دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3rd ed نویسندگان: Riley. Kenneth Franklin, Hobson. Michael Paul سری: ISBN (شابک) : 9780511168048, 0521679737 ناشر: Cambridge University Press سال نشر: 2006 تعداد صفحات: 546 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب Student solution manual for Mathematical methods for physics and engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهنمای حل دانشجویی روش های ریاضی فیزیک و مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این راه حل راه حل همراه با ویرایش سوم روش های ریاضی برای فیزیک و مهندسی، یک کتاب درسی ریاضیات در مقطع کارشناسی بسیار تحسین شده برای دانشجویان علوم فیزیکی است. این شامل راه حل های کار شده کامل برای بیش از 400 تمرین در کتاب اصلی است که همراه با نکات و پاسخ ارائه شده است. کتاب ریاضی برای دانش آموزان علوم فیزیکی. این شامل راه حل های کامل کار شده برای بیش از 400 تمرین در کتاب اصلی است که با نکات و پاسخ ارائه شده است.
This solutions manual accompanies the third edition of
Mathematical Methods for Physics and Engineering, a highly
acclaimed undergraduate mathematics textbook for physical
science students. It contains complete worked solutions to over
400 exercises in the main textbook, that are provided with
hints and answers.
Abstract: This solutions manual accompanies the third edition
of Mathematical Methods for Physics and Engineering, a highly
acclaimed undergraduate mathematics textbook for physical
science students. It contains complete worked solutions to over
400 exercises in the main textbook, that are provided with
hints and answers
Riley K.F., Hobson M.P. -- Solutions Manual for Mathematical Methods for Physics and Engineering, 3e, 2006 Cover2 Contents Contents2 Preface Introduction 1. Preliminary algebra Polynomial equations 1.1 1.2 1.3 1.4 1.5 1.6 Trigonometric identities 1.7 1.8 1.9 1.10 1.11 Coordinate geometry 1.12 1.13 1.14 Partial fractions 1.15 1.16 1.17 1.18 Binomial expansion 1.19 1.20 Proof by induction and contradiction 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 Necessary and su.cient conditions 1.30 1.31 1.32 1.33 2. Preliminary calculus 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50 3. Complex numbers and hyperbolic functions 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 4. Series and limits 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29 4.30 4.31 4.32 4.33 4.34 4.35 4.36 5. Partial differentiation 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.30 5.31 5.32 5.33 5.34 5.35 6. Multiple integrals 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 7. Vector algebra 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 7.18 7.19 7.20 7.21 7.22 7.23 7.24 7.25 7.26 7.27 8. Matrices and vector spaces 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19 8.20 8.21 8.22 8.23 8.24 8.25 8.26 8.27 8.28 8.29 8.30 8.31 8.32 8.33 8.34 8.35 8.36 8.37 8.38 8.39 8.40 8.41 8.42 8.43 9. Normal modes 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 10. Vector calculus 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12 10.13 10.14 10.15 10.16 10.17 10.18 10.19 10.20 10.21 10.22 10.23 10.24 11. Line, surface and volume integrals 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26 11.27 11.28 12. Fourier series 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 12.12 12.13 12.14 12.15 12.16 12.17 12.18 12.19 12.20 12.21 12.22 12.23 12.24 12.25 12.26 13. Integral transforms 13.1 13.2 13.3 13.4 13.5 Note 13.6 13.7 13.8 13.9 13.10 13.11 13.12 13.13 13.14 13.15 13.16 13.17 13.18 13.19 13.20 13.21 13.22 13.23 13.24 13.25 13.26 13.27 13.28 14. First-order ordinary differential equations 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13 14.14 14.15 14.16 14.17 14.18 14.19 14.20 14.21 14.22 14.23 14.24 14.25 14.26 14.27 14.28 14.29 14.30 14.31 15. Higher-order ordinary differential equations 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 15.10 15.11 15.12 15.13 15.14 15.15 15.16 15.17 15.18 15.19 15.20 15.21 15.22 15.23 15.24 15.25 15.26 15.27 15.28 15.29 15.30 15.31 15.32 15.33 15.34 15.35 15.36 15.37 16. Series solutions of ordinary differential equations 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 16.10 16.11 16.12 16.13 16.14 16.15 16.16 17. Eigenfunction methods for differential equations 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 17.10 17.11 17.12 17.13 17.14 17.5 18. Special functions 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 18.10 18.11 18.12 18.13 18.14 18.15 18.16 18.17 18.18 18.19 18.20 18.21 18.22 18.23 18.24 19. Quantum operators 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 19.10 20. Partial differential equations: general and particular solutions 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11 20.12 20.13 20.14 20.15 20.16 20.17 20.18 20.19 20.20 20.21 20.22 20.23 20.24 20.25 21. Partial differential equations: separation of variables and other methods 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 21.10 21.11 21.12 21.13 21.14 21.15 21.16 21.17 21.18 21.19 21.20 21.21 21.22 21.23 21.24 21.25 21.26 21.27 21.28 22. Calculus of variations 22.1 22.2 22.3 22.4 22.5 22.6 22.7 22.8 22.9 22.10 22.11 22.12 22.13 22.14 22.15 22.16 22.17 22.18 22.19 22.20 22.21 22.22 22.23 22.24 22.25 22.26 22.27 22.28 22.29 23. Integral equations 23.1 23.2 23.3 23.4 23.5 23.6 23.7 23.8 23.9 23.10 23.11 23.12 23.13 23.14 23.15 23.16 24. Complex variables 24.1 24.2 24.3 24.4 24.5 24.6 24.7 24.8 24.9 24.10 24.11 24.12 24.13 24.14 24.15 24.16 24.17 24.18 24.19 24.20 24.21 24.22 25. Applications of complex variables 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 25.10 25.11 25.12 25.13 25.14 25.15 25.16 25.17 25.18 25.19 25.20 25.21 25.22 25.23 26. Tensors 26.1 26.2 26.3 26.4 26.5 26.6 26.7 26.8 26.9 26.10 26.11 26.12 26.13 26.14 26.15 26.16 26.17 26.18 26.19 26.20 26.21 26.22 26.23 26.24 26.25 26.26 26.27 26.28 26.29 27. Numerical methods 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 27.9 27.10 27.11 27.12 27.13 27.14 27.15 27.16 27.17 27.18 27.19 27.20 27.21 27.22 27.23 27.24 27.25 27.26 27.27 28. Group theory 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 28.10 28.11 28.12 28.13 28.14 28.15 28.16 28.17 28.18 28.19 28.20 28.21 28.22 28.23 29. Representation theory 29.1 29.2 29.3 29.4 29.5 29.6 29.7 29.8 29.9 29.10 29.11 29.12 29.13 30. Probability 30.1 30.2 30.3 30.4 30.5 30.6 30.7 30.8 30.9 30.10 30.11 30.12 30.13 30.14 30.15 30.16 30.17 30.18 30.19 30.20 30.21 30.22 30.23 30.24 30.25 30.26 30.27 30.28 30.29 30.30 30.31 30.32 30.33 30.34 30.35 30.36 30.37 30.38 30.39 30.40 31. Statistics 31.1 31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.9 31.10 31.11 31.12 31.13 31.14 31.15 31.16 31.17 31.18 31.19 31.20 Riley K.F., Hobson M.P., Bence S.J. - Instructor\'s Solutions for Mathematical Methods for Physics and Engineering Hobson,Riley-Student Solution Manual for Mathematical Methods for Physics and Engineering Third Edition Cover Half-title Title Copyright Contents Preface Hobson,Riley-Mathematical-Methods-for-Physics-and-Engineering3eSoln Introduction 1 Preliminary algebra 2 Preliminary calculus 3 Complex numbers and hyperbolic functions 4 Series and limits 5 Partial differentiation 6 Multiple integrals 7 Vector algebra 8 Matrices and vector spaces 9 Normal modes 10 Vector calculus 11 Line, surface and volume integrals 12 Fourier series 13 Integral transforms 14 First-order ODEs 15 Higher-order ODEs 16 Series solutions of ODEs 17 Eigenfunction methods for ODEs 18 Special functions 19 Quantum operators 20 PDEs;general and particular solutions 21 PDEs:separation of variables 22 Calculus of variations 23 Integral equations 24 Complex variables 25 Applications of complex variables 26 Tensors 27 Numerical methods 28 Group theory 29 Representation theory 30 Probability 31 Statistics