دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بوم شناسی ویرایش: 2nd ed., rev. and expanded نویسندگان: Kunio Esumi. Minoru Ueno سری: Surfactant science series 112 ISBN (شابک) : 9780824740443, 0824740440 ناشر: Marcel Dekker سال نشر: 2003 تعداد صفحات: 794 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Structure-Performance Relationships in Surfactants به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روابط ساختار و عملکرد در سورفاکتانت ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در پاسخ به افزایش علاقه به تحقیقات سورفکتانت که توسط نوآوری اخیر، روابط ساختار-عملکرد در سورفکتانت ها، ایجاد شده است، ویرایش دوم پیشرفت های جدیدی را در درک ما از خواص و عملکرد سورفکتانت ها در رابط های هوا-مایع، مایع-مایع و جامد-مایع بررسی می کند. ، برجسته کردن هفت فصل جدید و مطالب با دقت به روز شده برای منعکس کننده روندهای فعلی. این نسخه مواد جدیدی را در مورد جذب سورفکتانتهای تشکیلدهنده وزیکول در سطح مشترک هوا و آب، سورفکتانتهای فلورینهدار با دو زنجیره آبگریز، ویژگیهای فعال سطحی سورفکتانتهای نوع تلومر با چندین زنجیره هیدروکربنی، و رفتار ارتباطی پلیمرهای دندریتیک آمفیفیل ارائه میکند. در میان بسیاری از موضوعات دیگر
In response to intensifying interest on surfactant research brought on by recent innovation, Structure-Performance Relationships in Surfactants, Second Edition examines novel developments in our understanding of the properties and performance of surfactants at air-liquid, liquid-liquid, and solid-liquid interfaces, highlighting seven new chapters and carefully updated material to reflect current trends. This edition presents new material on the adsorption of vesicle-forming surfactants at the air-water interface, fluorinated surfactants having two hydrophobic chains, surface-active properties of telomer-type surfactants having several hydrocarbon chains, and the association behavior of amphiphilic dendritic polymers, among many other topics.
STRUCTURE-PERFORMANCE RELATIONSHIPS IN SURFACTANTS Second Edition, Revised and Expanded......Page 1
SURFACTANT SCIENCE SERIES......Page 3
Preface......Page 8
Table of Contents......Page 10
Contributors......Page 12
I. INTRODUCTION......Page 14
Table of Contents......Page 0
B. Size Distribution of Aggregates......Page 16
1. Critical Micelle Concentration (CMC)......Page 18
3. Aggregate Size Polydispersity......Page 19
D. Sphere-to-Rod Transition of Micelles......Page 20
B. Geometrical Relations for Aggregates......Page 23
C. Packing Parameter and Predicting Aggregate Shapes......Page 24
D. Estimating Equilibrium Area from Tanford’s Free Energy Model......Page 26
E. Predictive Power of Molecular Packing Model......Page 28
F. Neglected Role of the Surfactant Tail......Page 29
1. Contributions to the Free Energy of Micellization......Page 30
3. Packing and Deformation of the Surfactant Tail......Page 31
4. Formation of Aggregate Core–Water Interface......Page 32
6. Headgroup Dipole Interactions......Page 34
7. Headgroup Ionic Interactions......Page 35
8. Headgroup Interactions for Oligomeric Headgroups......Page 36
9. Headgroup Mixing in Corona Region......Page 37
11. Formation of Core–Corona Interface......Page 40
2. Calculations Using the Maximum-Term Method......Page 42
3. Calculations for Rodlike Micelles......Page 43
1. Estimation of Tail Volume......Page 44
2. Estimation of Extended Tail Length......Page 46
5. Estimation of xwe......Page 47
1. Influence of Free Energy Contributions on Aggregation Behavior......Page 48
2. Influence of Tail Groups and Headgroups on Aggregation Behavior......Page 49
3. Influence of Ionic Strength on Aggregation Behavior......Page 52
4. Influence of Temperature on Aggregation Behavior......Page 53
5. Transition from Spherical to Rodlike Micelles......Page 56
6. Formation of Bilayer Vesicles......Page 61
7. Influence of Polyoxyethylene Headgroups......Page 62
A. Size and Composition Distribution of Micelles......Page 69
2. Deformation of the Surfactant Tail......Page 71
3. Formation of Aggregate Core–Water Interface......Page 72
5. Headgroup Dipole Interactions......Page 73
6. Headgroup Ionic Interactions......Page 74
8. Free Energy Model and Mixture Nonideality......Page 75
1. Estimation of Molecular Constants and Computational Approach......Page 76
2. Nonionic Hydrocarbon–Nonionic Hydrocarbon Mixtures......Page 77
3. Ionic Hydrocarbon–Ionic Hydrocarbon Mixtures......Page 79
4. Ionic Hydrocarbon–Nonionic Hydrocarbon Mixtures......Page 82
5. Anionic Hydrocarbon–Cationic Hydrocarbon Mixtures......Page 86
6. Anionic Fluorocarbon–Nonionic Hydrocarbon Mixtures......Page 89
7. Anionic Hydrocarbon–Anionic Fluorocarbon Mixtures......Page 91
A. Polymer–Surfactant Association Structures......Page 94
1. Modi.cation of Free Energy Contributions Due to Polymer......Page 97
D. Interaction of Polymer with Globular Micelles......Page 99
E. Interaction of Polymer with Rodlike Micelles......Page 102
A. Aggregation of Block Copolymers in Selective Solvents......Page 103
B. Aggregate Shapes and Geometrical Relations......Page 105
C. Free Energy of Micellization of Block Copolymers......Page 106
1. Change in State of Dilution of Block A......Page 107
2. Change in State of Deformation of Block A......Page 108
3. Change in State of Dilution of Block B......Page 109
5. Localization of the Copolymer Molecule......Page 110
D. Predicted Aggregation Behavior of Block Copolymers......Page 111
2. Influence of Free Energy Contributions......Page 112
3. Predicted Micellization Behavior......Page 113
4. Aggregate Shape Transitions......Page 115
VIII. CONCLUSIONS......Page 117
REFERENCES......Page 118
I. INTRODUCTION......Page 123
B. Pseudophase Separation Models......Page 126
C. Mass Action Models......Page 127
D. Self-Consistent-Field Models......Page 128
A. Adsorbed Layers, Surface Micelles, Hemimicelles, and Admicelles......Page 130
B. Trends in Surfactant Adsorption on Solid Surfaces......Page 131
C. Surface Heterogeneity and Surfactant Adsorption......Page 134
1. Adsorbed Layers......Page 136
2. Adsorbed Layers: SCFA Theory......Page 138
3. Surface Aggregates......Page 139
4. Aggregates: SCFA Theory......Page 141
1. Adsorbed Layers......Page 142
2. Adsorbed Layers: SCFA Theory......Page 148
3. Surface Aggregates......Page 149
E. Conclusion......Page 151
A. General Outline......Page 152
1. Volume Fractions of Free Segments......Page 154
2. Volume Fractions of Segments Belonging to a Chain......Page 155
3. Electrostatic Interactions......Page 156
5. Excess Free Energy for the Creation of a Micelle and Excess Amounts......Page 159
C. Two-Dimensional SCFA......Page 160
D. Thermodynamics of Small Systems......Page 162
E. General Parameter Values......Page 163
A. Aggregate Shape......Page 164
B. Structure of the Micelles......Page 165
1. Adsorpion Isotherms......Page 167
2. Structure of the Adsorbed Layer......Page 168
1. Parameter Values......Page 169
2. Comparison of 1D and 2D SCFA Calculations......Page 170
3. Surface Micelles......Page 172
A. Parameter Values......Page 174
B. Aggregate Shape and Structure of the Micelles......Page 175
C. Chain Branching and Micellization......Page 178
1. Adsorption Isotherms and Structure of the Layer......Page 181
1. Adsorption Isotherms......Page 183
2. Structure of the Adsorbed Layer......Page 185
3. Chain Branching and Adsorption......Page 187
4. Anionic Surfactant Adsorption on Metal Oxides......Page 188
5. Surface Charge and Surfactant Adsorption......Page 189
6. Anionic and Cationic Surfactant Adsorption on Rutile......Page 190
7. Remarks on the SCFA Model......Page 191
1. General Considerations and Parameter Values......Page 192
2. Adsorption Isotherms......Page 193
3. Surface Charge Adjustment......Page 194
4. Structure of the Adsorbed Layer......Page 196
5. Alkyl Pyridinium Surfactant Adsorption on Silica......Page 197
6. Surface Charge of Silica and Surfactant Adsorption......Page 199
7. Remarks on the SCFA Model......Page 200
Acknowledgment......Page 201
REFERENCES......Page 202
I. INTRODUCTION......Page 209
II. ADSORPTION OF VESICLE-FORMING SINGLE-SURFACTANT SYSTEMS......Page 210
A. Double-Tailed Surfactants......Page 211
B. Ion-Pair Surfactants......Page 214
III. ADSORPTION OF VESICLE-FORMING BINARY SURFACTANT MIXTURES......Page 219
A. Simple Model of the Molality Versus Mole Fraction Diagram of Aggregate Formation......Page 222
B. Bicationic Surfactants......Page 231
REFERENCES......Page 235
1. Chemical Structures......Page 238
3. Surface Tension......Page 242
4. Micelle Formation......Page 245
5. Effects of pH......Page 247
6. Aggregation Number......Page 248
(a) Solubilization of Cholesterol.......Page 250
(b) Absorption of Solubilized Vitamin E......Page 252
B. Binary Mixtures of Epimer Bile Salts and Octaoxyethylene Glycol-n-Decylether......Page 253
1. Surface Tension......Page 254
2. Hydrophobicity......Page 258
3. Aggregation Number......Page 264
4. Molecular Orientation of NaGCDC and NaGUDC in Micelles Estimated by 1H NMR Measurements......Page 265
5. Solubilization......Page 269
(a) Dependencies of Cholesterol Solubilization with Respect to Total Surfactant Concentration at 25 and 37C.......Page 271
(b) Dependencies of Cholesterol Solubilization with Respect to Mole Fraction of Bile Salts.......Page 273
(c) Thermodynamic Analysis of Cholesterol Solubilization.......Page 275
1. Properties of Binary Mixed Micelles of Ditetraethylene. Glycol Dodecyl Ether (C122E4) and Bile Salts: Comparison with the Mixed System of Octaethylene Glycol Mono-n-Decyl Ether......Page 278
2. Solubility in Organic Solvents......Page 288
B. Calcification of Cholesterol Gallstones......Page 289
REFERENCES......Page 293
II. STRUCTURAL FEATURES OF BIOSURFACTANTS......Page 296
III. PRODUCTION OF BIOSURFACTANTS......Page 297
IV. DEVELOPMENT OF BIOSURFACTANTS......Page 298
A. Spiculisporic Acid......Page 299
B. Sophorolipids......Page 306
C. Rhamnolipids......Page 307
E. Surfactin......Page 311
F. Aescin......Page 313
REFERENCES......Page 316
I. INTRODUCTION......Page 320
II. TYPICAL SURFACTANTS BEARING RING-STRUCTURED HYDROPHILIC GROUPS......Page 321
III. SURFACTANTS OF ALICYCLIC HYDROPHOBIC GROUPS......Page 322
IV. CROWN ETHER-TYPE SURFACTANTS......Page 325
A. Surface Activity......Page 326
B. Transportation and Flotation......Page 328
A. Surface Activity......Page 329
B. Solubilization of Dye Salts......Page 331
A. Surface Activity......Page 332
B. Recovery of Cs+......Page 335
C. Emulsification......Page 337
D. Liquid Surfactant-Membrane......Page 339
E. Solubilization......Page 340
F. Dispersion......Page 345
A. Surface Activity......Page 346
C. Solubilization and Dispersion......Page 348
REFERENCES......Page 349
I. INTRODUCTION......Page 352
A. Air–Solution Interface......Page 355
C. Solid–Solution Interface......Page 360
A. Critical Micelle Concentration......Page 363
B. Micelle Ionization Degree......Page 365
C. Thermodynamics of Micellization......Page 366
D. Solubilization......Page 367
V. MICELLE SIZE AND SHAPE......Page 368
VI. MICROSTRUCTURE OF AQUEOUS SOLUTIONS OF DIMERIC SURFACTANTS......Page 371
VII. RHEOLOGY OF AQUEOUS SOLUTIONS OF DIMERIC SURFACTANTS......Page 376
VIII. MIXED MICELLIZATION......Page 377
IX. PHASE BEHAVIOR......Page 380
A. Dynamics of Micelles of Dimeric Surfactants......Page 381
B. Oligomeric Surfactants......Page 382
C. Interactions Between Dimeric Surfactants and Water- Soluble Polymers......Page 383
D. Specific Uses of Dimeric Surfactants......Page 384
XI. CONCLUSIONS......Page 385
REFERENCES......Page 386
I. INTRODUCTION......Page 392
II. SYNTHESIS AND APPLICATIONS OF FLUORINATED DOUBLE CHAIN-TYPE SURFACTANTS (I) [1–4]......Page 393
A. Synthesis of Intermediates Bis(polyfluoroalkyl)maleates......Page 394
1. Synthesis of F(CF2)8(CH2)2OCOCH2CH(SO3Na)COO(CH2)2 (CF2)8F......Page 395
1. Flocculating-Dispersing Action on Magnetite Particles of Fluorosurfactants......Page 397
3. ESCA Analysis of Neighborhood of Magnetite Surface Modified with Fluorosurfactant......Page 400
5. Water Repellency of Magnetite Surface Modified with Fluorosurfactant......Page 401
III. SYNTHESIS AND APPLICATIONS OF FLUOROSURFACTANTS (II) [6]......Page 402
2. Perfluoroalkylation [12]......Page 403
3. Synthesis of Hybrid-Type Surfactants......Page 404
B. Properties and Applications of Hybrid-Type Surfactants......Page 405
REFERENCES......Page 408
I. INTRODUCTION......Page 410
II. LIPID–LYSINE TELOMERS......Page 411
III. QUATERNARY AMINO SILOXANE TELOMERS......Page 412
IV. MALEIC DERIVATIVE ANIONIC TELOMERS......Page 413
A. Surface Tension......Page 414
B. Foaming Property......Page 417
C. Emulsification Power......Page 418
A. Surface Tension......Page 420
B. Foaming Property......Page 422
C. Emulsification Power......Page 423
VI. N-(a-CARBOXYALKYL)ACRYLAMIDE ANIONIC TELOMERS......Page 424
A. Surface Tension......Page 425
B. Foaming Property......Page 426
C. Emulsification Power......Page 428
A. Surface Activity......Page 429
B. Dispersion......Page 432
1. Surface Tension......Page 433
2. Foaming Property......Page 435
3. Emulsification Power......Page 436
A. Surface Tension......Page 437
B. Emulsification Power......Page 440
REFERENCES......Page 441
I. INTRODUCTION......Page 444
A. General Behavior......Page 446
B. Results on Various Viscoelastic Surfactant Systems......Page 450
C. Mechanisms for the Different Scaling Behavior......Page 454
D. Rheological Measurements on Viscoelastic Solutions in the kHz Range......Page 458
E. SANS Measurements on Viscoelastic Surfactant Solutions Under Shear......Page 461
F. Overview and General Remarks on Viscoelastic Solutions from Surfactants......Page 463
A. The Conditions for the Existence of Vesicles......Page 465
B. Freeze-Fracture Electron Microscopy......Page 467
C. Rheological Properties of the Vesicle Solutions......Page 468
D. Model for the Shear Modulus......Page 473
E. Recent Results......Page 476
A. General......Page 479
B. Under What Conditions Do We Find Drag-Reducing Surfactants?......Page 482
C. SANS Measurements on Shear-Induced Structures......Page 488
REFERENCES......Page 490
I. INTRODUCTION......Page 495
A. Micellar Growth with Increasing Temperature......Page 496
1. Virial Coefficients Obtained from Conventional Methods......Page 497
2. Information Obtained from the Ratio of Mutual Diffusion to Self-Diffusion Coefficient......Page 498
(b) Critical Effects.......Page 501
1. Concentration and Temperature Dependence of Mean Aggregation Number in Extremely Dilute Solutions......Page 502
2. Thermodynamic Models for Micellar Growth......Page 505
A. Analogy with Polymer Solutions Exhibiting Critical Demixing......Page 509
1. Self-Diffusion Behaviors in Entangled Polymers and Ionic Micelles......Page 512
2. Self-Diffusion Behaviors in Nonionic Surfactant Systems......Page 513
C. Structural Relaxation and Self-Diffusion Processes......Page 516
D. Three-Dimensional Network Formed by Connections of Wormlike Micelles......Page 520
A. Variation in Structures of Lamellar Phase with Concentration and Temperature......Page 522
C. Effects of Adding Fatty Acid......Page 526
V. CONCLUDING REMARKS......Page 528
REFERENCES......Page 530
I. INTRODUCTION......Page 535
II. AMPHIPHILIC DENDRIMERS HAVING A CONCENTRIC STRUCTURE......Page 536
III. AMPHIPHILIC HYBRIDS OF DENDRIMERS WITH LINEAR CHAINS......Page 541
IV. AMPHIPHILIC POLYDENDRIMERS......Page 545
V. AGGREGATES OF AMPHIPHILIC DENDRITIC POLYMERS......Page 547
VI. CONCLUSIONS......Page 551
REFERENCES......Page 552
GLOSSARY......Page 556
I. INTRODUCTION......Page 557
II. POLYMER–SURFACTANT INTERACTIONS: EFFECT OF THE POLYMER HYDROPHOBICITY......Page 559
A. Binding Isotherms......Page 560
1. Strongly Hydrophilic Polymers......Page 561
3. Polymers of Intermediate Hydrophobicity......Page 563
B. Critical Aggregation Concentration......Page 566
C. Aggregation Number (Size) of Polymer-Bound Surfactant Aggregates......Page 569
(a) Neutral Polymer/Surfactant Systems.......Page 570
(b) Polyelectrolyte/Oppositely Charged Surfactant Systems.......Page 571
(a) Polysoap/Oppositely Charged Surfactant Systems.......Page 574
(b) Polysoap/Surfactant of Like Charge Systems.......Page 575
3. Polymers of Intermediate Hydrophobicity......Page 576
D. Microviscosity in the Polymer-Bound Surfactant Aggregates......Page 577
III. POLYMER/SURFACTANT INTERACTIONS: EFFECT OF THE NATURE OF THE SURFACTANT HEADGROUP......Page 579
IV. MICROSTRUCTURES IN POLYMER/SURFACTANT SOLUTIONS......Page 586
V. DYNAMICS OF POLYMER-BOUND SURFACTANT AGGREGATES......Page 589
VI. SOLUBILIZATION IN POLYMER-BOUND SURFACTANT AGGREGATES......Page 590
A. Air–Solution Interface......Page 592
B. Solid–Solution Interface......Page 593
A. Structure of Polymer/Surfactant Complexes in the Gel State......Page 594
B. Structure of Polymer/Surfactant Complexes in the Solid State......Page 596
IX. CONCLUSIONS......Page 598
REFERENCES......Page 600
I. INTRODUCTION......Page 608
II. CUBIC PHASE-BASED EMULSIONS: GENERAL AND STRUCTURAL ASPECTS......Page 609
A. O/I1 Emulsions......Page 612
1. Water–C12EO25–Oil System......Page 614
2. Correlation Between D-Phase Emulsification and Cubic Phase-Based Emulsions......Page 619
3. Water–Polyglycerol Fatty Acid Ester–Oil systems......Page 623
B. W/I2 Emulsions......Page 625
1. Water–SimC3EOn–Oil System......Page 627
V. CONCLUSIONS......Page 631
REFERENCES......Page 633
I. INTRODUCTION......Page 636
II. EARLY WORKS......Page 639
III. ADSOLUBILIZATION BEHAVIOR OF POORLY SOLUBLE MOLECULES......Page 640
A. Calculation of Partition Coefficients from Adsorption Batch Experiments......Page 642
B. Solute Concentration Effects on Adsolubilization......Page 644
C. Comparison Between Admicellar and Micellar Partition Coefficients......Page 646
1. Systems Calculated from Batch-Type Experiments......Page 647
2. Partition Coefficients as Deduced from Micellar Liquid Chromatography (MLC)......Page 650
3. Effect of Surfactant Aggregate Structures on the Partitioning of Solutes......Page 651
(a) Salt Effects.......Page 653
(b) pH Effects.......Page 654
6. Salt and pH Effects on the Adsolubilization Partition Constants of Ionized Solutes......Page 655
7. Cross Adsorption/Desorption Effects of Surfactant and Solute at the Solid–Water Interface......Page 663
III. APPLICATIONS OF ADSOLUBILIZATION FOR SMALL MOLECULES......Page 664
B. Ultrathin Films Formation......Page 665
C. Environment......Page 666
A. Nonadsorbing Surfactant Incorporation at Solid–Water Interfaces by Adsorbing Ones......Page 668
(a) Incorporation of an Anionic Surfactant by a Nonionic Surfactant to a Silica–Water or a Clay–Water Interface.......Page 670
(c) Incorporation of a Cationic Surfactant to a Silica–Water or Clay–Water Interface by a Nonionic Surfactant.......Page 673
B. Incorporation of Hydrophilic Polymers at Solid–Water Interfaces by Added Surfactants......Page 674
3. Adsolubilization by a Mixed Surfactant/Polymer System......Page 675
V. CONCLUSIONS......Page 676
REFERENCES......Page 677
I. INTRODUCTION......Page 682
II. CHARACTERIZATION OF OXIDE SURFACE......Page 683
A. Polymer–Surfactant Interaction......Page 686
B. Linear Nonionic Polymer–Surfactant Adsorption......Page 688
C. Linear Ionic Polymer–Surfactant Adsorption......Page 696
A. Dendrimer Adsorption......Page 702
B. Dendrimer–Surfactant Adsorption......Page 706
REFERENCES......Page 712
A. Adsorption Isotherms......Page 717
B. Thermodynamics of Adsorption of Surfactants on Solids......Page 719
A. Surfactants......Page 720
2. Hydrophobic Solids......Page 721
A. Adsorption on Hydrophilic Solids......Page 722
B. Adsorption on Hydrophobic Solids......Page 728
C. Characterization of the Adsorbed Surfactant Layer......Page 730
V. DISPERSION OF SOLID PARTICLES BY SURFACTANTS......Page 738
A. Interaction Forces Between Particles......Page 739
B. Interaction Among Some Lyophobic Sols and Surfactants......Page 740
C. Effect of Surfactant on Aqueous Dispersion......Page 743
D. Aqueous Dispersion by Oligomer Surfactants......Page 745
REFERENCES......Page 751
I. INTRODUCTION......Page 756
A. Principles of Atomic Force Microscopy......Page 757
B. Interpretation of Force Curve......Page 758
III. AFM OBSERVATION OF ADSORBED SURFACTANTS ON SOLID SURFACES......Page 760
1. Adsorption of Double Chained Cations on Mica......Page 761
3. Adsorption of Tetramethylammonium Chloride on Mica......Page 765
B. Aggregation Morphology of Surfactant Molecules on Solid-Surface Ex Situ Conditions......Page 768
1. Heterogeneous Growth of Adsorption Film......Page 774
2. Self-Repairing of Adsorbed Film......Page 775
3. Shape Factor of Two-Dimensional Aggregates......Page 776
4. Surface Aggregation Shapes in Nanometer-Scale Observation......Page 779
IV. SURFACE FORCE MEASUREMENTS FOR SURFACTANT ADSORBED SURFACES......Page 784
REFERENCES......Page 790