دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [7 ed.] نویسندگان: Colin G. Scanes (editor), Sami Dridi (editor) سری: ISBN (شابک) : 0128197706, 9780128197707 ناشر: Academic Press سال نشر: 2021 تعداد صفحات: 1440 [1458] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 38 Mb
در صورت تبدیل فایل کتاب Sturkie's Avian Physiology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیولوژی پرندگان استورکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فیزیولوژی پرندگان استورکی، ویرایش هفتم، یک جلد کلاسیک، جامع و واحد در مورد فیزیولوژی پرندگان اهلی و وحشی است. این آخرین نسخه به طور کامل با چندین فصل جدید با محتوای کاملاً جدید در موضوعاتی مانند بینایی، چشایی حسی، دریافت درد، تکامل و اهلیسازی بازبینی و به روز شده است. به دلیل پیشرفتهای بسیاری که اخیراً در این زمینه صورت گرفته است، فصلها در سراسر جهان بسیار گسترش یافتهاند. این کتاب توسط متخصصان بین المللی در زمینه های مختلف فیزیولوژی پرندگان نوشته شده است. برای خواندن و جستجوی آسان، این کتاب تحت مجموعهای از مضامین تنظیم شده است که با مطالعات ژنومی، زیستشناسی حسی و سیستمهای عصبی و اندامهای اصلی شروع میشود. این کتاب منبع مهمی برای پرنده شناسان، دانشمندان طیور و سایر محققان در مطالعات طیور است. همچنین برای دانشجویان فیزیولوژی طیور یا طیور و همچنین دامپزشکان پرندگان مفید است. به عنوان تنها مجلد اختصاص داده شده به فیزیولوژی پرندگان با ویژگی های به روز رسانی، تجدید نظر یا اضافات در هر فصل برجسته است که توسط رهبران بین المللی در مطالعات پرندگان نوشته و ویرایش شده است.
Sturkie\'s Avian Physiology, Seventh Edition is the classic, comprehensive, single volume on the physiology of domestic and wild birds. This latest edition is thoroughly revised and updated with several new chapters with entirely new content on such topics as vision, sensory taste, pain reception, evolution and domestication. Chapters throughout have been greatly expanded due to the many recent advances in the field. This book is written by international experts in different aspects of avian physiology. For easy reading and searches, the book is structured under a series of themes, beginning with genomic studies, sensory biology and nervous systems, and major organs. This book is an important resource for ornithologists, poultry scientists, and other researchers in avian studies. It is also useful for students in avian or poultry physiology, as well as avian veterinarians. Stands out as the only single volume devoted to bird physiology Features updates, revisions or additions to each chapter Written and edited by international leaders in avian studies
Sturkie’s Avian Physiology Copyright Dedication Contributors 1. The importance of avian physiology 1.1 Specific examples of the importance of avian physiology 1.1.1 Physiology and poultry production 1.1.2 Physiological ecology and birds, marine, freshwater, and terrestrial 1.2 Conclusions References 2. Avian genomics 2.1 Introduction 2.2 Genome 2.2.1 Size 2.2.2 Karyotype 2.3 Genome assemblies 2.3.1 Chicken legacy genomes 2.3.2 Future chicken genome assembly 2.3.3 Genes 2.3.4 Transposons and endogenous viral elements 2.3.5 Genome browsers 2.4 Connecting genome sequence to phenotype 2.4.1 Connecting genotype to phenotype 2.4.2 Genome wide association study 2.4.3 Resequencing 2.4.4 Annotation 2.4.5 CRISPR 2.5 Conclusions References 3. Transcriptomic analysis of physiological systems 3.1 Introduction 3.2 Early efforts 3.3 Nervous system 3.4 Endocrine system 3.5 Reproductive system 3.6 Immune system 3.7 Muscle, liver, adipose, and gastrointestinal tissues 3.8 Cardiovascular system 3.9 Hurdles and future developments References 4. Avian proteomics 4.1 Introduction 4.2 Protein identification and analysis 4.2.1 Historical to current techniques 4.3 Quantitative proteomics 4.4 Structural proteomics 4.5 Application of proteomics in avian research 4.5.1 Proteomics of egg physiology, embryonic development, and reproduction 4.5.2 Proteomics of behavior and plumage 4.5.3 Proteomics of performance and physiology 4.5.4 Proteomics of disease, myopathy, and infection 4.5.4.1 Disease proteomics 4.5.4.2 Proteomics of muscle myopathy 4.5.4.3 Proteomics of infections 4.5.5 Proteomics of avian welfare 4.6 Conclusions References Further reading 5. Avian metabolomics 5.1 Introduction to metabolomics 5.2 Methods of metabolomics 5.2.1 Instrumentation 5.2.1.1 Nuclear magnetic resonance spectroscopy 5.2.1.2 Mass spectrometry 5.2.1.2.1 Separation 5.2.1.2.2 Identification—targeted versus untargeted mass spectrometric analysis 5.2.1.2.3 Data processing 5.2.2 Data analysis and interpretation 5.3 Applications of metabolomics to avian physiology 5.3.1 Growth and efficiency 5.3.2 Consequences of selection 5.3.2.1 Accretion of excess body fat 5.3.2.2 Muscle myopathies 5.3.2.3 Ascites syndrome 5.3.2.4 Heat stress/stress 5.3.3 Mechanisms of antibiotic growth promoters 5.3.4 Toxicology 5.4 Conclusions References 6. Mitochondrial physiology—Sturkie's book chapter 6.1 Overview of mitochondria 6.1.1 Introduction 6.1.2 Physical description 6.1.3 Mitochondrial and nuclear DNA interaction for assembly and function 6.1.4 The respiratory chain and adenosine triphosphate synthesis 6.1.4.1 Ubiquinone (coenzyme Q) 6.1.4.2 Cardiolipin 6.1.5 Assessing mitochondrial function 6.1.5.1 Polarographic method 6.1.5.2 Flux analysis 6.1.6 Mitochondrial role in apoptosis 6.2 Mitochondrial inefficiencies, oxidative stress, and antioxidants 6.2.1 Electron transport defects and oxidative stress 6.2.1.1 Reactive oxygen species 6.2.1.2 Identification of site-specific defects in electron transport 6.2.1.3 Nitric oxide and reactive nitrogen species 6.2.1.4 DNA damage and respiratory chain complex activities 6.2.1.5 Specific protein targets of mitochondrial reactive oxygen species 6.2.1.6 Mitochondrial reactive oxygen species generation in avian species 6.2.2 Mitochondrial uncoupling and attenuation of oxidative stress 6.2.3 Antioxidants 6.3 Signal transduction and reverse electron transport 6.3.1 Low mitochondrial reactive oxygen species levels 6.3.2 Cellular nutrient utilization 6.3.3 Macrophage function 6.3.4 Ischemia-reperfusion injury 6.3.5 Muscle differentiation 6.3.6 Aging and longevity 6.4 Matching energy production to energy need 6.4.1 Mitochondrial dynamics 6.4.2 Mitochondrial biogenesis 6.4.3 Adenosine monophosphate–activated protein kinase 6.4.4 Sirtuins Acknowledgments References 7. Evolution of birds 7.1 Introduction 7.2 The dinosaur–bird transition 7.2.1 Theropod dinosaurs 7.2.2 Feathers first 7.2.3 Taking wing 7.2.4 Archaeopteryx, the first bird? 7.2.5 Flight in Archaeopteryx 7.3 The Mesozoic avifauna 7.3.1 Basal birds 7.3.2 Enantiornithes: the opposite birds 7.3.3 Cretaceous Ornithuromorpha: forerunners of modern birds 7.4 Assembling the modern bird 7.4.1 Freeing the tail for flight 7.4.2 Perfecting the wing 7.4.3 Neuroanatomy 7.4.4 Respiration and vocalization 7.4.5 Teeth and beaks 7.4.6 Digestive system 7.5 Reproduction and development 7.5.1 Sexual dimorphism 7.5.2 Eggs 7.5.3 Nesting 7.5.4 Development and growth 7.6 The rise of modern birds 7.6.1 The shallow Cretaceous roots of crown birds 7.6.2 Survival and extinction 7.6.3 An explosive Paleogene radiation 7.7 The shape of modern bird diversity 7.7.1 Palaeognathae 7.7.2 Galloanserae 7.7.3 Neoaves 7.8 The impact of humans on birds Acknowledgments References 8. Domestication of poultry 8.1 Introduction 8.2 Domestication 8.2.1 Chickens 8.2.2 Turkeys 8.2.3 Ducks 8.2.4 Geese 8.2.5 Other domesticated birds 8.3 Conclusions References 9. The avian somatosensory system: a comparative view 9.1 Introduction 9.2 Body somatosensory primary afferent projections in different species 9.2.1 Spinal cord 9.2.2 Brainstem 9.3 Ascending projections of the dorsal column nuclei 9.4 Telencephalic projections of thalamic nuclei receiving somatosensory input 9.5 Somatosensory primary afferent projections from the beak, tongue, and syrinx to the trigeminal column 9.5.1 The principal sensory trigeminal nucleus 9.5.2 Nucleus of the descending trigeminal tract 9.6 Nucleus basorostralis 9.7 The meeting of the spinal and trigeminal systems 9.8 The somatosensorimotor system in birds 9.9 Somatosensory projections to the cerebellum 9.10 Magnetoreception and the trigeminal system 9.11 Summary and conclusions References 10. Avian vision 10.1 Introduction 10.2 What vision does? 10.3 Variations in avian vision 10.4 Variations in eyes 10.5 Bird eyes: function, structure, and variations 10.5.1 The optical system 10.5.1.1 Variation in the optical systems of bird eyes 10.5.2 Vision under water 10.5.3 The image analysis system 10.5.3.1 Photoreceptors and visual pigments 10.5.3.2 Variation in the image analysis systems of bird eyes 10.5.3.3 Variation in the distribution of receptor types 10.5.3.4 Variation in the densities of receptor types 10.6 The visual fields of birds 10.7 Spatial resolution in birds 10.8 Contrast sensitivity 10.9 Closing remarks References 11. Avian hearing 11.1 Introduction: what do birds hear? 11.2 Outer and middle ear 11.2.1 No specialized outer ear structures except in owls 11.2.2 The single-ossicle middle ear 11.2.3 Internally coupled middle ears 11.3 Basilar papilla (cochlea) 11.3.1 General morphology and physiology 11.3.2 Hair cell types: a remarkable example of evolutionary convergence in birds and mammals 11.3.3 Hair cell regeneration: birds never lose their hearing 11.3.4 Cochlear specializations: auditory foveae, infrasound hearing 11.3.5 Auditory nerve: what the ear conveys to the brain 11.4 The auditory brain 11.4.1 Basic organization of auditory pathways 11.4.2 The generation of an auditory space map in the barn owl 11.4.3 Developmental plasticity: auditory space is calibrated by vision 11.4.4 The special processing of birdsong 11.4.5 Echolocating birds 11.5 Summary References 12. Chemesthesis and olfaction 12.1 Chemical senses 12.2 Chemesthesis 12.3 Neural organization 12.3.1 Peptides involved in pain perception 12.3.2 Responses to chemicals 12.3.3 Structure-activity relationships 12.3.4 Transient receptor potential channels 12.4 Olfaction 12.4.1 Olfactory morphology, neural architecture, and transduction of chemical signals 12.4.2 Olfactory bulb size, olfactory acuity, and genomics of olfactory receptors 12.4.3 Laboratory detection thresholds, discrimination, and seasonal change 12.4.4 Odor detection during development 12.4.5 How do birds use olfactory cues? 12.5 Summary References 13. Taste in birds 13.1 Introduction 13.1.1 What is taste? 13.1.2 Taste perception 13.1.2.1 Role of taste 13.1.2.2 The five taste modalities 13.1.3 Anatomy of taste buds 13.1.3.1 Taste buds 13.1.3.2 Morphology 13.1.3.3 Types of taste buds 13.1.3.4 Taste buds markers in chickens 13.1.3.5 Taste bud number and distribution 13.1.3.5.1 Distribution in different vertebrates 13.1.3.5.2 Distribution in birds 13.1.3.6 Afferent nerves from the taste buds 13.1.3.7 Changes in taste buds during growth and development 13.1.4 Taste receptors 13.1.4.1 Overview 13.1.4.2 Caveat on taste receptors 13.1.4.3 Taste receptor type 1 receptors (tas1r family) 13.1.5 Sweet taste 13.1.5.1 Overview 13.1.5.2 Sweet preferences in birds 13.1.5.3 The sweet dilemma 13.1.5.4 Evolutionary considerations of Tas1r2 13.1.6 Umami taste 13.1.6.1 Overview 13.1.6.2 Umami preference test in birds 13.1.7 Taste receptor type 2 receptors 13.1.8 GPCRs' taste signal transduction 13.1.8.1 Overview 13.1.8.2 Sequencing of taste receptor type 2 receptors (TAS2R) in birds 13.1.8.2.1 TAS2R1 and TAS2R2 13.1.8.2.2 Other TAS2R genes 13.1.8.2.3 Evolutionary aspects of taste receptor type 2 receptors 13.1.9 Bitter taste 13.1.9.1 Overview 13.1.9.2 Agonists of bitter receptors (TAS2R) 13.1.9.3 Ecological influence on bitter taste 13.1.10 Salt and sour taste 13.1.10.1 Salt taste receptor in birds 13.1.10.2 Salty preferences tests 13.1.10.3 Sour taste receptor in birds 13.1.10.4 Sour preferences tests 13.1.11 Fatty acid taste 13.1.12 Extra gustatory taste in birds 13.1.12.1 Overview 13.1.12.2 Gene expression of taste receptors and signaling molecules in extra-gustatory tissues in chicken 13.1.12.3 Effect of tastants on gene expression 13.1.13 Measuring taste perception in birds: aversion or preference testing 13.1.13.1 Methods for taste perception tests 13.1.13.2 Preference tests in birds 13.1.13.3 In vivo versus in vitro thresholds 13.1.14 Conclusions References 14. Avian nociception and pain 14.1 Introduction 14.1.1 What is pain and what is it for? 14.1.2 Why does pain matter? 14.2 What evidence is required to demonstrate the capacity for pain? 14.2.1 What is needed for nociception? 14.2.1.1 Transduction, transmission, and modulation of nociceptive information 14.2.1.2 Nocifensive responses 14.2.2 What is needed for pain? 14.2.2.1 Higher brain processing of nociceptive inputs 14.2.2.2 Complex behavioral responses 14.3 Conclusions References 15. Magnetoreception in birds and its use for long-distance migration 15.1 Introduction 15.2 Magnetic fields 15.3 The Earth's magnetic field 15.4 Changing magnetic fields for experimental purposes 15.5 Birds use information from the Earth's magnetic field for various behaviors 15.5.1 Orientation and navigation 15.6 The magnetic compass of birds 15.7 Do birds possess a magnetic map? 15.8 Interactions with other cues 15.9 How do birds sense the Earth's magnetic field? 15.10 The induction hypothesis 15.11 The magnetic-particle–based hypothesis 15.12 The light-dependent hypothesis 15.13 Irreproducible results and the urgent need for independent replication 15.14 Where do we go from here? References 16. The avian subpallium and autonomic nervous system 16.1 Introduction 16.2 Components of the subpallium 16.2.1 Dorsal somatomotor basal ganglia 16.2.1.1 Structures 16.2.1.2 Functions 16.2.2 Ventral viscerolimbic basal ganglia 16.2.2.1 Structures 16.2.2.2 Functions 16.2.3 Extended amygdaloid complex: central extended amygdala and medial extended amygdala 16.2.3.1 Central extended amygdala 16.2.3.1.1 Structures 16.2.3.1.2 Functions 16.2.3.2 Medial extended amygdala 16.2.3.2.1 Structures 16.2.3.2.2 Functions 16.2.4 Basal telencephalic cholinergic and noncholinergic corticopetal system 16.2.4.1 Structures 16.2.4.2 Functions 16.2.5 Septum and septal neuroendocrine systems 16.2.5.1 Divisions and structures 16.2.5.1.1 Lateral septal division 16.2.5.1.2 Medial septal division 16.2.5.1.3 Septohippocampal septal division 16.2.5.1.4 Caudocentral septal division 16.2.5.2 Functions 16.2.5.2.1 Septal-hypothalamic-pituitary-gonadal neuroendocrine system 16.2.5.2.2 Septal-hypothalamic-pituitary-adrenal neuroendocrine system 16.2.5.2.3 Other functions related to structures within the septum 16.2.6 Preoptic area 16.2.6.1 Structures 16.2.6.2 Functions 16.3 Components of the autonomic nervous system 16.3.1 Sympathetic nervous system 16.3.2 Parasympathetic nervous system 16.4 Integration of the subpallium and ANS in complex neural circuits in birds: two examples involving vasoactive intestinal pol ... 16.4.1 The social behavior network 16.4.2 Poikilostasis or shifts in homeostasis: an hypothesis involving the visceral forebrain system 16.4.2.1 Regulation of annual cycles of avian species 16.4.2.2 Some current metabolic and behavioral issues with breeding stock of broilers and turkeys 16.5 Summary and conclusions Acknowledgments References Further reading 17. Blood 17.1 Introduction 17.2 Plasma 17.2.1 Circulating electrolytes 17.2.2 Circulating nutrients and other small organic molecules 17.2.2.1 Plasma concentrations of glucose 17.2.2.2 Plasma concentrations of fatty acids 17.2.2.3 Plasma concentrations of lactate 17.2.2.4 Uric acid and urea 17.2.2.5 Circulating antioxidants 17.2.2.6 Carotenoids 17.2.3 Plasma proteins 17.2.3.1 Extracellular fluid 17.2.3.2 Albumin 17.2.3.3 Globulins 17.2.3.4 Specific proteins including vitamin and cation binding proteins 17.2.3.4.1 Ceruloplasmin 17.2.3.4.2 Retinol-binding protein 17.2.3.4.3 Transferrin 17.2.3.4.4 Proteins protecting against tissue damage from hemoglobin 17.2.3.4.5 Hormone binding proteins 17.2.3.4.6 Sex hormone–binding protein 17.2.3.4.7 Thyroid hormones/transthyretin 17.2.3.4.8 Transcortin (corticosteroid bonding globulin) 17.2.3.5 Gamma globulins 17.2.3.6 Enzymes 17.2.3.7 Yolk precursors 17.3 Erythrocytes 17.3.1 Structure of the erythrocyte 17.3.1.1 Nucleus 17.3.1.2 Plasma and nuclear membranes 17.3.1.2.1 Lipid composition 17.3.1.2.2 Carbohydrates in the erythrocyte plasma membrane 17.3.1.2.3 Proteins in the erythrocyte plasma membrane 17.3.1.3 Microtubules 17.3.1.4 Mitochondria 17.3.2 Erythrocyte chromatin and transcription 17.3.2.1 Transcription and translation 17.3.2.2 Stress and erythrocyte DNA 17.3.2.3 Telomeres 17.3.3 Metabolism of erythrocytes 17.3.3.1 Mitochondrial functioning in avian erythrocytes 17.3.3.2 Enzymes in erythrocytes 17.3.4 Number of avian erythrocytes and packed cell volume 17.3.5 Production 17.3.6 Erythropoietin 17.3.7 Lifespan 17.3.8 Hemoglobin 17.3.8.1 Hemoglobin genes 17.3.8.2 Adaptations of hemoglobin to flight at high altitudes 17.3.8.3 Glycation of hemoglobin 17.3.8.4 Hemoglobin and nutrition 17.3.9 Carbonic anhydrase 17.3.9.1 Intracellular pH 17.3.10 Transporters in erythrocyte plasma membrane 17.3.10.1 Anion transporter 17.3.10.2 Sodium and potassium transport 17.3.11 Glucose 17.3.11.1 Amino acids and urea 17.3.12 Hormonal effect on erythrocytes 17.3.13 Effect of stressors of erythrocytes 17.3.14 Avian erythrocytes and the innate immune system 17.4 Blood gases 17.5 Leukocytes 17.5.1 Number of leukocytes 17.5.2 Heterophils 17.5.2.1 Structure 17.5.2.2 Function 17.5.2.2.1 Heterophils and phagocytosis 17.5.2.2.2 Heterophils and cytokines 17.5.2.2.3 Heterophils and antimicrobial peptides 17.5.2.2.4 Toll-like receptors and heterophils 17.5.2.2.5 Stressors and heterophil functioning 17.5.2.3 Number 17.5.2.4 Production 17.5.3 Lymphocytes 17.5.3.1 Structure 17.5.3.2 Function 17.5.3.3 Numbers 17.5.4 Eosinophils 17.5.4.1 Structure 17.5.4.2 Function 17.5.4.3 Number 17.5.5 Monocytes 17.5.5.1 Structure 17.5.5.2 Function 17.5.5.3 Number 17.5.5.4 Production 17.5.6 Basophils 17.5.6.1 Structure 17.5.6.2 Function 17.5.6.3 Number 17.5.7 Heterophil: lymphocyte ratios 17.6 Thrombocytes 17.6.1 Structure 17.6.2 Function 17.6.3 Number 17.6.4 Production 17.6.5 Thrombopoietin 17.7 Other cells types in avian plasma 17.7.1 Reticulocytes 17.7.2 Mott cells 17.7.3 Natural killer cells 17.8 Parasites and blood cells 17.9 Clotting References Further reading 18. The cardiovascular system 18.1 Introduction 18.2 Heart 18.2.1 Gross structure and function 18.2.1.1 Functional anatomy 18.2.1.2 Heart size 18.2.1.3 Cardiac chambers 18.2.1.4 Valves 18.2.1.5 Coronary circulation 18.2.2 Cardiac variables 18.2.3 Fine structure and cardiac electrophysiology 18.2.3.1 Fine structure 18.2.3.2 Excitation–contraction coupling 18.2.3.3 Conduction system 18.2.3.4 Electrophysiology 18.3 General circulatory hemodynamics 18.4 The vascular tree 18.4.1 Arterial system 18.4.1.1 Gross anatomy 18.4.1.2 Functional morphology of the arterial wall 18.4.1.3 Relationship between arterial pressure and flow 18.4.2 Capillary beds 18.4.2.1 Gas exchange 18.4.2.2 Microvascular fluid exchange 18.4.2.3 Distribution of blood flow at rest 18.4.3 Venous system 18.4.3.1 Functional development of venous system 18.4.3.2 Capacitance function 18.4.3.3 Physiological role of veins in exercise and submersion 18.4.3.4 Renal portal system 18.4.4 Embryonic shunts 18.5 Control of the cardiovascular system 18.5.1 Control systems 18.5.2 Control of peripheral blood flow 18.5.2.1 Mechanism of vascular reactivity 18.5.2.2 Autoregulation 18.5.2.3 Humoral factors 18.5.2.3.1 Chemical factors 18.5.2.3.2 Locally released vasoactive agents 18.5.2.3.3 Circulating agents 18.5.2.4 Neural control 18.5.2.4.1 Systemic arterial innervation 18.5.2.4.2 Systemic venous innervation 18.5.2.4.3 Pulmonary vessel innervation 18.5.2.4.4 Autonomic pathways 18.5.3 Control of the heart 18.5.3.1 Catecholamine effects on the heart 18.5.3.2 Neural control 18.5.3.2.1 Sympathetic innervation 18.5.3.2.1.1 Anatomy 18.5.3.2.1.2 Sympathetic control 18.5.3.2.2 Parasympathetic innervation 18.5.3.2.2.1 Anatomy 18.5.3.2.2.2 Parasympathetic control 18.5.3.2.2.2.1 Dromotropic effects 18.5.3.2.2.2.2 Chronotropic effects 18.5.3.2.2.2.3 Inotropic effects 18.5.3.2.2.2.4 Tonic parasympathetic activity 18.5.3.2.3 Control of CO 18.5.3.2.3.1 Role of heart rate in control of CO 18.5.3.2.3.2 Role of stroke volume in control of CO 18.5.4 Reflexes controlling the circulation 18.5.4.1 Chemoreflexes 18.5.4.2 Baroreflexes 18.5.4.3 Reflexes from cardiac receptors 18.5.4.4 Reflex cardiovascular effects from skeletal muscle afferents 18.5.5 Integrative neural control 18.5.6 Development of cardiovascular control 18.5.6.1 Ontogeny of autonomic nervous system control of the heart 18.5.6.1.1 Cardiac autonomic innervation 18.5.6.1.2 Cardiac cholinergic and adrenergic receptors 18.5.6.2 Ontogeny of vascular contractility 18.5.6.2.1 Vascular reactivity regulation 18.5.6.2.2 Vascular adrenergic receptors 18.5.6.2.3 Vascular cholinergic receptors and endothelial control 18.5.6.3 Developmental integration of autonomic cardiovascular regulation 18.5.6.3.1 Afferent pathways 18.5.6.3.2 Tonic heart regulation 18.5.6.3.3 Tonic vasculature regulation 18.5.6.3.4 Baroreflex regulation 18.5.6.3.5 Cardiovascular response to hypoxia 18.5.6.4 Development of humoral and local effectors of cardiovascular function 18.6 Environmental cardiovascular physiology 18.6.1 Flight 18.6.1.1 Altitude 18.6.1.2 Migration 18.6.2 Swimming and diving References 19. Renal and extrarenal regulation of body fluid composition 19.1 Introduction 19.2 Intake of water and solutes 19.2.1 Drinking 19.2.2 Solute intake 19.3 The kidneys 19.3.1 Anatomy 19.3.1.1 Gross anatomy 19.3.1.2 Nephron types and numbers 19.3.1.3 Blood flow 19.3.1.3.1 Arterial supply 19.3.1.3.2 Renal portal system 19.3.1.3.3 Venous drainage 19.3.2 Physiology 19.3.2.1 Overview 19.3.2.2 Renal blood flow 19.3.2.3 Glomerular filtration 19.3.2.4 Regulation of water excretion 19.3.2.4.1 Arginine vasotocin 19.3.2.4.2 Regulation of glomerular filtration rate 19.3.2.4.3 Tubular water reabsorption and the urinary concentrating mechanism 19.3.2.4.3.1 Descending thin limb 19.3.2.4.3.2 Thick ascending limb 19.3.2.4.3.3 Collecting duct 19.3.2.4.3.4 Urinary concentrating mechanism 19.3.2.4.3.5 Net effect: avian urinary concentrating ability 19.3.2.5 Regulation of sodium excretion 19.3.2.5.1 Patterns of response 19.3.2.5.2 Mechanisms of regulation 19.3.2.5.2.1 Arginine vasotocin 19.3.2.5.2.2 Renin/angiotensin 19.3.2.5.2.3 Aldosterone 19.3.2.5.2.4 Atrial natriuretic peptide 19.3.2.6 Regulation of calcium and phosphate excretion 19.3.2.6.1 Calcium 19.3.2.6.2 Phosphate 19.3.2.7 Nitrogen excretion 19.3.2.8 Renal contribution to acid/base regulation 19.3.2.9 Molecular regulation: the next frontier 19.3.2.10 The final urine-composition and flow 19.3.2.11 Function of the ureters 19.4 Extrarenal organs of osmoregulation: introduction 19.5 The lower intestine 19.5.1 Introduction 19.5.2 Transport properties of coprodeum, colon, and cecum 19.5.2.1 Basic transport mechanisms in coprodeum and colon 19.5.2.1.1 Transport of NaCl and water 19.5.2.1.2 Transport of other ions 19.5.2.1.3 Quantitative role of coprodeum versus colon 19.5.2.2 Dietary and hormonal regulation of coprodeal and colonic transport 19.5.2.3 Ultrastructural adaptation and molecular induction 19.5.2.4 Salt and water transport in the caeca 19.5.3 Postrenal modification of ureteral urine 19.5.3.1 Basic patterns: Hydration/NaCl loading 19.5.3.2 Basic patterns: Dehydration/NaCl depletion 19.5.3.3 Special case: birds with salt glands 19.5.3.4 Special case: the ratites 19.5.3.5 Quantitative role of the caeca in osmoregulation 19.5.3.6 Overall: integration of kidneys and lower intestine 19.6 Salt glands 19.6.1 Anatomy 19.6.2 Function 19.6.2.1 Stimulus for secretion 19.6.2.2 Secretion mechanism and fluid composition 19.6.2.3 Regulatory mediators 19.6.3 Contribution of the salt glands to osmoregulation 19.7 Evaporative water loss Acknowledgments References 20. Respiration 20.1 Overview 20.1.1 Oxygen cascade 20.1.2 Symbols and units 20.2 Anatomy of the avian respiratory system 20.2.1 Upper airways 20.2.2 Lungs 20.2.2.1 Conducting airways 20.2.2.2 Parabronchi 20.2.2.3 Frontiers: evolution of the blood-gas barrier 20.2.3 Air sacs 20.2.4 Respiratory system volumes 20.3 Ventilation and respiratory mechanics 20.3.1 Respiratory muscles 20.3.2 Mechanical properties 20.3.2.1 Compliance 20.3.2.2 Resistance 20.3.2.3 Air capillary surface forces 20.3.3 Ventilatory flow patterns 20.3.3.1 Air sac ventilation 20.3.3.2 Pulmonary ventilation 20.3.3.3 Air sac PO2 and PCO2 20.3.3.4 Effective parabronchial ventilation 20.3.3.5 Artificial ventilation 20.3.3.6 Frontiers: lung structure-function in dinosaurs 20.4 Pulmonary circulation 20.4.1 Anatomy of the pulmonary circulation 20.4.2 Pulmonary capillary volume 20.4.3 Pulmonary vascular pressures, resistance, and flow 20.4.3.1 Pulmonary vascular resistance and pressures 20.4.3.2 Distribution of blood flow 20.4.3.3 Frontiers: pulmonary vascular pressures during exercise in birds 20.4.4 Fluid balance 20.5 Gas transport by blood 20.5.1 Oxygen 20.5.1.1 Hemoglobin 20.5.1.2 O2-blood equilibrium curves 20.5.1.3 Physiological control of O2-hemoglobin affinity 20.5.1.4 Frontiers: hemoglobin adaptations to high altitude 20.5.1.5 Factors affecting O2 capacity 20.5.2 Carbon dioxide 20.5.2.1 Forms of CO2 in blood 20.5.2.2 Factors affecting blood-CO2 equilibrium curves 20.5.3 Acid-base 20.5.3.1 Henderson-Hasselbalch equation 20.5.4 Blood gas measurements 20.6 Pulmonary gas exchange 20.6.1 Basic principles of oxygen transport 20.6.1.1 Convection 20.6.1.2 Diffusion 20.6.2 Cross-current gas exchange 20.6.2.1 Cross-current O2 exchange 20.6.2.2 Cross-current CO2 exchange 20.6.3 Lung diffusing capacity 20.6.3.1 Gas transport in air capillaries 20.6.3.2 Blood-gas barrier diffusion 20.6.3.3 O2-hemoglobin reaction rates 20.6.3.4 Physiological estimates of DLO2 20.6.4 Heterogeneity in the lung 20.6.4.1 Physiological dead space 20.6.4.2 Shunt 20.6.4.3 V./Q. mismatching 20.6.4.4 Temporal heterogeneity 20.6.5 Frontiers: pulmonary gas exchange during high altitude flight 20.7 Tissue gas exchange 20.7.1 Microcirculation 20.7.1.1 Skeletal muscle 20.7.1.2 Cerebral circulation 20.7.2 Myoglobin 20.7.3 Effects of hypoxia and exercise 20.8 Control of breathing 20.8.1 Respiratory rhythm generation 20.8.2 Sensory inputs 20.8.2.1 Central chemoreceptors 20.8.2.2 Arterial chemoreceptors 20.8.2.2.1 Intrapulmonary chemoreceptors 20.8.2.3 Other receptors affecting breathing 20.8.3 Ventilatory reflexes 20.8.3.1 CO2 response 20.8.3.2 Hypoxic ventilatory response 20.8.3.3 Ventilatory response to exercise 20.8.3.4 Frontiers: extreme hyperventilation at high altitude 20.9 Defense systems in avian lungs References 21. Gastrointestinal anatomy and physiology 21.1 Anatomy of the digestive tract 21.1.1 Beak, mouth, and pharynx 21.1.2 Esophagus and crop 21.1.3 Stomach 21.1.4 Small intestine 21.1.5 Ceca 21.1.6 Colon (rectum) and cloaca 21.2 Anatomy of the accessory organs 21.2.1 Pancreas 21.2.2 Liver 21.3 Motility 21.3.1 Esophagus 21.3.2 Gastrointestinal cycle 21.3.3 Small intestine 21.3.4 Ceca 21.3.5 Colon 21.3.6 Other influences on motility 21.4 Neural and hormonal control of motility 21.4.1 Rate of passage 21.5 Secretion and digestion 21.5.1 Mouth 21.5.2 Esophagus and crop 21.5.3 Stomach 21.5.4 Intestines 21.5.5 Colon 21.5.6 Pancreas 21.5.7 Bile 21.6 Absorption 21.6.1 Carbohydrates 21.6.2 Amino acid and peptides 21.6.3 Fatty acids and bile acids 21.6.4 Volatile fatty acids 21.6.5 Calcium and phosphorus 21.6.6 Potassium and magnesium 21.6.7 Water, sodium, and chloride 21.6.8 Vitamins 21.7 Age-related effects on gastrointestinal function 21.8 Gastrointestinal microbiota 21.9 Intestinal barrier References 22. Avian bone physiology and poultry bone disorders 22.1 Introduction 22.2 Embryonic skeletal differentiation 22.3 Cartilage 22.3.1 Cartilage of endochondral bone 22.3.2 Articular cartilage 22.4 Bone 22.4.1 Cellular components 22.4.2 Bone tissue 22.5 Poultry bone disorders 22.5.1 Cage layer fatigue/osteoporosis 22.5.2 Keel bone deformity and fracture 22.5.3 Cervical scoliosis 22.5.4 Chondrodystrophy, slipped tendon/perosis, and rickets 22.5.5 Valgus-varus deformity 22.5.6 Tibial dyschondroplasia 22.5.7 Femoral head separation 22.5.8 Femoral head necrosis, osteomyelitis, bacterial chondronecrosis 22.5.9 Amyloid arthropathy 22.6 Conclusion References 23. Skeletal muscle 23.1 Introduction 23.2 Diversity of avian skeletal muscle 23.3 Muscle structure and contraction 23.4 Skeletal muscle fiber types 23.5 Embryonic development of skeletal muscle 23.6 Postnatal or posthatch skeletal muscle development 23.7 Muscle development: function of myogenic regulatory factors 23.8 Growth factors affecting skeletal muscle myogenesis 23.9 Satellite cells and myoblast heterogeneity 23.10 Novel genes involved in avian myogenesis 23.11 Recent emerging breast muscle necrotic and fibrotic myopathies 23.12 The effect of fibrillar collagen on the phnotype of necrotic breast muscle myopathies resulting in fibrosis 23.13 Relationship of fibrillar collagen organization to the phnotype of breast muscle necrotic/fibrotic myopathies 23.14 Regulation of muscle growth properties by cell-membrane associated extracellular matrix macromolecules 23.15 Strategies to reduce myopathies 23.16 Summary Acknowledgments References Further reading 24. Immunophysiology of the avian immune system 24.1 Introduction 24.2 Innate immune system recognition, sensing, and function 24.2.1 Innate cell receptors: pattern recognition receptors 24.2.1.1 Toll-like receptors 24.2.1.2 Nod-like receptors 24.2.1.3 RIG-like receptors 24.2.1.4 C-type lectin receptors 24.2.2 Host defense peptides 24.2.3 Innate immune memory: trained immunity 24.3 Acquired immune recognition and function 24.3.1 The major histocompatibility complex 24.3.2 Th1/Th2 paradigm and T helper cell subsets 24.4 Gastrointestinal tract and immune system of poultry 24.4.1 Mucosal lymphoid tissues and cells 24.4.2 Intestinal barrier system 24.4.3 Intestinal microbiota 24.4.4 Intestinal immune functionality 24.4.4.1 Gut microbiota-immunity communication 24.4.4.1.1 Components of the microbiota 24.4.4.1.2 Microbial metabolites 24.4.4.1.3 Microbial epigenetic modifications 24.4.5 Gut microbiota: immune homeostasis 24.4.5.1 Gut microbiota: immune dysfunction—dysbiosis 24.4.5.2 Gut microbiota: immune dysfunction—inflammation 24.4.5.2.1 Inflammatory phenotypes 24.4.5.3 Induction of inflammatory phenotypes 24.4.5.3.1 Physiological inflammation 24.4.5.3.2 Pathological inflammation 24.4.5.3.3 Sterile inflammation 24.4.5.3.4 Metabolic inflammation 24.5 Tissue immunometabolism: tissue homeostasis and tissue resident immune cells References 25. Carbohydrate metabolism 25.1 Overview of carbohydrate metabolism in birds 25.1.1 Introduction 25.2 Carbohydrate chains in glycoproteins 25.2.1 Glucose 25.2.1.1 Circulating concentrations of glucose across avian species 25.2.1.1.1 Introduction: circulating concentrations of glucose across avian species 25.2.1.1.2 Domestication and circulating concentrations of glucose 25.2.1.1.3 Fasting and circulating concentrations of glucose 25.2.1.1.4 Influence of feeding 25.2.1.1.5 Shifts in circulating concentration with age, reproductive state, and migration 25.2.1.1.6 Shifts in circulating concentrations of glucose due to disease, toxicants, and husbandry practices 25.2.1.1.7 Temperature and circulating concentrations of glucose 25.2.1.1.8 Issues with the circulating concentrations of glucose 25.2.1.2 Glucose concentrations in the cerebrospinal fluid 25.2.1.3 Glucose concentrations in muscle 25.3 Lactate and pyruvate 25.3.1 Introduction 25.3.2 Circulating concentrations of lactate and pyruvate 25.3.3 Muscle concentrations of lactate 25.4 Glycerol 25.4.1 Introduction 25.4.2 Circulating concentrations of glycerol 25.5 Glycogen 25.5.1 Introduction 25.5.2 Synthesis and breakdown 25.5.2.1 Glycogenesis (synthesis) 25.5.2.1.1 Phosphoglucomutase 25.5.2.1.2 Uridine triphosphate-glucose pyrophosphorylase 25.5.2.1.3 Glycogen synthase 25.5.3 Glycogenolysis (breakdown) 25.5.3.1 Glycogen phosphorylase 25.5.3.2 Glycogenesis (breakdown) 25.5.4 What is the concentration of glycogen in avian hepatocytes? 25.5.5 Hepatic concentrations of glycogen 25.5.5.1 Overview 25.5.5.2 Effects of nutrition 25.5.5.3 Developmental changes 25.5.5.4 Effects of perihatch nutrition 25.5.5.5 Developmental changes in glycogenesis 25.5.5.6 Other effects on hepatic glycogen 25.5.5.7 Muscle concentrations of glycogen 25.5.5.7.1 Overview 25.5.5.7.2 Developmental changes 25.5.5.7.3 Effects of perihatch nutrition 25.5.6 Issues with determination of tissue concentrations of glycogen and lactate 25.5.7 Glycolytic potential 25.5.8 Glycogen body 25.6 Glucose and fructose utilization 25.6.1 Developmental changes 25.6.2 Fasting and glucose utilization 25.7 Glucose transporters 25.7.1 Introduction to avian glucose transporters 25.7.2 Insulin-dependent glucose transporters 25.7.3 Tissue expression of glucose transporters 25.7.4 Physiological control of glucose transporters 25.8 Intermediary metabolism 25.8.1 Glucose phosphorylation and dephosphorylation 25.8.1.1 Glucose phosphorylation to glucose 6-phosphate 25.8.1.1.1 Enzyme: glucokinase/hexokinase 25.8.1.2 Glucose 6-phosphatase 25.8.2 Glycolysis 25.8.2.1 Developmental changes 25.8.2.2 Physiological effects 25.8.2.3 Erythrocytes 25.8.2.4 Lactate dehydrogenase 25.8.3 Citric acid or tricarboxylic acid cycle 25.8.3.1 Overview 25.8.3.2 Erythrocytes 25.9 Gluconeogenesis 25.9.1 Gluconeogenesis and fasting 25.9.2 Relative importance of the liver and the kidney 25.10 Carbohydrate digestion and absorption 25.10.1 Starch digestion 25.10.2 Disaccharide digestion 25.10.2.1 Maltose 25.10.2.2 Sucrose 25.10.2.3 Lactose 25.10.3 Glucose absorption 25.10.3.1 Overview 25.10.3.2 Noncarrier uptake of glucose 25.10.4 Glucose digestion in frugivorous birds 25.10.5 Gastrointestinal storage of ingesta 25.10.6 Intestinal fermentation 25.10.6.1 Cellulose 25.10.6.1.1 Foregut 25.10.6.1.2 Hindgut 25.10.6.2 Starch 25.11 Putative roles of other monosaccharides 25.11.1 Sorbitol 25.11.2 Xylitol 25.12 Conclusions 25.12.1 Overview 25.12.2 Starvation and metabolism References Further reading 26. Adipose tissue and lipid metabolism 26.1 Introduction 26.2 Development of adipose tissue 26.3 Structure, cellularity 26.4 Body composition 26.5 Functions of adipose tissue 26.5.1 Energy reservoir 26.5.2 Adipokines 26.5.2.1 Leptin 26.5.2.2 Adiponectin 26.5.2.3 Visfatin 26.5.2.4 Chemerin 26.5.2.5 Other adipokines 26.5.3 Receptors 26.6 Lipid metabolism 26.6.1 Lipogenesis and lipolysis 26.6.2 Lipoprotein metabolism 26.6.2.1 Portomicrons 26.6.2.2 Other lipoproteins 26.6.2.3 Lipoprotein lipase: a key enzyme 26.6.2.4 Lipoproteins in laying hens 26.6.3 Endocrine control of lipid metabolism 26.6.3.1 Insulin 26.6.3.2 Somatotrophic hormones 26.6.3.3 Thyroid hormones 26.6.3.4 Other hormones 26.6.4 Transcription factors 26.7 Factors affecting fat metabolism and deposition 26.7.1 Dietary factors 26.7.1.1 Quantitative strategies 26.7.1.2 Qualitative strategies 26.7.2 Genetics 26.8 Summary and conclusions References 27. Protein metabolism 27.1 Introduction 27.1.1 Protein metabolism: overview 27.1.2 Physiological effects on protein concentrations 27.1.3 Amino acids and proteins 27.1.4 Posttranslational modification of amino acids 27.2 Major proteins 27.2.1 Collagen 27.2.1.1 Overview 27.2.1.2 Quantitative aspects 27.2.1.3 Chemistry of collagen 27.2.1.4 Functions of collagen 27.2.1.5 Control of collagen synthesis 27.2.2 Keratins 27.2.2.1 Overview 27.2.2.2 Keratin genes 27.2.2.3 Keratin expression and protein 27.2.2.4 Feather dynamics 27.2.2.5 Control of keratin synthesis 27.3 Muscle proteins 27.3.1 Overview 27.3.2 Actin and myosin genes 27.4 Other proteins 27.4.1 Blood proteins 27.4.2 Mucins 27.4.3 Egg protein 27.5 Digestion of proteins 27.5.1 Overview 27.5.2 Protein digestion in the gizzard and proventriculus 27.5.2.1 Overview 27.5.2.2 Pepsinogen 27.5.3 Protein digestion in the small intestine 27.5.3.1 Overview 27.5.3.2 Trypsin 27.5.3.3 Chymotrypsinogen 27.5.3.4 Aminopeptidases 27.5.3.4.1 Overview 27.5.3.4.2 Expression of aminopeptidases 27.5.4 Amino acid absorption in the small intestine 27.5.4.1 Overview 27.5.4.2 Turnover times for small intestine mucosal cells 27.5.5 Colon and protein digestion 27.5.6 Ceca and protein digestion 27.6 Protein synthesis 27.6.1 Whole-body synthesis and degradation 27.6.2 Fractional protein synthesis in different organs 27.6.3 Fractional protein synthesis in muscle 27.6.4 Ribosomal protein S6 and ribosomal protein S6 kinase (S6K1) and protein synthesis 27.6.5 Other factors influencing protein synthesis 27.7 Protein degradation 27.7.1 Overview 27.7.2 Autophagy 27.7.2.1 Overview 27.7.2.2 Autophagy-related genes 27.7.3 Ubiquitin and protein degradation 27.7.3.1 Overview 27.7.3.2 Atrogin-1/MAFbx and protein degradation in birds 27.7.4 Lysosomes and protein degradation 27.7.4.1 Overview 27.7.4.2 Lysosomal proteases 27.7.4.2.1 Caspases 27.7.4.2.2 Cathepsins 27.7.5 Whole body determination of protein degradation 27.8 Control of protein synthesis and degradation 27.8.1 Overview 27.8.2 Protein kinase B (Akt)/mechanistic (or mammalian) target of rapamycin pathway controlling protein synthesis and degradation 27.8.3 Protein synthesis and age/development 27.8.4 Effects of nutritional deficiencies on muscle protein synthesis and degradation 27.8.5 Effects of stretching on muscle protein synthesis and degradation 27.8.6 Hormones and muscle protein synthesis 27.8.7 Microorganisms and protein synthesis in liver and gastrointestinal tract 27.8.8 Environmental temperature and protein synthesis and degradation 27.8.9 Protein synthesis and immune functioning 27.8.10 Other physiological effects on protein synthesis and degradation 27.8.10.1 Overview 27.8.10.2 Molt and protein synthesis 27.9 Proteins and reproduction 27.9.1 Female reproduction 27.9.2 Male reproduction 27.10 Amino acids and metabolism 27.10.1 Amino acid transfer into muscle and other cells 27.10.2 Amino acid transporters 27.10.2.1 Overview 27.10.2.2 Amino acid transporters and physiological state 27.11 Nitrogenous waste 27.11.1 Overview 27.11.2 Uric acid 27.11.3 Urea 27.11.4 Glutamine and ammonia detoxification 27.11.5 Amino acids as energy sources 27.11.5.1 Amino acids and metabolism 27.11.5.2 Glutamine as an energy source 27.12 Amino acid derivatives 27.12.1 Overview 27.12.2 Melanin 27.13 Extranutritional effects of amino acids 27.13.1 Overview 27.13.2 Amino acids in the control of metabolism 27.13.2.1 Glutamine and muscle growth 27.13.2.2 Glutamine and intestinal growth 27.13.2.3 Dipeptides 27.14 Other uses of avian proteins References Further reading 28. Food intake regulation 28.1 Introduction 28.2 Peripheral regulation of food intake 28.2.1 Gastrointestinal tract and ghrelin 28.2.2 Liver 28.2.3 Dietary nutrients 28.2.4 Adipose tissue and leptin 28.3 Central nervous system control of food intake 28.4 Classical neurotransmitters 28.5 Peptides 28.5.1 Neuropeptide Y 28.5.2 Melanocortins 28.5.3 Corticotropin-releasing factor, urocortins, and urotensins 28.5.4 Mesotocin and arginine-vasotocin 28.5.5 Opioids and kyotorphin 28.5.6 FMRFamides 28.5.7 Galanin 28.5.8 Visfatin 28.5.9 Somatostatin 28.5.10 Glucagon superfamily 28.5.11 Cholecystokinin and gastrin 28.5.12 Calcitonin family 28.5.13 Insulin 28.5.14 Bombesin 28.5.15 Neuromedin family 28.6 Selection for single growth-related traits alters food intake control mechanisms 28.7 Other pathways involved in central appetite regulation 28.7.1 Cannabinoids 28.7.2 AMP-activated protein kinase 28.7.3 Mechanistic target of rapamycin 28.7.4 Autophagy References Further reading 29. Overviews of avian neuropeptides and peptides 29.1 Introduction 29.1.1 Galanin/spexin peptide family 29.1.2 Tachykinin peptide family 29.1.3 Calcitonin peptide family 29.1.4 Parathyroid hormone family 29.1.5 Relaxin peptide family 29.1.6 Ghrelin/motilin peptide family 29.1.7 NMU/NMS peptide family 29.1.8 Neuropeptide S 29.1.9 Neurotensin and neuromedin N 29.1.10 RF-amide peptide family 29.1.11 Cholecystokinin and gastrin peptide family 29.1.12 Orexin peptide family 29.1.13 Melanin-concentrating hormone peptide 29.1.14 Prokineticin peptide family 29.1.15 Corticotropin-releasing hormone peptide family 29.1.16 Neuropeptide W and neuropeptide B 29.1.17 Opioid peptide family 29.1.18 Somatostatin/cortistatin peptide family 29.1.19 Urotensin II/urotensin II–related peptide family 29.1.20 Glucagon peptide superfamily 29.1.21 Apelin and elabela peptides 29.1.22 Neuropeptide Y family 29.1.23 Natriuretic peptide family 29.1.24 Osteocrin peptide 29.1.25 Neurosecretory protein GL and neurosecretory protein GM family 29.1.26 Ornitho-kinin peptide 29.1.27 Angiotensin II peptide 29.1.28 Endothelin peptide family 29.1.29 Bombesin peptide family 29.1.30 Melanocortin system peptides 29.1.31 Arginine vasotocin/mesotocin peptides 29.1.32 Cocaine- and amphetamine-regulated transcript peptides 29.1.33 Leptin 29.1.34 Thyrotropin-releasing hormone 29.1.35 Esophageal cancer–related gene 4–derived peptides 29.1.36 Chemerin 29.1.37 Granin-derived peptides 29.1.38 Antimicrobial host defense peptides 29.1.39 Other peptides 29.2 Summary References 30. Pituitary gland 30.1 Introduction 30.2 Embryonic development of the pituitary gland 30.3 Anatomy of the pituitary gland 30.3.1 Anatomy of the anterior pituitary gland (pars distalis) 30.3.1.1 Secretory cells 30.3.1.2 Folliculo-stellate cells 30.3.1.3 Macrophage 30.3.2 Pars intermedia 30.3.3 Pars tuberalis 30.3.4 Posterior pituitary gland or pars nervosa 30.4 Gonadotropins 30.4.1 Gonadotropin subunits, genes, mRNA, and glycoproteins 30.4.1.1 Expression of pituitary glycoprotein subunits 30.4.2 Actions of gonadotropins 30.4.2.1 Actions of luteinizing hormone in the female 30.4.2.1.1 Luteinizing hormone and ovulation 30.4.2.1.2 Luteinizing hormone and steroidogenesis 30.4.2.1.3 Luteinizing hormone and follicular development 30.4.2.1.4 Luteinizing hormone and ovarian inhibin/activin receptors 30.4.2.2 Actions of follicle-stimulating hormone in the female 30.4.2.2.1 Follicle-stimulating hormone and steroidogenesis 30.4.2.2.2 Follicle-stimulating hormone and ovarian cell remodeling and proliferation 30.4.2.3 Actions of luteinizing hormone in the male 30.4.2.4 Actions of follicle-stimulating hormone in the male 30.4.2.5 Other actions of follicle-stimulating hormone 30.4.2.6 Luteinizing hormone receptors 30.4.2.7 Follicle-stimulating hormone receptors 30.4.3 Control of gonadotropin release 30.4.3.1 Introduction 30.4.3.2 Gonadotropin hormone–releasing hormone 30.4.3.2.1 Chemistry 30.4.3.2.1.1 Chicken GnRH 1 (cGnRH1) 30.4.3.2.1.2 Chicken GnRH 2 (cGnRH2) 30.4.3.2.2 Biological activity 30.4.3.2.3 Gonadotropin-releasing hormone receptors and signal transduction 30.4.3.2.4 Control of gonadotropin-releasing hormone release and synthesis 30.4.3.2.5 Changes in hypothalamic gonadotropin-releasing hormone content 30.4.3.2.6 Changes in pituitary responsiveness 30.4.3.2.7 Extrahypothalamic production of gonadotropin-releasing hormone and gonadotropin-releasing hormone receptors 30.4.3.3 Gonadotropin-inhibitory hormone 30.4.3.3.1 Chemistry and synthesis 30.4.3.3.2 Actions of gonadotropin-inhibitory hormone 30.4.3.3.3 Gonadotropin-inhibitory hormone receptors 30.4.3.3.4 Hypothalamic gonadotropin-inhibitory hormone content 30.4.3.3.5 Extrapituitary expression of gonadotropin-inhibitory hormone 30.4.4 Control of gonadotropin subunit expression 30.4.4.1 Control of common α-subunit expression 30.4.4.2 Control of follicle-stimulating hormone β-subunit expression 30.4.4.3 Control of luteinizing hormone β subunit expression 30.4.5 Physiological control of gonadotropins 30.4.5.1 Episodic secretion of gonadotropins 30.4.5.2 Feedback and gonadotropin release 30.4.5.3 Seasonal breeding (photoperiod, temperature, and rainfall) 30.4.5.4 Preovulatory luteinizing hormone surge 30.4.5.5 Nutrition and gonadotropin release 30.4.6 Pituitary origin of gonadotropins 30.5 Thyrotropin 30.5.1 Thyrotropin subunits, genes, mRNA, and glycoproteins 30.5.2 Actions of thyroid-stimulating hormone 30.5.2.1 Role 30.5.2.2 Thyroid-stimulating hormone receptors 30.5.3 Thyroid-stimulating hormone receptor and domestication 30.5.4 Control of thyroid-stimulating hormone release and subunit expression in the anterior pituitary gland 30.5.4.1 Thyrotropin-releasing hormone and thyroid-stimulating hormone release and subunit expression 30.5.4.1.1 Thyrotropin-releasing hormone 30.5.4.2 Corticotropin-releasing hormone and thyroid-stimulating hormone release and subunit expression 30.5.4.3 Glucagon-like peptide and thyroid-stimulating hormone release and subunit expression 30.5.4.4 Somatostatin and thyroid-stimulating hormone release 30.5.4.5 Negative feedback 30.5.4.6 Environmental factors and thyroid-stimulating hormone release 30.5.5 Control of thyroid-stimulating hormone β-subunit expression 30.5.6 Origin of thyroid-stimulating hormone 30.5.6.1 Anterior pituitary gland 30.5.6.2 Extrapituitary thyroid-stimulating hormone 30.5.7 Ontogeny of thyroid-stimulating hormone 30.6 Growth hormone 30.6.1 Growth hormone gene, mRNA, and protein 30.6.2 Post-translational variants of growth hormone 30.6.3 Actions of growth hormone 30.6.3.1 Growth hormone and growth 30.6.3.1.1 Growth hormone and insulin-like growth factor 1 30.6.3.1.2 Other mechanisms controlling insulin-like growth factor 1 30.6.3.2 Growth hormone and lipid metabolism 30.6.3.3 Growth hormone and carbohydrate metabolism 30.6.3.4 Growth hormone and thyroid hormones 30.6.3.5 Growth hormone and immune functioning 30.6.3.6 Growth hormone and reproduction 30.6.3.7 Growth hormone and adrenocortical hormones 30.6.3.8 Growth hormone and apoptosis 30.6.3.9 Growth hormone receptors and Signal Transduction 30.6.3.10 Growth hormone binding protein 30.6.4 Control of growth hormone release 30.6.4.1 Introduction 30.6.4.2 Growth hormone–releasing hormone 30.6.4.3 Ghrelin/growth hormone secretagogue receptor 30.6.4.3.1 Action and chemistry 30.6.4.3.2 Growth hormone secretagogue receptor 30.6.4.3.3 Extrapituitary actions of ghrelin 30.6.4.4 Neuropeptide W 30.6.4.5 Thyrotropin-releasing hormone 30.6.4.6 Glucagon-like peptide 30.6.4.7 Somatostatin and cortistatin 30.6.5 Control of growth hormone expression 30.6.6 Environmental factors and growth hormone release 30.6.7 Pituitary origin of growth hormone 30.6.8 Extrapituitary expression of growth hormone 30.6.9 Ontogeny of growth hormone 30.6.9.1 Pou 1 (Pit1) 30.6.9.2 Somatotrophs and their differentiation 30.6.9.3 Secretion 30.7 Prolactin 30.7.1 Prolactin gene, mRNA, and protein 30.7.2 Post-translational variants of prolactin 30.7.3 Actions of prolactin 30.7.3.1 Prolactin and the crop sac gland 30.7.3.2 Prolactin and behavior 30.7.3.3 Prolactin and reproduction 30.7.3.4 Other roles of prolactin and adrenocortical functioning 30.7.3.5 Prolactin receptor 30.7.4 Control of prolactin release 30.7.4.1 Vasoactive intestinal peptide and prolactin release 30.7.4.1.1 Introduction 30.7.4.2 Arginine vasotocin 30.7.4.3 Prolactin-releasing peptide 30.7.4.3.1 Chemistry 30.7.4.3.2 Actions 30.7.4.3.3 Receptors 30.7.4.4 Neuropeptide W 30.7.4.5 Dopamine 30.7.4.6 Other stimulatory factors 30.7.5 External influences on prolactin release 30.7.5.1 Photoperiod and prolactin release 30.7.5.2 Stress and prolactin release 30.7.6 Prolactin expression 30.7.7 Adenohypophyseal cells producing prolactin 30.8 Pro-opiomelanocortin-derived peptides—adrenocorticotropic hormone, lipotropic hormone, melanocyte-stimulating hormone, and ... 30.8.1 Pro-opiomelanocortin: gene, processing, and derived peptides 30.8.2 Actions of adrenocorticotropic hormone 30.8.2.1 Control of adrenocorticotropic hormone release 30.8.2.1.1 Corticotropin-releasing hormone 30.8.2.1.1.1 Other effects of corticotropin-releaseing hormone 30.8.2.1.2 Arginine vasotocin, mesotocin, and adrenocorticotropic hormone release 30.8.2.1.3 Calcium-related hormones and adrenocorticotropic hormone release 30.8.2.1.4 Feedback 30.8.3 Control of proopiomelanocortin expression 30.8.4 Pituitary origin of adrenocorticotropic hormone 30.8.5 Extrapituitary production 30.8.6 Ontogeny of adrenocorticotropic hormone 30.8.7 Melanocyte-stimulating hormone and lipotropic hormone 30.8.8 β-Endorphin 30.8.8.1 Chemistry of β-endorphin 30.8.8.2 Physiology of β-endorphin release 30.8.8.3 Physiological role of β-endorphin 30.8.9 Extrapituitary production of proopiomelanocortin peptides 30.9 Other anterior pituitary gland peptides/proteins 30.9.1 Adiponectin 30.9.2 Chromogranin A 30.9.3 Cocaine- and amphetamine-regulated transcript peptides 30.9.4 Synaptotagmin-1 30.9.5 Interleukins 30.10 Pars tuberalis 30.10.1 Functioning of the pars tuberalis 30.10.1.1 Pars tuberalis and photoperiodism 30.10.2 Pineal effects on the pars tuberalis 30.10.3 Circadian rhythms and the pars tuberalis 30.11 Neurohypophysis 30.11.1 Introduction 30.11.2 Receptors for arginine vasotocin and mesotocin 30.11.3 Actions of arginine vasotocin 30.11.3.1 Arginine vasotocin and renal functioning 30.11.3.2 Arginine vasotocin and oviposition 30.11.3.3 Cardiovascular effects of arginine vasotocin 30.11.3.4 Other effects of arginine vasotocin 30.11.4 Actions of mesotocin 30.11.4.1 Mesotocin and renal functioning 30.11.4.2 Mesotocin and oviposition 30.11.4.3 Other effects of mesotocin 30.11.5 Neurohypophyseal hormones and behavior 30.11.6 Control of arginine vasotocin and mesotocin release 30.11.6.1 Control of arginine vasotocin release 30.11.6.2 Osmotic-related arginine vasotocin release 30.11.6.3 Other effects on arginine vasotocin 30.11.6.4 Arginine vasotocin and mesotocin and oviposition 30.11.7 Arginine vasotocin and mesotocin expression 30.11.8 Hormonal influences on the posterior pituitary gland 30.11.9 Infundibular peptides References Further reading 31. Thyroid gland 31.1 Introduction 31.2 Thyroid gland structure and development 31.2.1 Structure of the mature thyroid gland 31.2.2 Thyroid gland development 31.3 Thyroid hormone synthesis and release 31.3.1 Thyroid hormone synthesis 31.3.1.1 Iodide uptake and transport 31.3.1.2 Iodination and coupling in the colloid 31.3.1.3 Release into the circulation 31.3.2 Hypothalamic-Pituitary-Thyroid Axis 31.3.2.1 Control by the pituitary 31.3.2.2 Control by the hypothalamus 31.3.2.3 Development of the hypothalamic-pituitary-thyroid axis 31.3.3 Thyroid hormones in circulation 31.3.3.1 Avian thyroid hormone distributor proteins 31.3.3.2 Factors influencing thyroid hormone levels in circulation 31.4 Thyroid hormone metabolism and action 31.4.1 Thyroid hormone activation and degradation 31.4.1.1 Characterization of avian deiodinases 31.4.1.2 Role of deiodinases 31.4.2 Cellular uptake of thyroid hormones 31.4.2.1 Characterization of avian thyroid hormone transporters 31.4.3 Mechanism of action of thyroid hormones 31.4.3.1 Genomic actions via nuclear thyroid hormone receptors 31.4.3.1.1 Characterization of thyroid hormone receptors in birds 31.4.3.1.2 Thyroid hormone action mechanism via nuclear Thyroid hormone receptors 31.4.3.2 Alternative routes of thyroid hormone action 31.5 Physiological effects of thyroid hormones 31.5.1 Thyroid hormone effects on development 31.5.1.1 General development and hatching 31.5.1.1.1 Precocial versus altricial birds 31.5.1.1.2 Interaction with other hormones 31.5.1.2 Development of the brain 31.5.1.3 Role of maternal thyroid hormones 31.5.2 Thyroid hormone effects on metabolism and thermoregulation 31.5.2.1 Effects on intermediate metabolism 31.5.2.2 Effects on thermogenesis 31.5.3 Thyroid hormone effects on reproduction 31.5.3.1 Role in gonadal development and function 31.5.3.1.1 Impact of hypothyroidism 31.5.3.1.2 Impact of hyperthyroidism 31.5.3.2 Role in seasonal reproduction and molt 31.5.3.2.1 Effects on gonadal growth and regression 31.5.3.2.2 Effects on molting 31.6 Environmental influences on thyroid function 31.6.1 Impact of food availability 31.6.2 Impact of environmental temperature 31.6.3 Impact of chemical pollutants References 32. Mechanisms and hormonal regulation of shell formation: supply of ionic and organic precursors, shell mineralization 32.1 Introduction 32.2 Structure, composition, and formation of the eggshell 32.2.1 Structure and composition 32.2.2 Kinetics and site of shell membranes and shell formation 32.3 Mineral supply: a challenge for calcium metabolism 32.4 Hormones involved in calcium metabolism of laying hens: vitamin D, parathyroid hormone, calcitonin, and fibroblast growth f ... 32.4.1 Regulation of vitamin D metabolites in hens 32.4.2 Role of fibroblast growth factor-23 in regulation in calcium and phosphorus metabolism 32.4.3 Parathyroid hormone and related peptides 32.4.3.1 Chemistry, secretion, and function of parathyroid hormone 32.4.3.2 Regulation by parathyroid hormone of Calcium metabolism 32.4.4 Calcitonin and calcitonin gene-related peptides 32.5 Intestinal absorption of calcium 32.5.1 Mechanisms of intestinal calcium absorption 32.5.2 Regulation of Calcium absorption in laying hens 32.6 Medullary bone 32.6.1 Structure and composition 32.6.2 Regulation of medullary bone formation and resorption 32.6.2.1 Induction and maintenance of medullary bone by sex steroid hormones 32.6.2.2 Role of parathyroid hormone in daily mobilization of medullary bone 32.7 Uterine secretions of Calcium 32.7.1 Mechanisms of ionic transfers 32.7.1.1 Transcellular transfer of Calcium and bicarbonate 32.7.1.2 Vesicular secretion of calcium 32.7.2 Regulation of uterine calcium transfer 32.7.2.1 Regulation of the timing of ion secretion 32.7.2.2 Regulation of uterine ionic transporters 32.8 Mineralization of the eggshell 32.8.1 Mechanisms of shell mineralization and the role of organic matrix 32.8.1.1 Eggshell temporal and spatial deposition 32.8.1.2 Role of matrix proteins in the biomineralization process 32.8.2 Regulation of eggshell matrix protein synthesis References Further reading 33. Adrenals 33.1 Anatomy 33.1.1 Gross anatomy, blood supply, and innervation 33.1.2 Microanatomy 33.1.2.1 The chromaffin tissue 33.1.2.2 The adrenocortical tissue 33.1.2.3 Extrinsic and intrinsic adrenal innervation 33.2 Adrenocortical hormones 33.2.1 Corticosteroid secretory products 33.2.2 Other secretory products 33.2.3 Synthesis of corticosteroids 33.2.4 Transport of corticosteroids 33.2.5 Circulating concentrations of corticosterone and aldosterone 33.2.6 Secretion, clearance, and metabolism of corticosterone and aldosterone 33.2.7 General regulation of adrenocortical function 33.2.7.1 Adrenocorticotropin 33.2.7.2 Angiotensins 33.2.7.3 Other putative regulators 33.2.7.3.1 Stimulators and positive modulators 33.2.7.3.1.1 Prolactin and growth hormone 33.2.7.3.1.2 Calciotropic hormones 33.2.7.3.1.3 Humoral immune system 33.2.7.3.2 Inhibitors and negative modulators 33.2.7.3.2.1 Thyroid hormones 33.2.7.3.2.2 Androgens 33.2.8 Regulation of aldosterone secretion 33.2.8.1 Role of angiotensin II 33.2.8.2 Mechanism of Ang II action in avian adrenocortical cells 33.2.8.3 Action of adrenocorticotropin on aldosterone secretion 33.2.8.4 Action of atrial natriuretic peptide on aldosterone secretion 33.2.9 Overview of the hypothalamic-pituitary-adrenal axis 33.2.10 Adrenocortical function in development, maturation, and senescence 33.3 Physiology of adrenocortical hormones 33.3.1 Corticosteroid receptors and their action in target cells 33.3.2 Corticosteroids and intermediary metabolism 33.3.2.1 Protein metabolism 33.3.2.2 Lipid metabolism 33.3.3 Corticosteroids and electrolyte balance 33.3.4 Corticosteroids and immune function 33.3.5 Corticosteroids and behavior 33.4 Adrenal chromaffin tissue hormones 33.4.1 Catecholamine synthesis and secretion 33.4.2 Circulating catecholamines and stress response 33.4.3 Some physiological actions of norepinephrine and epinephrine 33.4.4 Changes in development, maturation, and senescence Acknowledgments References 34. Endocrine pancreas 34.1 Introduction 34.2 Pancreas embryogenesis and development 34.2.1 Morphology of avian pancreas (Fig. 34.1) 34.2.2 Distribution of avian pancreatic endocrine cells between the different pancreatic lobes 34.2.3 Development of avian pancreas 34.2.4 Pancreatic hormone levels during development and after hatching 34.3 Factors controlling pancreatic insulin and glucagon release in birds 34.3.1 Insulin 34.3.2 Glucagon 34.3.3 Somatostatin 34.3.4 Avian pancreatic polypeptide 34.4 Insulin and glucagon peptides 34.4.1 Insulin/preproinsulin, proinsulin, and C-peptides 34.4.2 Glucagon and glucagon-like peptides 34.4.2.1 Glucagon structure and physiological effects 34.4.2.2 GLP-1 34.4.2.3 GLP-2 34.5 Glucagon and insulin receptors 34.5.1 Glucagon receptors 34.5.2 Insulin receptor 34.5.2.1 Proximal insulin receptor substrates 34.5.2.2 PI3K/Akt 34.5.2.3 P70S6K 34.5.2.4 mTor 34.5.2.5 MAPK ERK1/2 pathway 34.6 General effects of glucagon and insulin 34.6.1 Insulin and embryonic or posthatch development 34.6.2 Insulin-glucagon and food intake 34.6.3 Insulin and the endocrine system 34.6.4 Insulin and glucose metabolism 34.6.5 Insulin-glucagon and lipid metabolism 34.6.6 Insulin and protein metabolism 34.6.7 Insulin and gene expression 34.7 Experimental or genetical models 34.8 Conclusion References 35. Reproduction in the female 35.1 Introduction 35.2 The ovary 35.2.1 Embryonic and posthatch development of the ovary 35.2.2 The juvenile ovary 35.2.3 The laying hen ovary 35.2.3.1 Follicle vasculature and blood flow 35.2.3.2 Follicle innervations 35.2.4 Follicle development, selection, and establishment of preovulatory hierarchy 35.2.5 Vitellogenesis 35.2.6 Oocyte maturation and ovulation 35.2.7 Postovulatory follicles 35.2.8 Ovarian steroidogenesis 35.2.9 Control of ovarian follicle development and functions 35.2.9.1 Gonadotropin-inhibitory hormone 35.2.9.2 Gonadotropins (luteinizing hormone and follicle-stimulating hormone) 35.2.9.3 Ovarian steroids 35.2.9.3.1 Progesterone 35.2.9.3.2 Androgens 35.2.9.3.3 Estrogens 35.2.9.4 Growth hormone 35.2.9.5 Prolactin and prolactin-like protein 35.2.9.6 Ghrelin 35.2.9.7 Thyroid hormones 35.2.9.8 Adipokines 35.2.10 Ovarian tissue remodeling 35.2.11 Follicle atresia 35.2.12 Chicken ovary as a model for human ovarian cancerogenesis 35.3 The oviduct 35.3.1 Infundibulum 35.3.2 Magnum 35.3.3 Isthmus 35.3.4 Shell gland 35.3.4.1 Eggshell calcification 35.3.4.2 Eggshell cuticle and pigment deposition 35.3.5 Vagina 35.3.6 Sperm storage in birds 35.3.7 Hormonal and physiological regulation of oviduct development and function 35.3.7.1 Ovarian steroids 35.3.7.2 Other factors 35.4 The ovulatory cycle 35.5 Egg transportation and oviposition 35.6 The egg 35.6.1 The yolk 35.6.2 The albumen 35.6.3 The eggshell 35.6.3.1 The shell membranes 35.6.3.2 The mammillary layer 35.6.3.3 The crystal layer 35.6.3.4 The cuticle 35.6.3.5 The respiration through the eggshell References Further reading 36. Reproduction in male birds 36.1 Introduction 36.2 Reproductive tract anatomy 36.2.1 Testis 36.2.2 Excurrent ducts 36.2.3 Accessory organs 36.3 Ontogeny of the reproductive tract 36.3.1 Overview 36.3.2 Formation of the undifferentiated Gonad 36.3.3 Gonadal differentiation and Müllerian duct regression 36.3.4 Formation of the excurrent ducts 36.4 Development and growth of the testis 36.4.1 Proliferation of somatic and stem cells in the testis 36.4.2 Differentiation of somatic cells within the testis 36.4.3 Initiation of meiosis 36.4.4 Altering the pattern of testis growth and maturation 36.5 Hormonal control of testicular function 36.5.1 Central control of testicular function 36.5.2 Control of adenohypophyseal function in males 36.5.3 Effects of gonadotropins on testicular function 36.6 Spermatogenesis and extragonadal sperm maturation 36.6.1 Spermatogenesis 36.6.2 Extragonadal sperm transport and maturation 36.7 Seasonal gonadal recrudescence and regression 36.7.1 Photoperiodic control of gonadal regression and recrudescence 36.7.2 Other factors affecting gonadal maturation and regression References 37. The physiology of the avian embryo 37.1 Introduction 37.2 The freshly laid egg 37.3 Incubation 37.3.1 Incubation period 37.3.2 Egg water content and shell conductance 37.3.3 Heat transfer 37.3.4 Energy use 37.4 Development of physiological systems 37.4.1 Gas exchange 37.4.2 Acid-base regulation 37.4.3 Cardiovascular system 37.4.3.1 Basic cardiovascular parameters 37.4.3.2 Mean heart rate 37.4.3.3 Instantaneous heart rate 37.4.3.4 Cardiovascular regulation 37.4.4 Osmoregulation 37.4.5 Thermoregulation 37.5 Artificial incubation 37.5.1 Preincubation egg storage 37.5.2 Egg turning 37.5.3 Ambient temperature and incubation 37.5.4 Humidity 37.6 Conclusions and future directions Acknowledgments References 38. Stress ecophysiology 38.1 Introduction 38.2 Stress, energy, and glucocorticoids 38.2.1 Allostasis: the concept and the model 38.2.2 Glucocorticoid levels 38.2.3 “Wear and tear” and the reactive scope model 38.3 Adrenocortical response to environmental change 38.3.1 Predictable versus unpredictable environmental change 38.3.2 Indirect, labile (short-term) perturbations 38.3.3 Direct, labile (short-term) perturbations and the “emergency life history stage” 38.3.4 Permanent (long-term) perturbations or “modifying factors” 38.4 Phenotypic plasticity and selection on the stress response 38.4.1 The stress response during development 38.4.2 Maternal effects 38.4.3 Modulation of the stress response 38.5 Field methods to study adrenocortical function 38.5.1 Obtaining adequate blood samples: capture and restraint protocols and the “stress series” 38.5.2 Quantifying the strength and sensitivity of adrenocortical responses 38.5.3 Phenotypic engineering 38.5.4 Corticosterone and its metabolites in tissues other than blood 38.5.4.1 Feathers 38.5.5 Corticosterone metabolites in droppings (excreta) Glossary of terms Acknowledgments References 39. Avian welfare: fundamental concepts and scientific assessment 39.1 Introduction 39.2 What is animal welfare? 39.3 Birds are sentient and their welfare should be considered 39.3.1 Birds are sentient and different states of consciousness can be recognized 39.4 How can bird welfare be scientifically assessed? 39.4.1 The Five Domains model for welfare assessment 39.4.2 Hierarchy of evidence to support specific affective experiences in birds 39.5 Avian welfare research to date 39.5.1 Key welfare issues in commercial poultry production 39.6 Case study—evaluation of the potential for chickens to experience negative states due to carbon dioxide stunning 39.7 General conclusions References 40. Reproductive behavior 40.1 Introduction 40.2 Regulation of reproductive behavior 40.3 Environmental factors 40.3.1 Temperature and climate change 40.3.2 Light 40.3.3 Food resources 40.3.4 Case study: urbanization 40.4 Social factors 40.4.1 Effects of males on conspecific females 40.4.2 Effects of females on conspecific males 40.4.3 Effects of males on conspecific males 40.4.4 Effects of females on conspecific females 40.5 Age and experience 40.6 Endocrine and neuroendocrine regulation of reproductive behavior 40.6.1 Gonadal steroids 40.6.2 Neurosteroids 40.6.3 Gonadotropin-releasing and gonadotropin-inhibitory hormones 40.6.4 Arginine vasotocin 40.6.5 Prolactin 40.6.6 Case study: the oscine vocal control system References 41. Growth 41.1 Introduction 41.1.1 Overview 41.1.2 Growth curves 41.1.2.1 Logistic equation 41.1.2.2 Gompertz model 41.1.3 Growth of different organs 41.2 Evolutionary perspectives of avian growth 41.3 Altricial versus precocial birds 41.4 Sexual dimorphism in growth 41.4.1 Overview 41.4.2 Sexual dimorphism in domesticated birds 41.4.3 Sexual dimorphism in wild birds 41.5 Growth hormone 41.5.1 Overview 41.5.2 Chemistry and evolution of GH 41.5.3 GH and growth 41.5.4 GH receptors 41.5.5 Sex-linked dwarf chickens as a model for growth hormone action 41.6 Insulin-like growth factors 41.6.1 Overview 41.6.2 Chemistry and evolution of IGF1 and IGF2 41.6.3 IGFs and growth 41.6.4 IGF1 and muscle and adipose growth 41.6.5 IGF receptors 41.6.6 Nutrition and IGF1 41.6.7 IGF1 and IGF2 in wild birds 41.6.8 Insulin-like growth factor–binding proteins 41.6.8.1 Overview 41.6.8.2 Nutrition and IGFBPs 41.6.9 Insulin-like growth factor 2–binding proteins 41.7 Thyroid hormones (hypothalamo–pituitary–thyroid axis) 41.7.1 Overview 41.7.2 Thyroid hormones and growth 41.7.3 Thyroid hormones and wild birds 41.8 Sex steroid hormones 41.8.1 Overview 41.8.2 Sex steroids and poultry 41.8.3 Sex steroids and wild birds 41.9 Adrenocorticotropin and glucocorticoids (hypothalamo–pituitary–adrenocortical axis) 41.9.1 Overview 41.9.2 Are glucocorticoids required for development and growth? 41.9.3 Glucocorticoid depression of growth 41.10 Insulin 41.11 Growth factors 41.11.1 Overview 41.12 Epidermal growth factor and transforming growth factor-α 41.12.1 Chemistry of EGF and TGF-α 41.12.2 EGFR receptor 41.12.3 Actions of EGF and TGF-α 41.13 Transforming growth factor-β 41.13.1 Structure of avian TGF-βs 41.13.2 Physiology of avian TGF-βs 41.13.3 Myostatin 41.13.3.1 Myostatin poultry 41.13.3.2 Myostatin in wild birds 41.14 Bone morphogenetic protein 41.14.1 Overview 41.14.2 Bone morphogenetic protein 1 and tolloid 41.14.3 Bone morphogenetic protein 2 41.14.4 Bone morphogenetic protein 3 41.14.5 Bone morphogenetic protein 4 41.15 Fibroblast growth factors 41.15.1 Overview 41.15.2 Endocrine FGFs, FGF receptors, and signal transduction 41.15.3 Fibroblast growth factors 19 41.15.4 FGF23 41.15.4.1 Overview 41.15.4.2 FGF23 actions 41.15.5 Other FGFs 41.15.6 FGF receptors 41.16 Neurotrophins 41.17 Cytokines 41.17.1 Cytokines 41.17.2 Tumor necrosis factor-α (TNF-α) 41.18 Genetics and growth 41.19 Nutrition and growth 41.20 Environment and growth 41.20.1 Light and growth References Further reading 42. Circadian rhythms 42.1 Environmental cycles 42.1.1 Light cycles 42.1.2 Temperature 42.1.3 Other physical cycles 42.1.4 Rhythms in the biotic environment 42.2 Circadian rhythms 42.2.1 Formal properties 42.2.2 Stability and lability of circadian rhythms 42.2.3 Entrainment 42.2.4 Masking 42.3 Photoreceptors 42.3.1 Encephalic photoreceptors 42.3.2 Pineal gland 42.3.3 Retina 42.4 Pacemakers 42.4.1 Pineal gland and melatonin 42.4.2 Retinae 42.4.3 Suprachiasmatic nuclei 42.5 Sites of melatonin action 42.5.1 Melatonin receptors 42.5.2 Mechanisms of action 42.6 Avian circadian organization 42.7 Molecular biology 42.7.1 Identification, characterization, and localization of molecular clockworks in birds 42.7.2 Peripheral oscillators in avian circadian clocks 42.7.3 Prospects for transgenesis and molecular manipulation of avian clocks 42.8 Conclusion and perspective References Further reading 43. Circannual cycles and photoperiodism 43.1 Annual cycles 43.1.1 Abiotic 43.1.1.1 Photoperiod 43.1.1.2 Temperature 43.1.1.3 Precipitation and wind 43.1.2 Biotic 43.2 Annual cycles of birds 43.3 Circannual rhythms 43.3.1 Circannual rhythms in the lab 43.3.2 Synchronization of circannual rhythms to environmental cues 43.4 Photoperiodism 43.4.1 Effects of photoperiod on avian physiological function 43.4.2 Role of photoreceptors 43.4.3 Role of circadian clocks in photoperiodic time measurement 43.4.4 Role of circadian system structures 43.5 Neuroendocrine regulation of photoperiodic time measurement 43.5.1 Photoperiodic control of gonadotropins and prolactin in seasonal reproduction 43.5.2 Role of the thyroid hormone in avian photoperiodism 43.5.3 Role of gonadal and neural steroids 43.5.4 Mechanisms of photoperiodic regulation of bird song 43.5.5 Mechanisms of photoperiodic regulation of migration 43.6 Molecular mechanisms of photoperiodism 43.7 Comparison to other vertebrate taxa 43.8 Conclusion References 44. Annual schedules 44.1 Introduction 44.2 Background: patterns of environmental variation and avian annual schedules 44.3 Effects of environmental cues on annual scheduling and underlying mechanisms 44.3.1 Photoperiodic response 44.3.2 Processing of nonphotic cues 44.3.2.1 Effects of temperature 44.3.2.2 Effects of food 44.3.2.3 Effects of behavioral factors 44.3.3 Integration of multiple cue types: parallel or serial processing? 44.4 Adaptive variation in cue processing mechanisms as it relates to life in different environments 44.5 Integrated coordination of stages and carryover effects 44.6 Variation in scheduling mechanisms and responses to rapid environmental change 44.7 Effects of seasonality on constitutive processes 44.7.1 Seasonal modulation of immune function 44.7.2 Seasonal modulation of responses to stressors 44.7.3 Seasonal modulation of metabolic machinery References 45. Regulation of body temperature: patterns and processes 45.1 Introduction 45.2 The evolution of avian endothermy 45.3 Models of avian thermoregulation 45.3.1 Overall heat balance 45.3.2 Avian endothermic homeothermy 45.3.3 Deviations from the Scholander–Irving model 45.3.4 Thermal conductance 45.4 Body temperature 45.4.1 Measurement of body temperature 45.4.2 Normothermic body temperature 45.4.3 Hyperthermic body temperature 45.4.3.1 Fever 45.4.4 Hypothermic body temperature 45.5 Avenues of heat transfer and behavioral modifications 45.5.1 Radiation 45.5.2 Convection 45.5.3 Conduction 45.5.4 Evaporation 45.5.4.1 Respiratory evaporative water loss 45.5.4.1.1 Panting 45.5.4.1.2 Gular flutter 45.5.4.2 Cutaneous evaporative water loss 45.5.4.3 Other avenues of evaporative cooling 45.5.5 Heat dissipation challenges in commercial poultry production 45.6 Metabolic heat production 45.6.1 Basal metabolic rate 45.6.2 Resting metabolic thermogenesis and cold tolerance 45.6.3 Metabolic costs of evaporative cooling 45.7 Physiological control of thermoregulation 45.7.1 Thermoception 45.7.2 Neuronal integration 45.7.3 Efferent outputs 45.7.4 Circulatory adjustments of heat transfer 45.8 Development of thermoregulation 45.8.1 The altricial–precocial spectrum 45.8.2 Developmental plasticity of thermoregulation 45.9 Avian thermoregulation and global heating References 46. Flight 46.1 Introduction 46.2 Scaling effects of body size 46.3 Energetics of bird flight 46.3.1 Techniques used to study the mechanical power output required for flight 46.3.1.1 Aerodynamic and biomechanical models 46.3.1.2 Air flow visualization and direct force measurements 46.3.2 Techniques used to measure the power input required for flight 46.3.2.1 Mass loss 46.3.2.2 Doubly labeled water 46.3.2.3 13C sodium bicarbonate 46.3.2.4 Telemetry and data logging 46.3.2.4.1 Heart rate 46.3.2.4.2 Accelerometry 46.3.2.5 Respirometry 46.3.2.6 Modeling of cardiovascular function 46.3.3 Empirical data concerning the power input during flight 46.3.3.1 Gliding and soaring flight 46.3.3.2 Forward flapping flight 46.3.3.3 To flap or not to flap: that is the question 46.3.3.4 Hovering flight and hummingbirds 46.3.3.5 Scaling of flight muscle efficiency and elastic energy storage 46.4 The flight muscles of birds 46.4.1 Flight muscle morphology and fiber types 46.4.2 Biochemistry of the flight muscles 46.4.3 Neurophysiology and muscle function 46.5 Development of locomotor muscles and preparation for flight 46.6 Metabolic substrates for endurance flight 46.7 The cardiovascular system 46.7.1 The cardiac muscles 46.7.2 Cardiovascular adjustments during flight 46.8 The respiratory system 46.8.1 Ventilatory adjustments during flight and ventilatory/locomotor coupling 46.8.2 Respiratory water loss 46.8.3 Temperature control 46.9 Migration and long-distance flight performance 46.9.1 Preparation for migration 46.9.2 Migratory behavior 46.10 Flight at high altitude 46.10.1 Physiology and adaptation Acknowledgments References 47. Physiological challenges of migration 47.1 Introduction 47.2 Adaptations of birds for long-duration migratory flights 47.2.1 Cardiovascular and respiratory general adaptations 47.2.2 Metabolism and damage control 47.2.3 Immunity 47.2.4 Sensory systems and navigation 47.2.5 Endocrine system and the environment 47.3 Endocrinology of migration 47.3.1 Vernal stage 47.3.1.1 Synchronization with the environment: initial predictive cue 47.3.1.2 Developmental phase: hyperphagia and fattening 47.3.1.3 Thyroid hormones 47.3.1.4 Testosterone 47.3.1.5 Insulin and glucagon 47.3.1.6 Glucocorticoids (Box 47.1) 47.3.1.7 Leptin 47.3.1.8 Ghrelin 47.3.1.9 Prolactin 47.3.1.10 Hormones of flight muscle hypertrophy 47.3.1.11 Mature expression—hormones of the fueling and flight cycle 47.3.1.12 Termination: arrival biology 47.3.2 Autumnal stage 47.3.2.1 Development phase 47.3.2.2 Thyroid hormones 47.3.2.3 Androgen 47.3.2.4 Glucagon 47.3.2.5 Mature expression—hormones of the fueling and flight cycle 47.3.2.6 Stopover: arrival 47.3.2.7 Stopover: departure 47.3.2.8 Termination—arrival 47.3.3 Conclusions to endocrine system 47.4 Physiological aspects of migratory preparation and long-duration flight: fueling/flight cycle 47.4.1 Introduction 47.4.2 Feeding 47.4.2.1 Hyperphagia 47.4.2.2 Balancing the energy costs of hyperphagia 47.4.2.3 Fasting and refeeding during migration 47.4.2.4 Diet selection during migration 47.4.3 Fuel storage 47.4.3.1 Fats are the primary fuel 47.4.3.2 Physiological challenges associated with fatty acids as fuels 47.4.3.3 Fat quality is dynamic, affected mostly by diet, and changes seasonally during migration 47.4.3.4 Physiology of protein storage and flight muscle preparation 47.4.4 Fuel use 47.4.4.1 Patterns of change in fatty acid composition of birds during migratory stage: proposed hypotheses 47.4.4.2 The oxidative costs of burning fat as fuel 47.4.4.3 Carry over effects from winter to breeding 47.4.4.4 Fat quality matters 47.4.4.5 Testing the fuel, membrane, and signal hypotheses 47.4.4.6 Fatty acid transport really matters 47.4.4.7 Protein use during flight and water balance 47.4.4.8 Rebuilding protein stores after flight 47.4.5 Temperature regulation during flight 47.4.6 Flight at high altitude 47.5 Beyond systems References 48. Actions of toxicants and endocrine disrupting chemicals in birds 48.1 Introduction 48.2 Environmental chemicals: utilities and hazards? 48.2.1 Chemical sources and production 48.2.2 Assessing the safety of chemicals 48.2.2.1 Assessing multigenerational impacts in the Japanese quail model 48.2.2.2 Effects of environmental chemical impacts in wild birds 48.3 Life cycle of chemicals: endocrine disrupting chemicals in the environment 48.3.1 Parent compounds and their metabolites in the environment 48.3.2 Environmental contamination by industrial chemicals and mixtures 48.4 Classes of endocrine disrupting chemicals and their physiological actions 48.4.1 Categorizing endocrine disruptors according to structure and function 48.4.2 Mechanisms of action of endocrine disrupting chemicals in vertebrates 48.4.3 Interactions of endocrine disrupting chemicals and specific receptors 48.4.4 Discerning endocrine disrupting chemical impacts in field birds 48.4.5 Establishing reliable and sensitive measures of adverse impacts 48.5 Methods for assessing risk 48.5.1 Predicting impact: toxic equivalency factor and toxic equivalent quotient 48.6 Frameworks for visualizing risk and effects from endocrine disrupting chemical exposure 48.6.1 Visualizing predicting risk through influence diagrams and adverse outcomes pathways 48.6.1.1 Influence diagrams 48.6.1.2 Adverse outcomes pathways 48.6.2 The one health concept 48.7 Why are birds unique? 48.7.1 Altricial versus precocial birds: ontogeny and vulnerable life stages 48.7.2 Maternal deposition of compounds 48.7.3 Posthatch growth and maturation 48.8 Investigating endocrine disrupting chemical effects in an avian model: the Japanese quail two-generation test 48.8.1 Pertinent endpoints for assessing potential endocrine disruption 48.8.2 Survival 48.8.3 Food consumption and body weight 48.8.4 Accessory sex characteristics; sexual maturation 48.8.5 Behavioral indicators 48.8.6 Egg production, shell quality, fertility, and embryo viability 48.8.7 Neuroendocrine systems regulating reproduction, metabolism, and stress 48.8.8 Songbirds 48.8.9 Metabolic and thyroid systems 48.8.10 Histopathology 48.9 Conclusions Acknowledgments References 49. Blood supplement References Further reading 50. Carbohydrate supplementary materials References Further reading Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z