND REGIONAL SETTING OF MTDS IN THE DEAD SEA BASIN 9.2. ANALYZING REGIONAL PATTERNS OF MTD MOVEMENT AROUND THE DEAD SEA BASIN 9.3. ANALYZING STRUCTURAL SEQUENCES DURING INTERNAL EVOLUTION OF MTDS 9.3.1. Distinguishing General Structural Sequences 9.3.2. Distinguishing Detailed Thrust Sequences 9.4. ANALYZING REWORKING TRIGGERED BY MULTIPLE SEISMIC EVENTS WITHIN INDIVIDUAL MTDS 9.5. ANALYZING CONTRACTIONAL STRUCTURES THAT ARE HIDDEN ON SEISMIC IMAGES 9.6. ANALYZING THE EXTERNAL GEOMETRY OF MTDS AROUND THE DEAD SEA BASIN 9.6.1. Do Frontally Confined or Frontally Emergent Models Best Constrain the Bulk Geometry of MTDs? 9.6.2. Do Critical Taper Models Constrain the Bulk Geometry of MTDs? 9.6.3. Do Dislocation Models Constrain the Bulk Geometry of MTDs? 9.6.4. Do Models of Thrust Ramp Spacing Constrain the Bulk Geometry of MTDs? 9.7. CONCLUSIONS 9.7.1. Analyzing Regional Patterns of MTD Movement Around the Dead Sea Basin 9.7.2. Analyzing Structural Sequences During Internal Evolution of MTDs 9.7.3. Analyzing Reworking Triggered by Multiple Seismic Events Within MTDs 9.7.4. Analyzing Contractional Structures That Are Hidden on Seismic Images 9.7.5. Analyzing the External Geometry of MTDs Around the Dead Sea Basin ACKNOWLEDGMENTS REFERENCES 10 Eocene Mass-Transport Deposits in the Basque Basin (Western Pyrenees, Spain): Insights Into Mass‐Flow Transformation and Bulldozing Processes 10.1. INTRODUCTION 10.2. GEOLOGICAL SETTING 10.3. SEDIMENTOLOGY OF THE CALCICLASTIC FLYSCH AND INTERCALATED MTDS 10.3.1. MTD‐1 and MTD‐2 10.3.1.1. Description 10.3.1.2. Interpretation 10.3.2. MTD‐3 10.3.2.1. Description 10.3.2.2. Interpretation 10.3.3. MTD‐4 10.3.3.1. Description 10.3.3.2. Interpretation 10.3.4. MTD‐5 and MTD‐6 10.3.4.1. Description 10.3.4.2. Interpretation 10.4. DISCUSSION 10.4.1. Facies Model 10.4.2. Dimensions 10.4.2.1. Extent and Volume of MTDs 10.4.2.2. Topographic Relief of MTDs 10.4.3. Triggering Mechanism 10.4.4. Source Area 10.5. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 11 Neogene and Quaternary Mass-Transport Deposits From the Northern Taranaki Basin (North Island, New Zealand): Morphologies, Transportation Processes, and Depositional Controls 11.1. INTRODUCTION 11.2. GEOLOGIC SETTING OF THE NORTH TARANAKI MARGIN 11.3. OUTCROP EXAMPLES 11.3.1. Rapanui Stream 11.3.2. Tongaporutu Beach 11.4. SEISMIC EXAMPLE 11.5. DISCUSSION 11.6. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES Part II: Submarine Landslide Deposits in Current Active and Passive Margins 12 Modern Submarine Landslide Complexes: A Short Review 12.1. GENERAL CHARACTERISTICS AND PECULIARITIES 12.2. DISTRIBUTION AND CLASSIFICATION 12.3. TRIGGERS AND PRECONDITIONING FACTORS 12.4. AGE DATING: CAPABILITIES AND LIMITATIONS 12.5. CLIMATE CONTROL AND INTERPLAY 12.6. GEOHAZARD POTENTIAL AND TSUNAMIS 12.7. LONG‐TERM MONITORING 12.8. SUMMARY ACKNOWLEDGMENTS REFERENCES 13 An Atlas of Mass‐Transport Deposits in Lakes 13.1. INTRODUCTION 13.2. SELECTED CASE STUDIES OF LACUSTRINE MTDs RESULTING FROM DIFFERENT MASS‐MOVEMENT PROCESSES 13.2.1. MTDs Generated From Lateral Slope Landslides 13.2.2. MTDs Generated From Margin Collapses 13.2.3. MTDs Generated From Delta Collapses 13.2.4. MTDs Generated From Rockfalls 13.3. VERTICAL SUCCESSION OF INTERCALATED MTDs IN BASIN‐FILL SEQUENCES 13.3.1. Skilak Lake 13.3.2. Lake Como 13.3.3. Lake Fagnano 13.3.4. Lake Calafquén 13.4. DISCUSSION/CONCLUSION ACKNOWLEDGMENTS REFERENCES 14 Style and Morphometry of Mass-Transport Deposits Across the Espírito Santo Basin (Offshore SE Brazil) 14.1. INTRODUCTION 14.2. GEOLOGICAL SETTING OF THE ESPÍRITO SANTO BASIN 14.2.1. Seismic Stratigraphy of the Espírito Santo Basin 14.3. DATA AND METHODS 14.4. CHARACTER OF MASS‐TRANSPORT DEPOSITS ACROSS THE ESPÍRITO SANTO SLOPE 14.4.1. Zone 1: Proximal to Transitional Domains 14.4.2. Zone 2: Transitional Domain 14.4.3. Zone 3: Distal Compressional Domain 14.5. INFLUENCE OF SALT TECTONICS ON THE EVOLUTION OF THE ESPÍRITO SANTO BASIN MTDs THROUGH SPACE AND TIME 14.5.1. Unit 1 MTDs 14.5.2. Unit 2 MTDs 14.5.3. Unit 3 MTDs 14.5.4. MTDs in the ESB: Do They Fit Known MTD Classifications? 14.6. CONCLUSIONS ACKNOWLEDGEMENTS REFERENCES 15 Submarine Landslides on the Nankai Trough Accretionary Prism (Offshore Central Japan) 15.1. INTRODUCTION 15.2. GEOLOGIC AND TECTONIC SETTING 15.3. DATA AND METHODS 15.4. NANKAI ACCRETIONARY PRISM SUBMARINE LANDSLIDES 15.4.1. Prism Toe (Frontal Thrust) 15.4.2. Outer Prism 15.4.3. Forearc Basin 15.5. DISCUSSION ACKNOWLEDGMENTS REFERENCES 16 Seismic Examples of Composite Slope Failures (Offshore North West Shelf, Australia) 16.1. INTRODUCTION 16.1.1. Rationale 16.1.2. Regional Outlook 16.1.3. Stratigraphy 16.2. MATERIALS AND METHODS 16.3. OVERVIEW OF SLOPE FAILURES IN THE EXMOUTH PLATEAU ARCH 16.4. THEBE COMPLEX 16.4.1. Headwall Slumps 16.4.2. Central Slide 16.4.3. Secondary Slide 16.5. CENTAUR COMPLEX 16.5.1. Overview 16.5.2. Headwall Salients 16.5.3. Internal Architecture 16.6. MECHANISMS FOR GENERATION OF COMPOSITE FAILURES 16.6.1. Collapse of the Frontal Part of Failures 16.6.2. Headscarp Retrogression 16.7. TRIGGERING MECHANISMS 16.7.1. Seismic Activity 16.7.2. Wave Loading and Dissociation of Gas Hydrates 16.7.3. Bottom Currents 16.7.4. High Sedimentation Rate 16.7.5. Fluid Seepage and Migration 16.7.6. Slope Steepening 16.8. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 17 Submarine Landslides Around Volcanic Islands: A Review of What Can Be Learned From the Lesser Antilles Arc 17.1. INTRODUCTION 17.2. PREVIOUS WORK ON THE LESSER ANTILLES ARC 17.3. IODP EXPEDITION 340 17.4. NEW MODEL OF LANDSLIDE GENERATION OFFSHORE THE LESSER ANTILLES ARC 17.4.1. Two Different Instability Processes 17.4.2. Décollement Propagation From Debris Avalanche Deposit Loading 17.4.3. Evolution of the Montagne Pelée Volcano Through the Landslide Processes (Martinique) 17.5. IMPLICATIONS ON THE EMPLACEMENT MECHANISMS OF THE LANDSLIDE DEPOSITS 17.5.1. Debris Avalanches 17.5.2. Seafloor Sediment Failures Triggered by Debris Avalanche Loading 17.6. IMPLICATIONS FOR TSUNAMI HAZARDS 17.7. COMPARISON WITH SUBMARINE LANDSLIDES AROUND OTHER VOLCANIC ISLANDS ACKNOWLEDGMENTS 17.A: IODP 340 EXPEDITION SCIENTISTS REFERENCES 18 Submarine Landslides in an Upwelling System: Climatically Controlled Preconditioning of the Cap Blanc Slide Complex (Offshore NW Africa) 18.1. INTRODUCTION 18.1.1. Oceanography and Climate of the Cap Blanc Slide Area 18.2. METHODS AND DATA 18.2.1. Acoustic Data 18.2.2. ODP Site 658 Core Data 18.2.3. Core‐Seismic Integration 18.3. THE CAP BLANC SLIDE COMPLEX 18.3.1. Seafloor Morphology in the Slide Complex 18.3.2. Slides at the Ridge Toe 18.3.3. Slides at the Northern Ridge Flank 18.4. STRATIGRAPHY OF THE CAP BLANC SLIDE COMPLEX 18.4.1. Core‐Seismic Integration and Reflector Ages 18.4.2. Landslide Ages and Errors 18.5. SEDIMENTOLOGY OF REFLECTORS AND FAILURE PLANES 18.6. DISCUSSION 18.6.1. Timing of Landslides in the Cap Blanc Slide Complex 18.6.2. Preconditioning and Triggers in the Cap Blanc Slide Complex 18.7. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 19 Submarine Landslides Along the Mixed Siliciclastic-Carbonate Margin of the Great Barrier Reef (Offshore Australia) 19.1. INTRODUCTION 19.2. REGIONAL SETTING 19.2.1. Depositional History 19.2.2. Modern Physiography and Sediment Distribution 19.3. METHODS 19.3.1. Data Sets and Analysis 19.3.2. Tsunami Modeling 19.3.2.1. A Note on Bottom Friction 19.4. RESULTS 19.4.1. Ribbon Reef Slide (RRS) 19.4.1.1. Overview 19.4.1.2. Slope Morphology 19.4.1.3. Source Area 19.4.1.4. Depositional Area 19.4.2. Gloria Knolls Slide (GKS) 19.4.2.1. Overview 19.4.2.2. Slope Morphology 19.4.2.3. Source Area 19.4.2.4. Depositional Area 19.4.3. Bowl Slide (BS) 19.4.3.1. Overview 19.4.3.2. Slope Morphology 19.4.3.3. Source Area 19.4.3.4. Depositional Area 19.4.4. Viper Slide (VS) 19.4.4.1. Overview 19.4.4.2. Slope Morphology 19.4.4.3. Source Area 19.4.4.4. Depositional Area 19.4.5. Tsunami Modeling of the Gloria Knolls Slide 19.5. DISCUSSION 19.5.1. Timing of the Mass Movements 19.5.2. Type of Mass Movements 19.5.3. Possible Preconditioning Factors and Triggers for Slope Instability in the GBR 19.5.4. Tsunami Capacity of the Gloria Knolls Slide 19.5.4.1. Model Limitations 19.6. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES 20 Submarine Landslides on the Seafloor: Hints on Subaqueous Mass‐Transport Processes From the Italian Continental Margins (Adriatic and Tyrrhenian Seas, Offshore Italy) 20.1. INTRODUCTION 20.2. SOUTHWESTERN ADRIATIC SEA 20.2.1. Northern SWAM: Vieste Slide MTC 20.2.2. Central SWAM: Gondola MTC 20.2.3. Bari Canyon Area MTC 20.3. SOUTHEASTERN TYRRHENIAN SEA 20.3.1. Gioia Basin MTC 20.3.2. Capo d’Orlando Basin MTC 20.4. DISCUSSION 20.4.1. Detached Ridges 20.4.2. Blocks 20.4.3. Contractional Features 20.4.4. Barely Deformed Bodies 20.4.5. Matrix‐Rich Debris Flows 20.5. CONCLUSIONS ACKNOWLEDGMENTS REFERENCES Index