دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Klaus Friedrich (editor). Rolf Walter (editor)
سری: Woodhead Publishing Series in Composites Science and Engineering
ISBN (شابک) : 0128195355, 9780128195352
ناشر: Woodhead Publishing
سال نشر: 2020
تعداد صفحات: 458
[431]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب Structure and Properties of Additive Manufactured Polymer Components () به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ساختار و خواص اجزای پلیمری ساخته شده از افزودنی () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ساختار و خواص اجزای پلیمری ساخته شده افزودنیمروری پیشرفته از کارشناسان برجسته در این زمینه ارائه می دهد که در مورد پیشرفت های کلیدی که در دهه گذشته یا بیشتر در مورد استفاده ظاهر شده است صحبت می کنند. روش های ساخت افزودنی (AM) در تولید اجزای پلیمری تمیز و تقویت شده تمرکز عمده به جنبه های علم مواد داده می شود، به عنوان مثال، چگونگی کیفیت پلیمر، پارامترهای روش انتخابی AM، و اینکه چگونه این عوامل می توانند بر ریزساختار و خواص محصول نهایی تاثیر بگذارند.
این کتاب نه تنها فنآوریهای تولید و رابطه بین پردازش، ریزساختار و خواص اساسی قطعات تولید شده را پوشش میدهد، بلکه به خوانندگان ایدههایی در مورد استفاده از قطعات پلیمری AM در پزشکی، خودروسازی، هوافضا، تریبولوژی، الکترونیک و موارد دیگر.
Structure and Properties of Additive Manufactured Polymer Components provides a state-of-the-art review from leading experts in the field who discuss key developments that have appeared over the last decade or so regarding the use of additive manufacturing (AM) methods in the production of neat and reinforced polymeric components. A major focus is given to materials science aspects, i.e., how the quality of the polymer preforms, the parameters of the chosen AM method, and how these factors can affect the microstructure and properties of the final product.
The book not only covers production technologies and the relationship between processing, microstructure and fundamental properties of the produced parts, but also gives readers ideas on the use of AM polymer parts in medicine, automotive, aerospace, tribology, electronics, and more.
Cover Structure and Properties of Additive Manufactured Polymer Components Copyright Contributors Foreword Preface Part 1: Introduction Additive manufacturing technologies for polymer composites: State-of-the-art and future trends Chapter Outline 1 - Additive manufacturing 2 - Engineering and manufacturing process 2.1 - Engineering process 2.2 - AM technologies 2.3 - Extrusion technologies 2.4 - Laser technologies 2.5 - Flash technologies 2.6 - Jet technologies 3 - 3D printing of polymer composites 3.1 - Material extrusion composites 3.2 - Vat photopolymerization composites 4 - Future trends 5 - Conclusions References Development of new nanocomposites for 3D printing applications Abstract Keywords Chapter Outline Nomenclature 1 - Introduction 2 - Nanocomposites 3 - Additive manufacturing and nanocomposites 3.1 - Materials extrusion 3.1.1 - Fused filament fabrication 3.1.1.1 - Graphene 3.1.1.2 - Nanoclay and silica 3.1.1.3 - Carbon nanotubes 3.1.1.4 - Carbon nanofibers 3.1.1.5 - Nanocellulose 3.1.1.6 - Carbon black (CB) 3.1.1.7 - Metals and metal-oxides 3.1.1.8 - Liquid deposition modeling 3.2 - Materials powder bed fusion 3.2.1 - Selective laser sintering 3.3 - Vat photopolymerization 3.3.1 - Stereolithography 3.4 - Sheet lamination 4 - Conclusion and future outlook References Part 2: Frequently Used Additive Manufacturing Process Categories Section 2.1: General Aspects Effect of 3D printing conditions on the microand macrostructure and properties of high-performance thermoplastic composites Abstract Keywords Chapter Outline 1 - Introduction 2 - Influence of constituent materials on the formation of microstructure 2.1 - Formation of the interfacial region during materials extrusion additive manufacturing and the resultant microstructur... 2.2 - Effect of inclusion phase 3 - Influence of processing parameters 3.1 - Influence of feedstock material and conditioning parameters 3.2 - Influence of melt processing parameters 3.3 - Influence of extrusion parameters 3.4 - Influence of deposition parameters 3.5 - Influence of post-treatment 4 - Conclusion Acknowledgments References Additive manufacturing/3D printing of polymer nanocomposites: structure-related multifunctional properties Abstract Keywords Chapter Outline 1 - Introduction 2 - 3D printing of standard polymers 2.1 - Overview of 3D printing processes and associate materials 2.2 - Materials descriptions 2.3 - Process-based methods to improve properties 2.4 - Concluding remarks 3 - Continuous fiber composite 3D printing 3.1 - Overview of 3D printing of continuous fiber composite materials 4 - Nanocomposite 3D printing 4.1 - Why use polymer nanocomposites? 4.2 - 3D printing of low loading graphene-polymer nanocomposites employing FFF 3D printing 5 - Ceramic nanocomposite 3D printing References Numerical simulation of additive manufacturing of polymers and polymer-based composites Chapter Outline 1 - Introduction 2 - From CAD to FEA 2.1 - General workflow 2.2 - FFF applications 2.3 - SLS applications 3 - Thermomechanical modeling of AM processes 3.1 - Thermal problem 3.1.1 - Heat equation 3.1.2 - SLS boundary and initial conditions 3.1.3 - FFF boundary and initial conditions 3.1.4 - SLS heat source model 3.2 - Mechanical problem 3.3 - Material modeling 3.3.1 - Mass density in SLS 3.3.2 - Thermal conductivity in SLS 3.3.3 - Specific heat capacity and latent heat 3.3.4 - Linear thermo-elasticity 3.3.5 - Thermo(linear)viscoelasticity 3.3.6 - Plastic and viscoplastic deformation 3.3.7 - Reinforced polymers 3.3.8 - Crystallization kinetics 4 - Numerical simulation of solid parts 4.1 - Mechanical behavior of printed materials and structures 4.2 - Multiscale ICME of printed parts 4.3 - Microscale material modeling 4.4 - Mesoscale material modeling 4.5 - Macroscale structural modeling 4.6 - Linking with process simulation 4.7 - Applications 5 - Conclusions References Section 2.2: Powder Bed Fusion (in particular: Selective Laser Sintering (SLS)) Powder quality and electrical conductivity of selective laser sintered polymer composite components Chapter Outline 1 - Introduction 2 - Powder quality and fundamentals for selective laser sintering 2.1 - The intrinsic properties of SLS polymer powders 2.1.1 - Thermodynamic properties of polymers 2.1.2 - Rheological properties of polymers 2.1.3 - Optical properties of polymer 2.2 - Extrinsic properties 2.2.1 - Particle size and shape 2.2.2 - Flowability and packing efficiency of powder 3 - Electric conductive composite powder for SLS 3.1 - Segregated networks of conductive fillers 3.2 - Effect of composite powders preparation methods 3.2.1 - Melt mixing 3.2.2 - Solution mixing 3.2.3 - Mechanical mixing 3.2.4 - Liquid phase absorption and deposition 3.3 - Effect of conductive fillers type 3.4 - Effect of polymer matrix type 4 - Conclusion and perspectives Acknowledgments References Section 2.3: Material Extrusion (in particular: Fused Filament Fabrication (FFF)) Section 2.3.1: Particulate and Short Fiber Reinforced Polymer Composites Extrusion deposition additive manufacturing with fiber-reinforced thermoplastic polymers 1 - Introduction 2 - Heat transfer in extrusion deposition additive manufacturing 2.1 - Heat transfer mechanisms in EDAM 2.2 - Prediction of temperature evolution in EDAM 3 - Melting and crystallization 3.1 - Evolution of the degree of crystallinity 4 - Layer adhesion 4.1 - Interlayer fusion bonding in extrusion deposition additive manufacturing 4.2 - Fusion bonding of fiber-reinforced semicrystalline polymers 4.3 - Interdiffusion of polymer chains 4.4 - Degree of bonding developed during the EDAM process 5 - Thermoviscoelasticity in the EDAM process 5.1 - Modeling 5.2 - Material characterization 6 - Shrinkage and shape change 6.1 - Shape change 7 - Simulation framework 8 - ADDITIVE3D—simulation framework for EDAM References Quality of polymeric tribocompound powders and its influence on microstructure and mechanical/tribologica... Chapter Outline 1 - Introduction 1.1 - Structure and mechanical/tribological properties of extrudable UHMWPE-based polymer composites 2 - Materials and experimental methods 3 - Results and discussion 4 - Computer-aided design of extrudable UHMWPE-based polymer composites with prescribed antifriction and mechanical behavior 5 - Comparison of the structure, tribological, and mechanical properties of extrudable UHMWPE-based polymer composites fabr... 6 - Conclusions References Effect of filament quality, structure, and processing parameters on the properties of fused filament fabr... Chapter Outline 1 - Introduction 1.1 - General aspects and importance of structure—property relationships of additive manufactured parts 1.2 - State of the art of processing–structure–property relationships of AM polymer and polymer composite components 1.2.1 - FFF processing studies 1.2.2 - Mechanical properties of fiber-reinforced printed materials 1.2.3 - Tribological behavior of printed materials 1.3 - Objectives of present contribution 2 - AM method used 2.1 - Principle of FFF process 2.2 - Operating conditions of FFF device 3 - Materials investigated 3.1 - Types of polymers and composites used 3.2 - Quality of the filaments 3.2.1 - Variation in filament diameter 3.2.2 - Cross-section analysis 3.2.3 - Density of filaments 3.2.4 - Fiber content and fiber length distribution 3.2.5 - Porosity of the filaments 3.2.6 - Surface quality of the filaments 3.3 - Geometry of test samples 4 - Processing parameters and related microstructures of FFF samples produced 4.1 - Basic production parameters for printed samples 4.2 - Microstructural details of selected PETG and PA samples 4.2.1 - Filament orientation within the printed bending specimens 4.2.2 - Effect of layer thickness on the structure of SENB samples 4.2.3 - Density of printed BEND samples 4.2.4 - Humidity 4.2.5 - Surfaces of printed tribo-specimens 4.3 - Structural details of iglidur J260 4.3.1 - Density values of printed versus injection molded bending and bushing samples 4.3.2 - Porosities of the iglidur J260 samples (printing vs. injection molded) 4.4 - Overview of the determined microstructural details of selected PETG and PA samples and of iglidur J260 5 - Mechanical properties of FFF samples 5.1 - PETG and CF-PETG 5.2 - PA6, PA12, and their carbon fiber-reinforced composites 5.3 - Comparison of characteristic values for the PETG and PA-based specimens 5.4 - Mechanical properties of iglidur J260 material and comparison 6 - Tribological behavior of FFF samples 6.1 - Samples and testing 6.2 - Results achieved with PETG- and PA-based tribomaterials 6.2.1 - Wear rates 6.2.2 - Wear mechanisms 6.3 - Results achieved with iglidur J260 and comparison between the different materials 7 - General consequences for improvements 7.1 - Mechanical properties 7.2 - Tribological properties Acknowledgments References Influence of printing parameters and filament quality on structure and properties of polymer composite co... Abstract Keywords Chapter Outline 1 - Introduction 2 - Enhancement of mechanical properties of FDM parts 2.1 - A novel fused deposition modeling process with an auxiliary heating device 2.1.1 - Effect of auxiliary heating temperatures and raster angles on tensile properties of FDM parts 2.1.2 - Microstructures of FDM specimens printed with the auxiliary heating device 2.2 - Physical modification of printing materials 3 - Dimensional accuracy of FDM parts prepared by polymer composites 4 - Requirements of polymer composite materials for FDM technique 5 - Conclusions Acknowledgments References Section 2.3.2: Continuous Fiber Reinforced Polymer Composites Printing of three-dimensional polymer composite structures with continuous fiber reinforcement Chapter Outline 1 - Introduction and motivation 2 - 3D-printing processes for the processing of fiber-reinforced thermoplastic composites 3 - Integration of continuous reinforcing fibers in extrusion based 3D printing processes 4 - Orienting continuous reinforcing fibers with extrusion based 3D printing processes 5 - Semifinished continuous fiber-reinforced polymer products for extrusion based 3D printing processes 6 - Equipment for extrusion based 3D-printing of continuous fiber-reinforced polymers 7 - Extrusion based 3D printing processes for continuous fiber-reinforced polymer composites 8 - Evaluation of process potential and outlook References On structure-mechanical and tribological property relationships of additive manufactured continuous carbo... 1 - Introduction 1.1 - Fused filament fabrication 1.2 - Mechanical properties of printed composites 1.3 - Tribological properties of printed composites 2 - Raw materials 3 - Microstructural characterization of 3D printed materials 3.1 - Microstructure of 3D printed thin layer 3.2 - Quantification of void content in 3D printed CF/PA6 composites 3.3 - Formation of voids within 3D printed CF/PA6 composites 4 - Characterization of mechanical performance 4.1 - Tensile properties of 3D printed PA6 and SCFRPA6 4.2 - Tensile, flexural, and fracture properties of 3D printed CF/PA6 composites 4.3 - Effects of voids on the mechanical performance of CF/PA6 composites 5 - Tribological properties of 3D printed CF/PA6 composites 5.1 - Wear testing 5.2 - Effect of printing orientations 5.3 - Effects of fiber orientation 6 - Concluding remarks References Section 2.4: Material Jetting (in particular: Droplet Ink Writing (DIW)) Direct ink writing of polymers and their composites, and related applications Chapter Outline 1 - Introduction 2 - Polymer inks for direct writing and applications 2.1 - Conductive polymers and composites for electronics 2.2 - Biocompatible polymers and composites for biomedicines 2.3 - Photosensitive polymers for UV-assisted DIW 3D printing 3 - Conclusions and perspectives References Material aspects during additive manufacturing of nano-cellulose composites Chapter Outline 1 - Introduction 2 - Selection of bioink for 3D printing 3 - Properties of cellulose 4 - Cellulose for 3D printing 4.1 - Cellulose as ink for additive manufacturing 4.2 - Cellulose as matrix for 3D printing 5 - Cellulose-synthetic polymer composites 6 - Cellulose-biodegradable polymer composites 7 - Cellulose/natural polymer composites 8 - Bioprinting 9 - 4D printing 10 - Conclusion References Index Back Cover