دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: V. K. B. Kota
سری:
ISBN (شابک) : 9811536023, 9789811536021
ناشر: Springer Nature
سال نشر: 2020
تعداد صفحات: 297
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Su3 Symmetry in Atomic Nuclei به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تقارن Su3 در هسته اتمی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بررسی قابلتوجهی از نمایشهای SU(3)، SU(3) Wignerجبر Racah و SU(3) ارائه میکند؟ اپراتورهای مبتنی بر یکپارچگی SO(3) که اغلب به عنوان دشوار است و اکثر فیزیکدانان هسته ای از آنها اجتناب می کنند. این کتاب با توضیح جبرهای گروهی که در سیستمهای فیزیکی خاص کاربرد دارند و بحث در مورد کاربردهای فیزیکی آنها، منبع مفیدی برای محققان فیزیک هستهای است. در عین حال، به تجربیگران کمک میکند تا دادههای هستههای چرخشی را با استفاده از تقارن SU(3) که در انواع مدلهای هستهای، مانند مدل پوسته، مدل شبه SU(3)، مدل پروکسی-SU(3) ظاهر میشود، تفسیر کنند. مدل Sp(6, R)، مدلهای مختلف بوزون برهمکنش، مدلهای فرمیون بوزون برهمکنش مختلف و مدلهای خوشهای. علاوه بر ارائه نتایج حاصل از تمام این مدلها، این کتاب همچنین انواع نتایج آماری را که از تقارن SU(3) ناشی میشوند، توصیف میکند.
This book provides an understandable review of SU(3) representations, SU(3) WignerRacah algebra and the SU(3) ? SO(3) integrity basis operators, which are often considered to be difficult and are avoided by most nuclear physicists. Explaining group algebras that apply to specific physical systems and discussing their physical applications, the book is a useful resource for researchers in nuclear physics. At the same time it helps experimentalists to interpret data on rotational nuclei by using SU(3) symmetry that appears in a variety of nuclear models, such as the shell model, pseudo-SU(3) model, proxy-SU(3) model, symplectic Sp(6, R) model, various interacting boson models, various interacting bosonfermion models, and cluster models. In addition to presenting the results from all these models, the book also describes a variety of statistical results that follow from the SU(3) symmetry.
Preface Contents About the Author 1 Introduction References 2 SU(3) Algebra in Nuclei: Preliminaries 2.1 Introduction 2.2 SU(3) supsetSO(3) supsetSO(2) Algebra: Quadrupole Operator 2.3 SU(3) supset[SU(2) supsetSO(2)] otimesU(1) Algebra 2.4 SU(3) Irreps (λµ) 2.4.1 Young Tableaux 2.4.2 Kronecker Products of SU(3) Irreps 2.4.3 Dimension of (λµ) Irreps 2.4.4 Leading SU(3) Irrep in U((η+1)(η+2)/2) 2.5 SU(3) Quadratic and Cubic Casimir Operators 2.6 SU(3) supsetSO(3) supsetSO(2) States: K Label 2.7 SU(3) supsetSU(2) otimesU(1) States 2.8 Preliminary Applications of SU(3) Symmetry 2.8.1 SU(3) in Shell Model 2.8.2 SU(3) in Interacting Boson Model 2.9 SU(3) in Particle Physics 2.10 Summary References 3 SU(3) Wigner–Racah Algebra I 3.1 Introduction 3.2 SU(3) Irreps for Many-Particle Systems 3.2.1 Plethysm Method 3.2.2 Recursion Method 3.2.3 Difference Method 3.2.4 Method for Obtaining a Few Lower SU(3) Irreps 3.3 SU(3) Wigner and Racah Coefficients 3.3.1 SU(3) supsetSU(2) otimesU(1) Reduced Wigner Coefficients 3.3.2 SU(3) supsetSO(3) Reduced Wigner Coefficients 3.3.3 SU(3) Racah or U- and Z- Coefficients 3.4 Building Up Principle and General Comments 3.5 Summary References 4 SU(3) Wigner–Racah Algebra II 4.1 Introduction 4.2 SU(3) Tensorial Decomposition and Wigner–Eckart Theorem 4.2.1 Examples from sd and sdgIBM 4.2.2 Shell Model Two-Body Interactions 4.2.3 Analytical Results for Electric Quadrupole Transition Strengths 4.3 SU(3) Fractional Parentage Coefficients 4.3.1 Construction of SU(3) Intrinsic States: IBM Examples 4.3.2 SU(3) Intrinsic States: Fermion Examples 4.3.3 Triple Barred SU(3) Reduced Matrix Elements 4.4 9-SU(3) Coefficients 4.5 SU(3) D-Functions 4.6 Summary References 5 SU(3) supsetSO(3) Integrity Basis Operators 5.1 Introduction 5.2 X3 and X4 Operators and Their Matrix Elements 5.3 Shape Parameters and (λµ) Irreps Correspondence 5.4 Integrity Basis Hamiltonian and Asymmetric Rotor 5.5 K Quantum Number from X3 and X4 Operators 5.6 Extension to KJ Quantum Number 5.7 Summary References 6 SU(3) in Shell Model Based Approaches and Their Applications 6.1 Introduction 6.2 Pseudo SU(3) Model with Pseudo-spin 6.2.1 Mapping of Operators to Pseudo-(tildeell tildes) Basis 6.2.2 Basic Results from Pseudo-spin and Pseudo-Nilsson Orbits 6.2.3 Spectroscopy with Pseudo-SU(3) Symmetry 6.3 Proxy-SU(3) Model 6.3.1 Prolate Dominance over Oblate Shape 6.3.2 Results for the Deformation Parameters (β, γ) and B(E2)\'s 6.4 Sp(6,R) Model with SU(3) Subalgebra 6.4.1 SU(3) Limit of Sp(6,R) 6.5 Fermion Dynamical Symmetry Model with SU(3) Limit 6.5.1 i- Active and k- Active Schemes 6.5.2 Fermion Dynamical Symmetry Model 6.6 Summary References 7 SU(3) in Interacting Boson Models 7.1 Introduction 7.2 SU(3) in sdgIBM 7.2.1 SUsd(3) times1g Limit 7.2.2 SUsdg(3) Limit 7.2.3 ΔL=4 Staggering in sdgIBM 7.3 SU(3) in sdpfIBM 7.3.1 Introduction 7.3.2 Dynamical Symmetries of sdpfIBM and the SU(3) Limit 7.3.3 Analytical Results for E1 Transitions in SUsd(3) oplusSUpf(3) Limit 7.4 SU(3) in Proton–Neutron IBM (IBM-2) 7.4.1 SU(3) in pn-sdIBM 7.4.2 SU(3) in pn-sdgIBM 7.5 SU(3) in IBM-3 and IBM-4 Models 7.5.1 SU(3) Limit of IBM-3 7.5.2 SU(3) Limit of IBM-4 7.6 Summary References 8 SU(3) in Interacting Boson–Fermion Models 8.1 Introduction 8.2 SU(3) timesj Limit of IBFM for Odd-A Nuclei 8.3 SUBF(3) Limit of IBFM for Odd-A Nuclei 8.3.1 Nilsson Correspondence I 8.3.2 Nilsson Correspondence II 8.3.3 Application to E2 Transition Strengths: 187Os Example 8.3.4 Application to M1 Transition Strengths: 185Re Example 8.3.5 Single Nucleon Transfer: 185W Example 8.4 SU(3) in IBFFM for Odd–Odd Nuclei 8.4.1 SUBF(3) otimesU(2j+1) Limit: 186Re Example 8.4.2 SUBFF(3) Limit : 190Ir Example 8.5 SU(3) in IBF2M for 2 Quasi-particle Excitations 8.6 SU(3) in sdgIBFM-2 and M1 Distributions 8.7 Summary References 9 Extended Applications of SU(3) 9.1 Introduction 9.2 Phase Transitions with SU(3) 9.2.1 U(5) to SU(3) Transition 9.2.2 Example of an Analytically Solvable QPT 9.2.3 Critical Point X(5) Symmetry for U(5) rightarrowSU(3) Transition 9.3 Partial SU(3) Dynamical Symmetry 9.4 SU(3) for Removal of Spurious c.m. States 9.5 SU(3) for Clustering in Nuclei 9.5.1 Nuclear Vibron Model 9.5.2 Semi-microscopic Algebraic Cluster Model with SU(3) 9.6 SU(3) in No-Core Shell Model 9.6.1 Symmetry Adopted SU(3) Based No-Core Shell Model (SA-NCSM) 9.6.2 No-Core Symplectic Shell Model (NCSpM) 9.7 Summary References 10 Statistical Nuclear Physics with SU(3) 10.1 Introduction 10.2 Preliminaries of Statistical Spectroscopy 10.2.1 Averages, Traces, State Densities, and Partial Densities 10.2.2 General Principles of Trace Propagation 10.3 SU(3) Energy Centroids and Goodness of SU(3) Symmetry 10.3.1 (2s1d) Shell Model Example 10.3.2 Sp(6,R) supsetSU(3) Example 10.4 Application of SU(3) Energy Centroids: Regularities with Random Interactions 10.4.1 Regular Structures from Random Interactions: sdpfIBM Example 10.4.2 Regular Structures from Random Interactions: sdIBM-T Example 10.5 Partition Functions and Level Density Enhancement in Deformed Nuclei with SU(3) 10.6 Statistical Group Theory for SU(3) Multiplicities 10.7 Example of a Random Matrix Ensemble with SU(3) Symmetry 10.7.1 Definition of EGUE(2)-SU(3) Ensemble 10.7.2 Basic Formulation for Analytical Treatment of EGUE(2)-SU(3) 10.7.3 Results for Lower Order Moments of One- and Two-Point Functions 10.8 Summary References 11 Multiple SU(3) Algebras in Interacting Boson Model and Shell Model 11.1 Introduction 11.2 Four SU(3) Algebras in sdgIBM: Results for Quadrupole Properties 11.2.1 Structure of Intrinsic States 11.2.2 Large-N Limit Results for Quadrupole Moments and B(E2)\'s 11.3 Eight SU(3) Algebras in sdgiIBM: Results for Quadrupole Properties 11.4 Multiple SU(3) Algebras in Shell Model 11.4.1 (sdg)6p,2n Example 11.4.2 (sdgi)6p Example 11.5 Summary References 12 Summary and Future Outlook References Appendix A Angular Momentum Algebra Appendix B Elements of U(n) Lie Algebra and Its Subalgebras Appendix C Asymptotic Nilsson Wavefunctions Appendix D Correspondence Between SUBF2(3) Irreps and 2 q.p. Nilsson Configurations for η= 3 Shell Appendix E Bivariate Moments, Cumulants, and Edgeworth Expansion Appendix References